JP2560148B2 - Optical fiber terminal with microlens and manufacturing method thereof - Google Patents

Optical fiber terminal with microlens and manufacturing method thereof

Info

Publication number
JP2560148B2
JP2560148B2 JP2416547A JP41654790A JP2560148B2 JP 2560148 B2 JP2560148 B2 JP 2560148B2 JP 2416547 A JP2416547 A JP 2416547A JP 41654790 A JP41654790 A JP 41654790A JP 2560148 B2 JP2560148 B2 JP 2560148B2
Authority
JP
Japan
Prior art keywords
optical fiber
fiber
tip
optical
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2416547A
Other languages
Japanese (ja)
Other versions
JPH04288509A (en
Inventor
正人 蓼沼
良博 今野
浩 久米
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Namiki Precision Jewel Co Ltd
Original Assignee
Namiki Precision Jewel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Namiki Precision Jewel Co Ltd filed Critical Namiki Precision Jewel Co Ltd
Priority to JP2416547A priority Critical patent/JP2560148B2/en
Publication of JPH04288509A publication Critical patent/JPH04288509A/en
Application granted granted Critical
Publication of JP2560148B2 publication Critical patent/JP2560148B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Optical Couplings Of Light Guides (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光スイッチ,光合分波
器,光アイソレータ等各種光学部品用の微小レンズ付光
ファイバ端末の構造とその製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of an optical fiber terminal with a minute lens for various optical parts such as an optical switch, an optical multiplexer / demultiplexer, and an optical isolator, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】光通信の発達に伴って利用されている光
デバイス,光学部品の小型化が望まれる。特に光アイソ
レータ,光サーキュレータ,光合分波器等においては、
光ファイバと結合した状態で小型化や構造の簡素化が要
求されている。また、近年光通信の高速システムに狭い
スペクトル幅を持つ分布帰還型レーザを用いているが、
後方反射に対して敏感であるため、光ファイバの終端が
高反射減衰量を有することも要求されるようになってき
た。
2. Description of the Related Art Miniaturization of optical devices and optical components used with the development of optical communication is desired. Especially in optical isolators, optical circulators, optical multiplexers / demultiplexers, etc.
There is a demand for downsizing and simplification of the structure in a state of being coupled with an optical fiber. In addition, recently, distributed feedback lasers with a narrow spectrum width have been used in high-speed systems for optical communication.
Due to their sensitivity to back reflection, it has also been required that the ends of optical fibers have high return loss.

【0003】一般に、光ファイバを伴うピッグテール化
された光アイソレータ等では図2に示すように光ファイ
バ1から出射された光は球レンズ2あるいは屈折率分布
型レンズ3で平行光として光学デバイス4へ入射させ、
出射させた光を再び同様にして光ファイバ1へ集光する
ことにより結合している。
In general, in a pigtailed optical isolator with an optical fiber, the light emitted from the optical fiber 1 is collimated by a spherical lens 2 or a gradient index lens 3 to an optical device 4 as shown in FIG. Make it incident,
The emitted light is similarly focused again on the optical fiber 1 to be coupled.

【0004】[0004]

【発明が解決しようとする課題】これまでのコリメート
系は、光ファイバとレンズの光軸位置調整が問題であ
り、組立装置等に費用がかかり、光ファイバコリメート
製品として高価になっていた。また従来方式の場合、図
3に示すように有機物質による屈折率整合剤5を用いて
反射防止を行っている。従って耐候的,耐熱的な課題が
ある。また図3における光の入出射面6では反射防止膜
を形成するために、光ファイバコードが付属した状態で
実施されることから、通常の蒸着のように約300℃程度
に加熱されるハードコートが光ファイバ被覆部の耐熱性
やガス発生のため用いられず、イオンアシスト等を用い
たコートが採用され、均一性および低価格を妨げる要因
になっていた。
The conventional collimating system has a problem of adjusting the optical axis positions of the optical fiber and the lens, which requires a high cost for an assembling apparatus and the like, and is expensive as an optical fiber collimating product. Further, in the case of the conventional method, as shown in FIG. 3, a refractive index matching agent 5 made of an organic material is used to prevent reflection. Therefore, there are problems of weather resistance and heat resistance. In order to form an antireflection film on the light entrance / exit surface 6 in FIG. 3, it is carried out with an optical fiber cord attached, so a hard coat that is heated to about 300 ° C. like ordinary vapor deposition. However, since it is not used due to the heat resistance of the optical fiber coating and gas generation, a coating using ion assist or the like is adopted, which is a factor that hinders uniformity and low price.

【0005】さらに光デバイスの小型化の面から十分に
光束の細い(例えば200μm以下)ファイバコリメータ光
が必要とされているが、従来の光ファイバコリメータで
は細くとも300μmまでしか得られなかった。また、従来
のファイバコリメータの構造では反射減衰量が−27dB程
度しか得られなかったが、ファイバ先端に角度を付けて
レンズ系とカップリングしたり、カップリング構造自体
複雑にしなければならなかった。
Further, a fiber collimator light having a sufficiently small luminous flux (for example, 200 μm or less) is required from the viewpoint of miniaturization of an optical device, but the conventional optical fiber collimator can obtain only 300 μm at the smallest. In addition, although the conventional fiber collimator structure can obtain a return loss of only about -27 dB, the tip of the fiber must be angled for coupling with the lens system, or the coupling structure itself must be complicated.

【0006】近年微小コリメータ光を形成する試みがな
されている。Journal of LightwaveTechnology Vol. LT
-5 No.9 (1987)には、William L. Emkey等によりシング
ルモードファイバ(以下SMFという)にマルチモード
屈折率分布ファイバ(以下MMGIFという)を融着
し、約40μmまでの微小コリメータ光の結合を提案して
いる。ここでは約3mmまでの距離を0.1〜1.6dBの結合損
失でカップリングを行っている。しかしMMGIFを用
いる構造では、光束の拡大が約40μm程度であり、3mm
以上の距離では結合損失が大幅に劣化するためコリメー
ト距離の自由度がなく、製造工程において屈折率分布フ
ァイバ部の分布状態や波長ピッチの調整を個々に測定し
ながら行わなければならず、量産に不適当であり価格的
にも高価となる欠点があった。
[0006] In recent years, attempts have been made to form minute collimator light. Journal of Lightwave Technology Vol. LT
-5 In No. 9 (1987), a single mode fiber (hereinafter referred to as SMF) is fused with a multimode refractive index distribution fiber (hereinafter referred to as MMGIF) by William L. Emkey, etc. Proposes a join. Here, coupling is performed for a distance of up to about 3 mm with a coupling loss of 0.1 to 1.6 dB. However, with the structure that uses MMGIF, the expansion of the luminous flux is about 40 μm, which is 3 mm.
Since the coupling loss is significantly deteriorated at the above distances, there is no degree of freedom in the collimating distance, and in the manufacturing process, the distribution state of the refractive index distribution fiber part and the wavelength pitch must be adjusted individually while performing mass production. It had the drawback of being unsuitable and expensive in price.

【0007】[0007]

【課題を解決するための手段】本発明は上記の欠点を解
決する手段として中央部に導波構造をなす光ファイバ先
端に、SiO2もしくはSiO2を主成分とした単一屈折率から
なり、ガウス拡散によるビーム拡大に必要な長さと半径
をもつ球状のレンズを形成した同一外径のファイバレン
ズを融着により一体化した構造である。
Means for Solving the Problems As a means for solving the above-mentioned problems, the present invention comprises a single refractive index containing SiO 2 or SiO 2 as a main component at the tip of an optical fiber having a waveguide structure at the center, This is a structure in which fiber lenses with the same outer diameter are formed by fusion bonding, and a spherical lens having a length and radius necessary for beam expansion by Gaussian diffusion is formed.

【0008】 具体的には、第一の光ファイバと、この
光ファイバのコア部と等価な屈折率をもつ同一外径から
なるコアのない第二の光ファイバが接合され、第二の光
ファイバの先端は球状に形成され、その球状部分の直径
は前記ファイバ外径より大きくなるように設定すること
により、光ビームの放射角度を制御する機能が付与され
た微小レンズ付光ファイバ端末であり、第二の光ファイ
バにおいて、光ビームが外周に接触しない範囲内に長さ
を設定し、先端の球状レンズには使用波長帯域に適合す
る反射防止膜を形成し、第一及び第二の光ファイバの外
周部に光吸収剤、これらと等価あるいはそれ以上の屈折
率をもつ屈折率整合剤を被覆する。製造方法としては、
第二の光ファイバ先端の球状部を熱溶解法により形成す
るもので、その先端部を熱溶解部中に送り入れることに
より先端に目的の半径をもつ球状レンズを形成する。
Specifically, the first optical fiber and a coreless second optical fiber having the same outer diameter and having an equivalent refractive index as the core portion of the optical fiber are spliced to form a second optical fiber. Is formed in a spherical shape, and the diameter of the spherical portion is set to be larger than the fiber outer diameter, which is an optical fiber terminal with a minute lens provided with a function of controlling the emission angle of the light beam, In the second optical fiber, the length is set within the range where the light beam does not contact the outer periphery, and the spherical lens at the tip is formed with an antireflection film that fits the wavelength band used. The outer peripheral portion of is covered with a light absorber and a refractive index matching agent having a refractive index equal to or higher than these. As a manufacturing method,
The spherical portion at the tip of the second optical fiber is formed by the heat melting method. By feeding the tip into the heat melting portion, a spherical lens having a target radius is formed at the tip.

【0009】[0009]

【実施例】本発明の光ファイバ端末先端部を図1(a)の
実施例に示すように作成した。先端SiO2ファイバレンズ
7、ピッグテールファイバ本線8、先端部保護用フェル
ール9,先端レンズ10から構成される。9は省略するこ
とも可能である。図1(b)は光の透過状態を示し、SM
Fの出射した光の収束点(ビームウエスト)間での距離
をzとすると、波長λにおけるSiO2の屈折率をnとし
て、ファイバレンズ7中を伝播することによりガウシア
ンビームの広がり度合は数1で示される。
EXAMPLE An optical fiber terminal end portion of the present invention was prepared as shown in the example of FIG. 1 (a). It consists of a tip SiO 2 fiber lens 7, a pigtail fiber main line 8, a ferrule 9 for tip protection, and a tip lens 10. 9 can be omitted. Fig. 1 (b) shows the transmission state of light, SM
Letting z be the distance between the convergence points (beam waists) of the light emitted by F, let the refractive index of SiO 2 at the wavelength λ be n, and the degree of spread of the Gaussian beam will be several 1 as it propagates through the fiber lens 7. Indicated by.

【数1】 すなわちLを制御することにより光ファイバ径近傍もし
くはそれ以上に拡大することができる。
[Equation 1] That is, by controlling L, the diameter can be expanded to the vicinity of the optical fiber diameter or more.

【0010】コア径10μm,外径125μm,コア屈折率約
1.47のSMF本線と同じ外径125μmのSiO2ファイバを使
用する。1.31μmの波長ではLの最大長は数1からLmax
=約1.1mm以下であるならばよい。図1(b)においてSM
Fからビームウエストへ経る光の光線行列は、SiO2ファ
イバの先端レンズの曲率をRとすると、数2の関係があ
る。
Core diameter 10 μm, outer diameter 125 μm, core refractive index approx.
Using the SiO 2 fiber of the same outer diameter 125μm and 1.47 SMF mains. At a wavelength of 1.31 μm, the maximum length of L is from the number 1 to Lmax
= It should be about 1.1 mm or less. SM in Fig. 1 (b)
The ray matrix of the light passing from F to the beam waist has the relationship of Expression 2 where R is the curvature of the tip lens of the SiO 2 fiber.

【数2】 さらにガウシアンビームの光線式から数3となりビーム
ウエストまでの距離zが得られる。
[Equation 2] Further, from the ray formula of the Gaussian beam, Equation 3 is obtained, and the distance z to the beam waist is obtained.

【数3】 ただしa=λ/πnw0 2 である。(Equation 3) However, a = λ / πnw 0 2 .

【0011】数2,数3およびガウシアンビームの光線
式から、
From the equations (2), (3) and the ray equation of the Gaussian beam,

【数4】 となり、数1から拡大ビーム径が80μmになるように算
出し、L=0.7mmを選定した。この場合前記従来の提案
によるビーム径40μmの2倍の直径となる。SiO2ファイ
バの先球レンズの曲率Rはビームウエスト位置zや、ビ
ーム径2Wzに大きく作用する。表1にその関係を示
す。
[Equation 4] Therefore, L = 0.7 mm was selected by calculating from Expression 1 so that the expanded beam diameter would be 80 μm. In this case, the beam diameter is twice as large as the beam diameter of 40 μm according to the conventional proposal. The curvature R of the spherical lens of the SiO 2 fiber greatly affects the beam waist position z and the beam diameter 2W z . Table 1 shows the relationship.

【0012】[0012]

【表1】 [Table 1]

【0013】したがって曲率R=200μmでは、ビームウ
エスト位置約1.8mm、ビーム径88μmとなり、ビームウエ
ストを対称中心とし、その対向位置に同一光学系を測定
したところレンズ−レンズ間距離3.6mmで結合損失は0.5
dBであった。反射減衰量は、図1(c)に示すような反射
防止膜11と屈折率整合剤5を施して−45dBが達成でき
た。
Therefore, when the curvature R = 200 μm, the beam waist position is about 1.8 mm and the beam diameter is 88 μm. When the same optical system is measured at the opposite position with the beam waist as the center of symmetry, the coupling loss is 3.6 mm between the lens and the lens. Is 0.5
dB. The return loss was -45 dB when the antireflection film 11 and the refractive index matching agent 5 as shown in FIG. 1C were applied.

【0014】先球製作は、図5に示すようにアーク放電
熱溶解部13に石英ファイバ7を溶解部頭上から送り入れ
曲率R=200μmを形成した。石英ファイバの送り長さh
の体積(円柱)が先球の体積になるように、数5からh
を求めた。
In the production of the tip ball, as shown in FIG. 5, the quartz fiber 7 was fed into the arc discharge heat melting portion 13 from above the melting portion to form a curvature R = 200 μm. Feed length h of quartz fiber
So that the volume (cylinder) of is the volume of the front sphere,
I asked.

【数5】 その結果、送り長さh=2.73mmで曲率R=200μmが得ら
れた。
(Equation 5) As a result, a feed length h = 2.73 mm and a curvature R = 200 μm were obtained.

【0015】[0015]

【発明の効果】本発明により、ファイバレンズが光ファ
イバに直接融着できるので、接着方式とは異なり信頼性
の高い光学部品となり、界面がないために反射損失が少
なく高い結合効率が実現できる。そして従来のファイバ
コリメータのように、レンズ系との高い公差で調整する
ことなく、ピッグテール部も含む光ファイバ端末系とし
て低価格で供給できる利点がある。
According to the present invention, since the fiber lens can be directly fused to the optical fiber, it becomes a highly reliable optical component unlike the adhesive method, and since there is no interface, reflection loss is small and high coupling efficiency can be realized. And, unlike the conventional fiber collimator, there is an advantage that it can be supplied at a low price as an optical fiber terminal system including a pigtail portion without adjusting with a high tolerance with a lens system.

【0016】先球ファイバ製作時においては、熱溶解法
により石英ファイバの送り長さの体積と球の体積を一致
させる制御が容易であり、表面張力を利用して球を形成
するため、同芯度が劣化しないで真球度の良いものがで
き、研磨法における、研磨キズや加工変質層等の問題が
なく、時間の浪費が解消できる。また構造上高反射減衰
量であるため、従来のファイバコリメータのように内部
構成の変更や光軸調整などの必要がない。これらのこと
により特に光アイソレータ,光スイッチ,光合分波器等
さらに曲率を調整することにより、光ファイバアレイ結
合部として広範囲な用途に応用できる。
During the production of the spherical fiber, it is easy to control the volume of the feed length of the quartz fiber and the volume of the sphere by the heat melting method, and the surface tension is used to form the sphere. The degree of sphericity can be improved without deterioration, and there is no problem such as polishing scratches or work-affected layer in the polishing method, and waste of time can be eliminated. Further, since the structure has a high return loss, there is no need to change the internal configuration or adjust the optical axis, unlike the conventional fiber collimator. Due to these factors, the optical isolator, the optical switch, the optical multiplexer / demultiplexer, and the like can be applied to a wide range of applications as an optical fiber array coupling section by further adjusting the curvature.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光ファイバ端末を示す断面図。FIG. 1 is a sectional view showing an optical fiber terminal of the present invention.

【図2】光ファイバ光学系の概略図。FIG. 2 is a schematic diagram of an optical fiber optical system.

【図3】従来の光ファイバコリメータの断面図。FIG. 3 is a sectional view of a conventional optical fiber collimator.

【図4】本発明によるアーク放電熱溶解を示す概略図。FIG. 4 is a schematic diagram showing arc discharge thermal melting according to the present invention.

【符号の説明】[Explanation of symbols]

1 光ファイバ 2 球レンズ 3 屈折率分布型レンズ 4 光学デバイス 5 屈折率整合剤 7 SiO2ファイバレンズ 8 ピッグテールファイバ本線 9 先端部保護用フェルール 10 先端レンズ 11 反射防止膜 12 アーク放電部1 optical fiber 2 spherical lens 3 gradient index lens 4 optical device 5 index matching agent 7 SiO 2 fiber lens 8 pigtail fiber main line 9 ferrule for tip protection 10 tip lens 11 antireflection coating 12 arc discharge part

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 第一の光ファイバと、この光ファイバの
コア部と等価で単一な屈折率をもつ同一外径からなるコ
アのない第二のファイバが接合され、第二のファイバの
先端を、前記光ファイバ外径より大きくなるような直径
をもつ球状に形成することにより、光ビームの放射角度
を制御することを特徴とした微小レンズ付光ファイバ端
末。
1. A first optical fiber and a coreless second fiber having the same outer diameter, which is equivalent to the core of the optical fiber and has a single refractive index, are joined to each other, and a tip of the second fiber is joined. Is a diameter larger than the outer diameter of the optical fiber
By forming the well One spherical shape, the light beam characteristics and the optical fiber terminal with micro lenses to control the emission angle of.
【請求項2】 第二の光ファイバにおいて、光ビームが
光ファイバ外周に接触しない範囲内に光ファイバの長さ
を設定した請求項1の微小レンズ付光ファイバ端末。
2. The optical fiber terminal with microlenses according to claim 1, wherein in the second optical fiber, the length of the optical fiber is set within a range in which the light beam does not contact the outer circumference of the optical fiber.
【請求項3】 第二の光ファイバ先端の球状部に反射防
止膜を形成した請求項1の微小レンズ付光ファイバ端
末。
3. The optical fiber terminal with a microlens according to claim 1, wherein an antireflection film is formed on the spherical portion at the tip of the second optical fiber.
【請求項4】 第一及び第二の光ファイバの外周部に光
吸収剤、またはこれらと等価あるいはそれ以上の屈折率
をもつ屈折率整合剤を被覆した請求項1の微小レンズ付
光ファイバ端末。
4. The optical fiber terminal with a microlens according to claim 1, wherein the outer peripheral portions of the first and second optical fibers are coated with a light absorbing agent or a refractive index matching agent having a refractive index equivalent to or higher than these. .
【請求項5】 第二の光ファイバ先端の球状部を熱溶解
法により形成した請求項1の微小レンズの製造方法。
5. The method of manufacturing a microlens according to claim 1, wherein the spherical portion at the tip of the second optical fiber is formed by a heat melting method.
【請求項6】 第二の光ファイバ先端部を、熱溶解部中
に送り入れることにより、その先端に目的の半径をもつ
球状レンズを形成した請求項5の微小レンズの製造方
法。
6. The method of manufacturing a microlens according to claim 5, wherein a spherical lens having a target radius is formed at the tip of the second optical fiber by feeding the tip of the second optical fiber into the heat melting portion.
JP2416547A 1990-12-28 1990-12-28 Optical fiber terminal with microlens and manufacturing method thereof Expired - Fee Related JP2560148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2416547A JP2560148B2 (en) 1990-12-28 1990-12-28 Optical fiber terminal with microlens and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2416547A JP2560148B2 (en) 1990-12-28 1990-12-28 Optical fiber terminal with microlens and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH04288509A JPH04288509A (en) 1992-10-13
JP2560148B2 true JP2560148B2 (en) 1996-12-04

Family

ID=18524768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2416547A Expired - Fee Related JP2560148B2 (en) 1990-12-28 1990-12-28 Optical fiber terminal with microlens and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2560148B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100822953B1 (en) * 2000-03-17 2008-04-16 코닝 인코포레이티드 Optical waveguide lens and method of fabrication
US6552298B1 (en) 2001-09-28 2003-04-22 Corning Incorporated Apparatus and method for making a lens on the end of an optical waveguide fiber
JP5124908B2 (en) * 2005-03-10 2013-01-23 日亜化学工業株式会社 Light emitting device
JP6764854B2 (en) * 2015-02-24 2020-10-07 株式会社フジクラ Ferrule and manufacturing method of ferrule with optical fiber
CN111650689B (en) * 2020-05-10 2022-03-25 桂林电子科技大学 Fiber integrated micro lens set

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5821209A (en) * 1981-07-31 1983-02-08 Sumitomo Electric Ind Ltd Image transmission line
JPS60154907U (en) * 1984-03-26 1985-10-16 富士通株式会社 optical coupler
JPH0339763Y2 (en) * 1985-10-24 1991-08-21
JPH0718965B2 (en) * 1988-06-02 1995-03-06 富士通株式会社 Optical communication device and manufacturing method thereof
JP2957189B2 (en) * 1989-02-17 1999-10-04 日本電気株式会社 Method for manufacturing semiconductor laser module

Also Published As

Publication number Publication date
JPH04288509A (en) 1992-10-13

Similar Documents

Publication Publication Date Title
US5293438A (en) Microlensed optical terminals and optical system equipped therewith, and methods for their manufacture, especially an optical coupling method and optical coupler for use therewith
KR100822953B1 (en) Optical waveguide lens and method of fabrication
US6594419B2 (en) Tapered lensed fiber for focusing and condenser applications
US7068883B2 (en) Symmetric, bi-aspheric lens for use in optical fiber collimator assemblies
JP3615735B2 (en) Manufacture of collimators using optical fibers welded and connected to optical elements of considerable cross section
US20030081897A1 (en) Aspherical rod lens and method of manufacturing aspherical rod lens
US7346236B2 (en) Collimator lens, fiber collimator and optical parts
JPH04333808A (en) Photosemiconductor module
CN101004467A (en) Optical component for optical communication
JP2002055276A (en) Fine aspherical collimator lens
JPH08136772A (en) Optical fiber interface for coupling light source and its production
EP0683410B1 (en) Optical fiber light coupling interface with an enlarged incident surface
EP3441805B1 (en) Lens-attached optical fiber and optical coupler
US6535668B2 (en) Retro-reflective multi-port filter device with triple-fiber ferrule
JP2560148B2 (en) Optical fiber terminal with microlens and manufacturing method thereof
JP3274691B2 (en) Manufacturing method of optical fiber terminal with micro lens
GB1570001A (en) Manufacturing optical fibre connectors
US6798949B2 (en) Optical assembly with integrated lens protrusion
JP2992093B2 (en) Optical fiber terminal with micro lens
JPH07281054A (en) Optical fiber terminal
JP3135979B2 (en) Optical fiber terminal optical device with micro lens
JPH0429104A (en) Fine optical fiber collimator
JP2003084168A (en) Lens with multilayer film and optical fiber collimator
JP2003121689A (en) Optical module and method for assembling the same
JP2002372604A (en) Collimator lens, fiber collimator and optical part

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960514

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees