JPH0428840B2 - - Google Patents

Info

Publication number
JPH0428840B2
JPH0428840B2 JP63054179A JP5417988A JPH0428840B2 JP H0428840 B2 JPH0428840 B2 JP H0428840B2 JP 63054179 A JP63054179 A JP 63054179A JP 5417988 A JP5417988 A JP 5417988A JP H0428840 B2 JPH0428840 B2 JP H0428840B2
Authority
JP
Japan
Prior art keywords
moisture
wallpaper
permeable
condensation
permeable resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63054179A
Other languages
Japanese (ja)
Other versions
JPH01229898A (en
Inventor
Sachiko Yamamura
Chiaki Tsukamoto
Hiroyuki Anzai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP5417988A priority Critical patent/JPH01229898A/en
Publication of JPH01229898A publication Critical patent/JPH01229898A/en
Publication of JPH0428840B2 publication Critical patent/JPH0428840B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Paper (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は透湿性結露防止壁紙およびその製造方
法に関するものである。 〔従来の技術〕 壁紙とは、一般的には、主に建築物の壁、天井
などに仕上げ材として貼り付ける紙製、繊維製、
プラスチツク製および金属箔製などの素材からな
つていて、シート状の可塑性を有するものの通称
である。 最近の建築がパネル、プレハブ、鉄筋コンクリ
ート等よりなる、建築様式がいわゆる洋風化し、
また窓も金属サツシの発達により、気密性が良く
なり、一方室内の通風性が全くなくなつた結果と
して、壁面での結露の問題が惹起してきている。
即ち、密室壁の結露の問題は、前述の窓のサツシ
の気密性の問題に加えて、生活水準の向上に伴う
生活用水の増加、石油ストーブ、ガスストーブ等
の暖房器具の使用に伴う水蒸気の発生等がその原
因の一つと考えられている。 ところで、この種結露を防止する方法として
は、断熱材を壁内部に挿入して、室内の壁面が露
点温度以下にならないようにすれば、この問題は
解決できると考えられるが、そのためには、壁内
部の断熱材や木材の性能維持および壁内部の湿度
による蒸れ防止が大切であり、このために最近特
に透湿性および通気性を有する壁材が注目されて
いる。このほかに壁材として要求される性能とし
ては、結露水によつて汚れにくいことは勿論であ
るが、仮に結露水が付着しても、容易にこれを払
拭しうることが重要であり、例えば紙系壁紙や織
物系壁紙は吸放湿性を有するが、汚れ易く、表面
が微孔質であるため黴が発生し易く、また付着し
た汚れを払拭することも困難である。従つて、こ
れらの素材は上記壁紙に必要な特性を充分に満た
していない。 これらの従来の紙系または織物系壁紙を改良す
るために、水蒸気は透過するが、液状の水は透過
しない程度の微細孔を多数設けた微孔性フイルム
で壁紙の表面を被覆した、払拭の容易な壁紙が開
発されている。この種微孔性フイルムは溶液を展
延後に溶剤を水と置換させる湿式法或いは物理
的、機械的に微孔を穿ける乾式法により製造さ
れ、接着剤等により壁材の表面に貼着される。 また塩化ビニル樹脂製壁紙は汚れにくく、払拭
し易いが、透湿性がなく結露しやすい。この塩化
ビニル樹脂中に高吸水性樹脂よりなる高分子吸湿
剤を添加して壁紙を製造し、その壁紙の塩化ビニ
ル樹脂層中に高分子吸収剤微粉末を分散して埋設
することにより、壁紙表面の結露現象を防止しよ
うという試みもなされている。 〔発明が解決しようとする課題〕 上記従来の改良壁紙のうち、微孔性フイルムで
表面を被覆した紙系または織物系壁紙は、表層フ
イルムの微細孔が埃や塵その他の汚染物質によつ
て、目詰まりを生じ易く、且つ汚れを払拭し難い
ため、次第に吸放湿性能が低下する。更にその微
孔性フイルムの製造工程は、乾式法、湿式法とも
いずれも複雑でまた特殊な装置を必要とし、更に
接着剤により化粧紙に積層貼着する必要があり、
壁紙の製造コストが嵩むという問題もある。 高分子吸湿剤を分散埋設した塩化ビニル樹脂フ
イルムよりなる壁紙は、壁紙表面に露出した吸湿
剤はよく吸湿するが、樹脂層内部に埋没している
吸湿剤は吸湿性のない塩化ビニル樹脂で被覆され
ているため、吸湿能力が著しく阻害され、また一
旦これに吸収された水分は同様の理由により、放
散され難く、全体として吸放湿能力が不充分であ
る。またその吸湿力を増大するために吸水倍率の
大きい高分子吸湿剤を使用すると、壁紙表面に露
出した吸湿剤が吸水時に粘着性を帯び、壁紙表面
がベタつき、水拭きすると汚れが付着して外観を
損い、吸湿性能を低下させるという欠点がある。 そこで本発明は微孔性フイルムを用いることな
く、断熱性が極めて良好で、結露防止に極めて効
果があり、しかも、防汚性にすぐれ、しかも風合
のよい透湿性結露防止壁紙を提供することを目的
とする。 更に本発明の目的は、工程が簡単で特殊な機械
装置を必要としない上記透湿性結露防止壁紙の製
造方法を提供することにある。 〔課題を解決するための手段〕 上記目的を達成すべく、本発明者らは鋭意研究
を重ねた結果、壁紙表面にポリウレタン等の透湿
性樹脂を独立気泡させた透湿性樹脂発泡体の下層
を形成し、その透湿性樹脂中に吸水倍率200倍以
上の吸湿剤を分散埋設することにより、断熱性が
向上し、壁紙表面に起こる結露の発生を極力遅延
或は防止できるとともに、さらに大気中の湿気
は、たとえ独立気泡で構成された発泡体層であつ
ても、比較的薄い上層の透湿性樹脂を分子レベル
で浸透拡散し透過して短時間に下層内部の吸湿剤
に到達して吸収貯蔵され、また大気が乾燥した場
合は、上層及び下層が透湿性樹脂で構成されてい
るのでこの透湿性樹脂を通して逆に放散する知見
を得た。従つて断熱性に優れ、しかも吸放湿性に
優れ、表面が平滑で防汚性に優れた結露防止壁紙
が得られることを見いだした。従つてかかる見地
からすれば吸水倍率が大きい吸水剤を使用すれば
する程壁紙としての結露防止性能が良好となるの
で好ましいが、他面吸水倍率が200倍を越えると、
吸湿時、表面に粘着性を帯びることも見出し、そ
こで本発明は、壁紙表面の被覆層として、高吸放
湿性能を確保する下層と、下層の上記欠点を補償
し、かつ結露防止及び防汚性をも同時に併有する
上層との積層構造を採用した。すなわち、壁紙用
台紙の表面に、吸水倍率200倍以上の高分子吸湿
剤が、分散・埋設された独立気泡からなる透湿性
樹脂発泡の下層と、透湿性樹脂を主成分とし、当
該透湿性樹脂発泡体の下層を被覆する上層とを積
層・固着したことを特徴とする。 上記の独立気泡からなる透湿性樹脂発泡体は独
立気泡とすることができる周知の条件下で、例え
ば機械的攪拌によつて起泡する方法、化学反応時
に発生するガスにより発泡する方法、液化ガスを
圧入する方法、低沸点の揮発性溶剤を混入又は含
浸させ気化させる方法、熱分解型等の発泡剤を使
用する方法等で形成することができ、特に限定さ
れない。例えば分解型発泡剤であればアゾジカル
ボンアミドを用いて所定の温度に加熱して独立気
泡を形成することができる。しかし気化性液体を
内包した熱可塑性樹脂からなる熱膨張性マイクロ
カプセルを利用して、独立気泡が、熱膨張したマ
イクロカプセルの熱可塑性樹脂膜で構成されてい
るものが最も好ましい。これは熱膨張性マイクロ
カプセルを利用した場合、製造がきわめて容易と
なるほか、独立気泡が均一となり、また得られる
発泡体が従来になく良好な風合を現出することが
できるからである。 なお本発明において独立気泡は、実質的に独立
気泡であれば足り、すなわち、できる限り気泡の
連通化を排除し、完全独立又はこれに伴い高い独
立気泡率を有する独立気泡をいう。要するに独立
気泡によつて断熱性をできる限り保有向上させ、
同時に樹脂層に内在する吸湿剤が透湿性樹脂層を
通して外界と吸放湿機能を十分発揮する独立気泡
体であれば差し支えない。 透湿性樹脂層において独立気泡を形成するため
に上記のマイクロカプセルを用いた場合におい
て、透湿性結露防止壁紙を得る最も好ましい製造
方法としては次の方法がある。すなわちこの発明
は、気化性液体を熱可塑性樹脂で包埋してなる熱
膨張性マイクロカプセルと透湿性を有する樹脂及
び吸水倍率200倍以上の性能を有する高吸水性樹
脂を吸湿剤として均一に混合し、得られたコンパ
ウンドを壁紙用台紙の表面に下塗りし、さらにそ
の上に、該透湿性樹脂を主成分としたものを上塗
りし、加熱発泡させる製造方法を採用した。 該透湿性樹脂を透湿性樹脂層あるいは独立気泡
からなる透湿性樹脂発泡体層として上塗りするこ
とにより、この上塗りの透湿性樹脂の上層を通し
て、下層の樹脂中に埋没する吸水倍率200倍以上
の高分子吸湿剤に大気中の湿気は吸水され、また
逆に大気中へ放散されるので吸放湿性に優れかつ
吸収時にベタつかない上塗り層を配しているの
で、たとえ下層に200倍以上の吸水倍率を有する
吸湿剤を使用しても表面にベタつきのない壁紙を
得ることができる。また、該透湿性樹脂と、吸水
倍率が2〜200倍の吸水時にベタつきのない高分
子吸湿剤等の有機系又は無機系吸湿剤等とを混合
したコンパウンドを上層の樹脂として用いると、
より吸放湿性能及び結露防止性能が高まる。また
さらに風合いを高めるために該透湿性樹脂と該マ
イクロカプセル及び吸水倍率2〜200倍の吸湿剤
を混合したものを用いると、風合いもよく吸放湿
性に優れた壁紙となる点で好ましい。 本発明は上記のような特徴を有する透湿性結露
防止壁紙を要旨とする。 本発明に用いられる透湿性樹脂としては、溶剤
に可溶で、水により膨潤し難く、フイルム形性能
を有する透湿性樹脂であれば、特に制限はない
が、例えばビニルアルコール系樹脂、酢酸ビニル
系樹脂、アクリル系樹脂、ウレタン系樹脂、アミ
ノ酸系樹脂などであつて、JIS Z−0208 B法に
より測定したフイルム(膜厚10μ)の透湿率が
1000g/m2・24hr、以上であるものが好適であ
る。これらの樹脂は通常有機溶媒に溶かして用い
られるが、この場合、溶液中の固形分は10〜50重
量%、溶液粘度は100〜20000CPSになるように調
節される。ついで、この溶液に熱膨張性マイクロ
カプセルおよび必要に応じて、吸湿剤その他の添
加剤を適宜配合し、均一に混合してコンパウンド
を調製する。 本発明に用いられる熱膨張性マイクロカプセル
は気化性液体を熱可塑性樹脂膜で包埋した微小球
であつて、適度の温度に加熱すると、中に包埋さ
れた液体が気化し、その圧力でカプセル全体が膨
張し、体積の拡大した気泡体を与える(以下発泡
と略記する)。該マイクロカプセルを構成する熱
可塑性樹脂としては、50〜200℃の軟化点を有す
るものが好ましく、この種の樹脂としては、ポリ
塩化ビニル、ポリ塩化ビニリデン、ポリアクリロ
ニトリル、ポリメチルアクリレート、ポリメチル
メタクリレート、ポリビニルアセテートなどのホ
モポリマーまたはこれらのコポリマーおよびこれ
らの混合物を例示することができる。 包埋する気化性液体としては、容易にマイクロ
カプセル化し易く、安価な低級炭化水素、例えば
液化ブタンなどが適当である。発泡前のマイクロ
カプセルの粒径は5〜30μであり、これを50〜
200℃で数分間加熱したときに数倍ないし数十倍
に発泡する性質を有する。 上記の熱膨張性マイクロカプセルと透湿性樹脂
の混合割合は溶液中の樹脂固形分100重量部当り、
マイクロカプセル10〜500重量部の範囲である。
10重量部以下では発泡後、特に壁紙としてのソフ
ト感に欠け、できれば500重量部以上では透湿性
樹脂発泡体層の強度が弱く、且つ透湿性も損われ
て好ましくない。このマイクロカプセルの混合に
際しては、例えばデイゾルバー、ホモデイスパ
ー、ペイントロールなど適当な方法を用い、均一
に混合分散させることが肝要である。 本発明において上層に用いられる吸湿剤として
は、公知の高分子吸湿剤または無機系吸湿剤であ
つて、環境に応じて吸放湿性能を発揮しうるもの
であれば、いずれも使用可能であり、それらを各
各単独あるいは混合して使用する。 好ましい高分子吸湿剤としては、公知の高吸水
性樹脂が用いられ、例えばポリアクリル酸塩類、
カルボキシメチロース、イソブチレン−マレイン
酸共重合体、澱粉−アクリル酸グラフト重合体、
酢酸ビニル−アクリル酸エステル共重合体けん化
物、ポリエチレンオキシド系吸湿剤等を例示する
ことができる。これらの高分子吸湿剤の乾燥時の
粒径は通常20μ以下であり、できる限り細かい方
が吸放湿性能が良好となり、好ましい。またこれ
らの高分子吸湿剤は吸水倍率が2〜200倍の性能
を有するもので特に吸水倍率5〜100倍のものが
好ましい。 また、無機吸湿剤としては、ベントナイト、シ
リカゲル、セピオライト、焼成タルク、ゼオライ
ト、その他各種の無機塩類および吸着性能を有す
る天然石粉等が用いられるが、これらもできる限
り粒径の小さい方が表面積が大きく、吸放湿性能
が良好であつて好ましい。 一方下層に用いる吸湿剤としては、前記の特に
吸水倍率200倍以上の高分子吸湿剤であつて環境
に応じて吸放湿性能を発揮しうるものが使用でき
る。 好ましい高分子吸湿剤としては、上塗り用と同
様に、公知の高吸水性樹脂が用いられ、ポリアク
リル酸塩類、カルボキシメチルセルロース、イソ
ブチレン−マレイン酸共重合体、澱粉−アクリル
酸グラフト重合体、酢酸ビニル−アクリル酸エス
テル共重合体けん化物、ポリエチレンオキシド系
吸湿剤等を例示することができる。 これらの高分子吸湿剤の乾燥時の粒径について
も上塗り用と同様に、通常20μ以下であり、でき
る限り細かい方が吸放湿性能が良好となり好まし
い。 これらの吸湿剤の添加量は溶液中の樹脂固形分
100重量部当り、通常10〜300重量部の範囲が好ま
しく、他の性質を阻害しない限り、壁紙の吸放湿
性能が最大となるように選定される。 この発明を実施するに当つては、上記の配合剤
の他に、各種の顔料、耐候剤、芳香剤、防黴剤、
難燃剤などを必要に応じて適宜添加することがで
きる。 以上のごとく各種配合剤成分を混合し、調製し
たコンパウンドを壁紙用台紙に塗布する方法とし
ては、グラビアコーテイング、ドクターブレード
コーテイング、リバースロールコーテイングなど
の公知のコーテイング法を適宜採用しうる。 壁紙用台紙としては、通常難燃性パルプ紙を用
いるが、難燃処理しないパルプ紙、加工パルプ
紙、更に有機または無機系合成紙や不織布からな
る台紙であつてもよい。これらの台紙の厚みは通
常100〜1000μであり、この上に前記下塗り用コ
ンパウンドを10〜100μの一定の厚みに連続的に
塗布乾燥し、その上に上塗り用コンパウンドを2
〜50μの一定に連続的に塗布乾燥し、所定温度に
加熱すると、マイクロカプセルが膨張し上下層が
ともに発泡して、膜厚50〜1000μの透湿性樹脂発
泡体層が形成される。なお必要に応じてまず下層
を発泡させた後上層を上塗りし発泡させてもよ
い。 発泡時の加熱温度は使用するマイクロカプセル
の材質によつて適宜選択されるものであるが、通
常50〜200℃が用いられ、この温度で数分間(例
えば120℃で1分間)加熱すれば、溶剤が飛散す
ると同時に発泡が起こり、ついで冷却、固化する
と成形が完了する。また溶剤を蒸発させる工程と
発泡工程を分離し、2段階で成形することもでき
る。発泡はフリー発泡でもよいが、ロールや上部
から離型紙を介して適当な方法で押圧し、発泡厚
みを制御することも可能である。 また、壁紙表面の化粧法としては、成形後コー
テイング面にエンボス加工したり、各種の色彩、
模様を印刷すればよく、更に予めプリント印刷し
た台紙を使用する方法、さらに化粧紙の上にコー
ド発泡させ、これを裏打ち難燃台紙と積層する方
法など種々の方法を採用しうる。 〔作用〕 本発明の壁紙は、少なくとも下層が独立気泡か
らなる発泡体であるため、断熱性を発揮し、結露
防止作用を発揮する。また下層は透湿性樹脂発泡
体層内に可逆的吸放湿性がきわめて大きい吸湿剤
を備え、さらに上層は透湿性樹脂層または下層の
吸湿剤よりも可逆的吸放湿性が相対的に低い吸湿
剤を有した構成であるので、室内環境に応じて吸
放湿サイクルが透湿性樹脂を通じて吸湿剤におい
て速やかに起こり、結露防止作用を一層向上させ
ることができる。また表面にベタつきのない壁紙
とすることができる。 かかる構造の壁紙を室内の壁面等に貼付けて用
いると、独立気泡の断熱作用により結露の発生が
遅延防止することができるとともに、さらにたと
え室内の湿気が高い時でも、水蒸気が透湿性樹脂
層を通して壁紙の内部特に下層鵜分に浸透して、
樹脂層内部に充填されている高吸水率の高分子吸
湿剤に一時的に吸蔵される。 室内の空気が乾燥した状態になると、一旦吸蔵
された水分は再び透湿性樹脂層を通つて、速やか
に壁紙表面から室内に放出され、室内の湿度変化
に追随して可逆的に吸放湿することができ、湿度
緩衝作用を発揮する。この発明は、独立気泡の存
在と、さらにこの吸放湿作用の結果として、壁面
への結露現象が永続的にかつ良好に抑制される。 なお下層の発泡体が独立気泡なので、表面は無
孔性であつて、汚れが付着しても目詰まりがな
い。しかも吸水時にベタつかない上塗り層を塗布
してあるため表面ベタつきがなく、乾布や水拭き
により、容易に汚れを払拭することができるの
で、長く美観を保つことができると共に透湿性が
低下しない。 本発明の壁紙を、フエノールボード、ウレタン
ボード、スチレンボード等の適当な断熱材と組合
わせて用いると、また独立気泡からなる透湿性樹
脂発泡体で構成されているため、皮革に近い感触
に仕上がる等、風合いがきわめて良好となる。 〔実施例〕 実施例 1〜3 ポリエチレングリコール(平均分子量400)と
イソホロンジイソシアネートを常法により加熱重
合し、得られたウレタン重合体をトルエン−イソ
プロパノール混合溶媒(重量混合比1:1)に溶
解して、固形分25重量%のウレタン重合体溶液を
調製した。この溶液からキヤステイング法により
製膜した厚さ20μのフイルムの透湿度は4300g/
m2・24hr.であつた。ついでこの溶液に、その固
形分100重量部当り、熱膨張性マイクロカプセル
(商品名:マイクロスフエアーF−50D、松本油
脂製薬株式会社製)80重量部と、吸湿剤として高
分子吸湿剤(住友化学工業株式会社製、スミカゲ
ルNP1010)又はPS510、又はサンウエツト
IM300(三洋化成株式会社)をそれぞれ30重量部
の割合で添加し、ペイントロールを用いて均一に
混合してコンパウンドを調製した。このコンパウ
ンドをグラビアコーテイング法により壁紙用難燃
紙(厚さ170μ)上に、均一に塗布、加熱炉中で
50℃に20分間乾燥し塗布厚み60μの下層を得た。
その上に上記の固型分25重量%のウレタン重合体
溶液をグラビアコーテイング法により固型分15μ
厚さになるよう均一に塗布し、加熱炉中で140℃
に1分間加熱発泡させたのち冷却すことにより、
壁紙用台紙の表面に実質的に独立気泡からなる透
湿性樹脂発泡体層を積層・固着した厚さ500μの
壁紙を得た。 第1図は上記方法により得られた透湿性結露防
止壁紙の構成を示す断面図である。 第1図において、1は透湿性樹脂の上層、2は
透湿性樹脂発泡体の下層、3は難燃紙よりなる壁
紙用台紙である。透湿性樹脂発泡体の下層2に
は、図示の通り、透湿性樹脂4中に、熱膨張性マ
イクロカプセルの加熱により形成された独立気泡
5が存在している。独立気泡5はこの実施例では
外周部が透湿性樹脂4との境界部を構成する熱可
塑性樹脂膜6で覆われている。なお7は透湿性樹
脂発泡体の下層2の透湿性樹脂4中に分散、埋設
された吸水倍率が200倍以上の高吸湿性の吸湿剤
である。 従つて第6図に示す様に、室内の湿気が高いと
きは、図中矢印で示す水蒸気8が上層1の透湿性
樹脂を透過して内部に浸透し、さらに下層2の透
湿性樹脂4を透過して透湿性樹脂4中に存在する
吸湿剤7にとりこまれる。反対に室内の空気が乾
燥した状態になると、第7図に示す通り、一旦吸
湿剤7に吸蔵された水蒸気8が、独立気泡5間に
存在する下層2の透湿性樹脂4を透過して上層1
に移行し、さらに上層1の透湿樹脂を透過して外
部に放出される。従つて室内の湿度変化に追随し
て可逆的に吸放湿し、その結果壁面への結露現象
が抑制される。また下層2の内部には熱可塑性樹
脂膜6で覆われた独立気泡5を有しているため、
断熱性があり、かかる点においても結露防止効果
を発揮する。また吸湿剤は、下層2に含まれてお
り、その上から透湿性樹脂の上層1に覆われてい
るので、吸湿剤7が吸水倍率200倍以上の高吸湿
剤であるにも拘らず、吸水時にベタつかず、容易
に汚れを払拭することができ、また特に吸水時の
ベタつきによる透湿性の低下を防止することがで
きる。 この壁紙について、下記の方法で透湿度試験、
結露試験、および吸放湿性試験を実験した。その
結果を第1表および第5図に示す。 透湿度試験:JIS Z−0208 B法により測定した。 結露試験:内容積500mlの丸型ブリキ罐の外側側
面に試験体として壁紙を酢酸ビニル系接着剤で
全面を貼付け、罐内に0℃の氷水を満たし、こ
れを20℃、50%RHの雰囲気に置いたときに壁
紙表面に結露が発生し始めるまでの時間(結露
時間)を測定した。 吸放湿性試験:10×10cm大に裁断した壁紙を試験
片として用い、その台紙裏面にアルミニウム箔
を貼付けて、裏側から水蒸気が透過しないよう
にして、40℃、90%RHの雰囲気中に置いたと
きに壁紙が吸収する吸水量の経時変化を24時間
にわたり測定した。結果を第5図に示す。第1
図において、吸水倍率は吸湿剤を水に浸漬した
ときの吸水量を示し、その値は、吸湿剤1gを
秤取し、水中に浸漬して24時間放置後、重量を
測定し、下式により求めた。 吸水後の試料重量/試験前の試料重量 以上の試験結果からこの壁紙は透湿度が大で、
結露するまでの時間が8時間以上と長く、吸水時
に表面にベタツキのない良好な吸放湿性能を示す
ことが判る。 実施例 4 実施例1において、上塗り用コンパウンドとし
て固形分25%ウレタン重合体溶液にその溶液中の
固形物100重量部当り、熱膨張性マイクロカプセ
ル80重量部の割合で添加し、ペイントロールを用
いて均一に混合してコンパウンドを調製した。こ
のコンパウンドを用い実施例1と同一の方法によ
り、厚さ600μの壁紙を得た。 第2図はこの方法により得られた透湿性結露防
止壁紙の断面図である。 第2図において、符号1〜7は第1図と同じで
あるが、この実施例では特に上層1にも、熱膨張
性マイクロカプセルの加熱で形成され、外周部が
熱可塑性樹脂膜6で覆われた独立気泡5が透湿性
樹脂9中に多数存在している。従つて水蒸気の吸
放湿は、下層2と同様に上層1でも独立気泡5間
に存在する透湿性樹脂9を透過してなされる。な
おこの実施例では上層1にも透湿性樹脂9中に独
立気泡5を有していることから、断熱性が増大
し、一層結露防止効果が向上するとともに、前記
実施例と同様、吸水時のベタつきや該ベタつキに
よる透湿性の低下を防止することもできる。 この壁紙について、実施例1〜3と同様に性能
試験を行つた結果を第1表に示す。 実施例 5,6 実施例3において上塗り用コンパウンドとして
固形分25%ウレタン重合体溶液に、その溶液中の
固形分100重量部当り、高分子吸湿剤(クラレ株
式会社製、KIゲル)またはベントナイトを50重
量部添加し、コンパウンドを調製した。このコン
パウンドを用い、実施例1と同一の方法により、
厚さ500μの壁紙を得た。上塗り層の吸湿剤とし
てKIゲルを用いたものを実施例5、ベントナイ
トを用いたものを実施例6とした。得られた壁紙
について実施例1と同様に性能試験を行つた。そ
の結果を第1表に示す。 第3図はこの方法により得られた透湿性結露防
止壁紙の断面図である。 第3図において符号1〜7は第1図と同じであ
るが、この実施例では特に上層1の透湿性樹脂9
中に吸水倍率20倍の吸湿剤10を含ませている。
これにより、この実施例では上層1においても吸
湿剤10が上層1の透湿性樹脂を透過する水蒸気
の一部をとりこみ、下層の吸湿剤7とともに、結
露現象を抑制するとともに、吸湿剤10は吸水倍
率20倍であるので、表面がベタつくこともなく、
ベタつきによる吸湿性の低下が生じることもな
い。 実施例 7 実施例5において上塗り用コンパウンドとして
熱膨張性マイクロカプセルを50重量部を追加し、
コンパウンドを調製した。このコンパウンドを用
い、実施例1と同一の方法により、厚さ600μの
壁紙を得た。得られた壁紙について実施例1と同
様に性能試験を行つた。その結果を第1表及び第
5図に示す。 第4図はこの方法により得らた透湿性結露防止
壁紙の断面図である。 第4図において符号1〜7は第1図と同じであ
り、1は透湿性樹脂の上層、2は透湿性樹脂発泡
体の下層、3は難燃紙よりなる壁紙用台紙、4は
透湿性樹脂、5は独立気泡、6は熱可塑性樹脂
膜、7は吸水倍率200倍以上の吸湿剤である。こ
の実施例は上層1の透湿性樹脂9中に独立気泡5
及び吸水倍率20倍の吸湿剤10のいずれをも有し
ている点で上記実施例と相違し、上層1の断熱性
の吸放湿性をより一層向上させている。 比較例 1,2,3 市販の吸湿剤を含まないポリ塩化ビニル製壁紙
および市販の高分子吸湿剤を含むポリ塩化ビニル
製壁紙及び該透湿性樹脂および吸水倍率が2〜
200倍の高分子KIゲル吸湿剤および該マイクロカ
プセルを均一に混合し、得られたコンパウンドを
壁紙の表面に塗布し加熱発泡させた透湿性結露防
止壁紙について、実施例1と同様の方法で透湿度
試験、結露試験、および吸放湿性試験を行つた。
その結果を比較例1,2および3として第1表お
よび第5図に示す。 第1表に示すごとく、本発明の壁紙は透湿度が
いずれも2000g/m2・24hr.以上であつて、市販
の塩化ビニル製壁紙に比較して著しく大であり、
結露試験で結露発生までの時間が8時間以上と長
く、充分な結露防止性能を有し、第5図に示すよ
うに吸放湿作用がすみやかに行われる。また吸水
時に壁紙表面のベタつきがなく、壁紙として優れ
た性能を有する。
[Industrial Field of Application] The present invention relates to a moisture-permeable anti-condensation wallpaper and a method for producing the same. [Prior Art] Wallpaper is generally a wallpaper made of paper, fiber, etc. that is applied as a finishing material to walls and ceilings of buildings.
It is a common name for a sheet-like plastic material made of materials such as plastic or metal foil. Recent architecture has become so-called Western-style, with panels, prefabricated, reinforced concrete, etc.
Furthermore, with the development of metal sashes, windows have become more airtight, but as a result of the complete lack of ventilation indoors, the problem of condensation on walls has arisen.
In other words, the problem of condensation on the walls of a closed room is not only the above-mentioned problem of the airtightness of the window sash, but also the increase in the amount of water used in daily life due to improved living standards, and the problem of water vapor caused by the use of heating appliances such as kerosene stoves and gas stoves. This is thought to be one of the causes. By the way, as a way to prevent this type of condensation, it is thought that this problem can be solved by inserting heat insulating material inside the wall to prevent the indoor wall surface temperature from dropping below the dew point temperature, but in order to do so, It is important to maintain the performance of the heat insulating material and wood inside the wall and to prevent stuffiness due to humidity inside the wall, and for this reason, wall materials that are particularly moisture permeable and air permeable have recently been attracting attention. Other performance requirements for wall materials include, of course, resistance to staining from condensed water, but even if condensed water gets on it, it is important that it can be easily wiped off. Although paper-based wallpaper and textile-based wallpaper have moisture absorbing and desorbing properties, they are easily stained, and their microporous surfaces tend to generate mold, and it is also difficult to wipe away adhered dirt. Therefore, these materials do not fully satisfy the characteristics required for the above-mentioned wallpaper. In order to improve these conventional paper-based or textile-based wallpapers, we have developed a wipeable wallpaper in which the surface of the wallpaper is coated with a microporous film that has a large number of micropores that allow water vapor to pass through but not liquid water. Easy wallpapers have been developed. This type of microporous film is manufactured by a wet method in which the solvent is replaced with water after spreading a solution, or a dry method in which micropores are created physically or mechanically, and it is attached to the surface of the wall material with an adhesive or the like. Ru. In addition, wallpaper made of vinyl chloride resin is hard to stain and is easy to wipe, but it is not moisture permeable and is prone to condensation. Wallpaper is manufactured by adding a polymeric moisture absorbent made of a super absorbent resin to this vinyl chloride resin, and by dispersing and embedding the polymer absorbent fine powder in the vinyl chloride resin layer of the wallpaper, the wallpaper is created. Attempts have also been made to prevent surface condensation. [Problems to be Solved by the Invention] Among the conventional improved wallpapers mentioned above, paper-based or textile-based wallpapers whose surfaces are coated with microporous films are susceptible to the formation of fine pores in the surface film that are susceptible to dust, dust, and other contaminants. , it is easy to get clogged and it is difficult to wipe away dirt, so the moisture absorption and release performance gradually decreases. Furthermore, the manufacturing process of the microporous film, both dry and wet, is complicated and requires special equipment, and it is also necessary to laminate and adhere it to decorative paper using an adhesive.
There is also the problem that the manufacturing cost of wallpaper increases. In wallpaper made of vinyl chloride resin film with a dispersed embedded polymeric moisture absorbent, the moisture absorbent exposed on the surface of the wallpaper absorbs moisture well, but the moisture absorbent buried inside the resin layer is covered with vinyl chloride resin, which has no hygroscopicity. As a result, the moisture absorbing ability is significantly inhibited, and for the same reason, moisture once absorbed is difficult to dissipate, resulting in an insufficient moisture absorbing and desorbing ability as a whole. In addition, if a polymer moisture absorbent with a high water absorption capacity is used to increase its moisture absorption capacity, the moisture absorbent exposed on the wallpaper surface becomes sticky when absorbing water, making the wallpaper surface sticky and staining when wiped with water. It has the disadvantage of impairing moisture absorption performance. Therefore, the present invention provides a moisture-permeable dew condensation-preventing wallpaper that has extremely good heat insulation properties, is extremely effective in preventing dew condensation, has excellent stain resistance, and has a good texture without using a microporous film. With the goal. A further object of the present invention is to provide a method for manufacturing the moisture-permeable anti-condensation wallpaper, which is a simple process and does not require special machinery. [Means for Solving the Problems] In order to achieve the above object, the inventors of the present invention have conducted intensive research, and as a result, a lower layer of a moisture-permeable resin foam made of closed cells of a moisture-permeable resin such as polyurethane is applied to the wallpaper surface. By dispersing and embedding a moisture absorbent with a water absorption capacity of 200 times or more in the moisture-permeable resin, the insulation properties are improved, and the formation of dew condensation on the wallpaper surface can be delayed or prevented as much as possible, and the moisture in the atmosphere can be further reduced. Even if the foam layer is made up of closed cells, moisture permeates and diffuses through the relatively thin upper layer of moisture-permeable resin at the molecular level, reaching the moisture absorbent inside the lower layer in a short time and absorbing and storing it. In addition, when the atmosphere is dry, the upper and lower layers are made of a moisture-permeable resin, so we have found that the air is diffused through the moisture-permeable resin. Therefore, it has been found that it is possible to obtain a dew condensation-preventing wallpaper that has excellent heat insulation properties, moisture absorption and desorption properties, a smooth surface, and excellent stain resistance. Therefore, from this point of view, it is preferable to use a water-absorbing agent with a higher water-absorbing capacity, since the better the dew condensation prevention performance of the wallpaper will be, but on the other hand, if the water-absorbing capacity exceeds 200 times,
It was also discovered that when moisture is absorbed, the surface becomes sticky, and therefore, the present invention provides a lower layer that ensures high moisture absorption and desorption performance as a coating layer on the surface of wallpaper, and a layer that compensates for the above-mentioned disadvantages of the lower layer and also has a layer that prevents dew condensation and is antifouling. We adopted a laminated structure with an upper layer that also has properties. In other words, on the surface of the wallpaper mount, a polymer moisture absorbent with a water absorption capacity of 200 times or more is layered with a lower layer of moisture permeable resin foam consisting of dispersed and embedded closed cells, and a moisture permeable resin as the main component. It is characterized by laminating and fixing an upper layer covering a lower layer of foam. The above-mentioned moisture permeable resin foam consisting of closed cells can be made into closed cells under well-known conditions such as foaming by mechanical stirring, foaming with gas generated during a chemical reaction, liquefied gas, etc. It can be formed by a method of press-fitting, a method of mixing or impregnating a volatile solvent with a low boiling point and vaporizing it, a method of using a blowing agent such as a thermal decomposition type, etc., and is not particularly limited. For example, in the case of a decomposable blowing agent, azodicarbonamide can be used and heated to a predetermined temperature to form closed cells. However, it is most preferable to use thermally expandable microcapsules made of a thermoplastic resin containing a vaporizable liquid, so that the closed cells are formed of the thermoplastic resin membrane of the thermally expanded microcapsules. This is because when thermally expandable microcapsules are used, production is extremely easy, the closed cells become uniform, and the resulting foam can exhibit a better texture than ever before. Note that in the present invention, closed cells need only be substantially closed cells, that is, closed cells that are completely independent or have a high closed cell ratio by eliminating communication between the cells as much as possible. In short, we use closed cells to improve insulation as much as possible,
At the same time, there is no problem as long as the moisture absorbent contained in the resin layer is a closed cell that can sufficiently exhibit moisture absorption and release functions with respect to the outside world through the moisture permeable resin layer. In the case where the above-mentioned microcapsules are used to form closed cells in the moisture-permeable resin layer, the most preferable manufacturing method for obtaining moisture-permeable anti-condensation wallpaper is the following method. That is, this invention uniformly mixes thermally expandable microcapsules formed by embedding a vaporizable liquid in a thermoplastic resin, a moisture-permeable resin, and a super water-absorbing resin with a water absorption capacity of 200 times or more as a moisture absorbent. Then, a manufacturing method was adopted in which the obtained compound was undercoated on the surface of a wallpaper mount, and then a topcoat containing the moisture permeable resin as the main component was applied, followed by heating and foaming. By overcoating the moisture-permeable resin as a moisture-permeable resin layer or a moisture-permeable resin foam layer consisting of closed cells, water with a high water absorption capacity of 200 times or more is embedded in the lower layer of resin through the upper layer of the moisture-permeable resin of the top coat. Moisture in the atmosphere is absorbed by the molecular moisture absorbent, and conversely it is released into the atmosphere, so it has an overcoat layer that has excellent moisture absorption and desorption properties and does not become sticky when absorbed, so even if the lower layer has a water absorption capacity of more than 200 times. It is possible to obtain wallpaper without stickiness on the surface even by using a moisture absorbent having the following properties. In addition, if a compound obtained by mixing the moisture permeable resin with an organic or inorganic moisture absorbent such as a polymer moisture absorbent that does not become sticky when water is absorbed and has a water absorption capacity of 2 to 200 times is used as the upper layer resin,
Moisture absorption and desorption performance and dew condensation prevention performance are improved. Furthermore, in order to further enhance the texture, it is preferable to use a mixture of the moisture-permeable resin, the microcapsules, and a moisture absorbent having a water absorption capacity of 2 to 200 times, since the resulting wallpaper will have a good texture and excellent moisture absorption and desorption properties. The gist of the present invention is a moisture-permeable anti-condensation wallpaper having the above characteristics. The moisture-permeable resin used in the present invention is not particularly limited as long as it is soluble in solvents, does not easily swell with water, and has film-forming properties, but examples include vinyl alcohol-based resins, vinyl acetate-based resins, etc. For resins, acrylic resins, urethane resins, amino acid resins, etc., the moisture permeability of a film (film thickness 10μ) measured by JIS Z-0208 B method is
1000g/m 2 ·24hr or more is suitable. These resins are usually used dissolved in an organic solvent, and in this case, the solid content in the solution is adjusted to 10 to 50% by weight and the solution viscosity to be 100 to 20,000 CPS. Next, heat-expandable microcapsules and, if necessary, a moisture absorbent and other additives are suitably added to this solution and mixed uniformly to prepare a compound. The thermally expandable microcapsules used in the present invention are microspheres in which a vaporizable liquid is embedded in a thermoplastic resin film, and when heated to an appropriate temperature, the embedded liquid vaporizes and the pressure increases. The entire capsule expands, giving a foam with expanded volume (hereinafter abbreviated as foaming). The thermoplastic resin constituting the microcapsules preferably has a softening point of 50 to 200°C, and examples of this type of resin include polyvinyl chloride, polyvinylidene chloride, polyacrylonitrile, polymethyl acrylate, and polymethyl methacrylate. , homopolymers such as polyvinyl acetate, copolymers thereof, and mixtures thereof. As the vaporizable liquid to be embedded, lower hydrocarbons such as liquefied butane, which can be easily microencapsulated and are inexpensive, are suitable. The particle size of microcapsules before foaming is 5 to 30μ, which is 50 to 30μ.
It has the property of foaming several to several tens of times more when heated at 200°C for several minutes. The above mixing ratio of thermally expandable microcapsules and moisture permeable resin is per 100 parts by weight of resin solid content in the solution.
Microcapsules range from 10 to 500 parts by weight.
If it is less than 10 parts by weight, it will lack a soft feel especially as wallpaper after foaming, and if it is more than 500 parts by weight, the strength of the moisture permeable resin foam layer will be weak and the moisture permeability will be impaired, which is not preferable. When mixing the microcapsules, it is important to use an appropriate method such as a dissolver, a homodisper, or a paint roll to uniformly mix and disperse the microcapsules. As the moisture absorbent used in the upper layer in the present invention, any known polymeric moisture absorbent or inorganic moisture absorbent that can exhibit moisture absorption and desorption performance depending on the environment can be used. , each of them may be used alone or in combination. Preferred polymeric moisture absorbers include known superabsorbent resins, such as polyacrylates,
Carboxymethylose, isobutylene-maleic acid copolymer, starch-acrylic acid graft polymer,
Examples include saponified vinyl acetate-acrylic acid ester copolymer and polyethylene oxide moisture absorbent. The dry particle size of these polymeric moisture absorbers is usually 20 μm or less, and the finer the particle size, the better the moisture absorption and release performance, which is preferable. Moreover, these polymeric moisture absorbents have a water absorption capacity of 2 to 200 times, and those with a water absorption capacity of 5 to 100 times are particularly preferable. In addition, bentonite, silica gel, sepiolite, calcined talc, zeolite, various other inorganic salts, and natural stone powder with adsorption properties are used as inorganic moisture absorbers, but the smaller the particle size of these, the larger the surface area. It is preferable because it has good moisture absorption and desorption performance. On the other hand, as the moisture absorbent used in the lower layer, the above-mentioned polymer moisture absorbent having a water absorption capacity of 200 times or more and capable of exhibiting moisture absorption and desorption performance depending on the environment can be used. Preferred polymeric moisture absorbers include known superabsorbent resins as in the case of topcoating, including polyacrylates, carboxymethyl cellulose, isobutylene-maleic acid copolymers, starch-acrylic acid graft polymers, and vinyl acetate. -Saponified acrylic ester copolymers, polyethylene oxide moisture absorbents, etc. can be exemplified. The dry particle size of these polymeric moisture absorbers is also usually 20 μm or less, as in the top coating, and the finer the particle size as possible, the better the moisture absorption and release performance. The amount of these moisture absorbers added is based on the resin solid content in the solution.
The content is usually preferably in the range of 10 to 300 parts by weight per 100 parts by weight, and is selected so that the moisture absorption and desorption performance of the wallpaper is maximized as long as other properties are not impaired. In carrying out this invention, in addition to the above compounding agents, various pigments, weathering agents, fragrances, antifungal agents,
Flame retardants and the like can be added as appropriate. As a method for mixing the various compounding ingredients as described above and applying the prepared compound to the wallpaper mount, known coating methods such as gravure coating, doctor blade coating, reverse roll coating, etc. can be appropriately employed. Flame-retardant pulp paper is usually used as wallpaper mount, but it may also be pulp paper without flame-retardant treatment, processed pulp paper, or mount made of organic or inorganic synthetic paper or nonwoven fabric. The thickness of these mounts is usually 100 to 1000μ, and on top of this, the undercoat compound is continuously applied to a constant thickness of 10 to 100μ and dried, and on top of that, two coats of topcoat compound are applied.
When it is continuously applied to a constant thickness of ~50μ and dried and heated to a predetermined temperature, the microcapsules expand and the upper and lower layers foam together, forming a moisture permeable resin foam layer with a thickness of 50 to 1000μ. If necessary, the lower layer may be foamed first, and then the upper layer may be overcoated and foamed. The heating temperature during foaming is appropriately selected depending on the material of the microcapsules used, but usually 50 to 200°C is used, and if heated at this temperature for several minutes (for example, 1 minute at 120°C), Foaming occurs as the solvent scatters, and then cooling and solidification complete the molding. Alternatively, the process of evaporating the solvent and the process of foaming can be separated to perform molding in two stages. Foaming may be free foaming, but it is also possible to control the foaming thickness by pressing with a suitable method from a roll or upper part through a release paper. In addition, as a decorative method for the wallpaper surface, embossing the coating surface after molding, various colors,
It is sufficient to print the pattern, and various methods can be used, such as using a pre-printed mount, or foaming a cord on decorative paper and laminating it with a flame-retardant lining paper. [Function] Since at least the lower layer of the wallpaper of the present invention is a foam made of closed cells, it exhibits heat insulating properties and a dew condensation prevention effect. In addition, the lower layer has a moisture absorbing agent with extremely high reversible moisture absorption and desorption properties in the moisture permeable resin foam layer, and the upper layer has a moisture absorption agent that has a relatively lower reversible moisture absorption and desorption ability than the moisture absorbent in the moisture permeable resin layer or the lower layer. With this structure, a moisture absorption/desorption cycle occurs quickly in the moisture absorbent through the moisture permeable resin depending on the indoor environment, and the dew condensation prevention effect can be further improved. Moreover, the wallpaper can be made without stickiness on the surface. When wallpaper with this structure is attached to indoor walls, etc., the insulating effect of the closed cells can delay and prevent the formation of condensation, and even when the indoor humidity is high, water vapor can pass through the moisture-permeable resin layer. Penetrates inside the wallpaper, especially the lower layer,
It is temporarily occluded by a polymer moisture absorbent with a high water absorption rate filled inside the resin layer. When the indoor air becomes dry, the moisture that has been absorbed once again passes through the moisture-permeable resin layer and is immediately released into the room from the wallpaper surface, reversibly absorbing and desorbing moisture in accordance with changes in indoor humidity. It has a humidity buffering effect. In the present invention, as a result of the presence of closed cells and their moisture absorption/desorption effect, dew condensation on the wall surface can be permanently and effectively suppressed. Furthermore, since the lower layer foam is closed-celled, the surface is non-porous and does not get clogged even if dirt adheres to it. Moreover, since a top coat layer that does not become sticky when water is absorbed is applied, the surface does not become sticky, and stains can be easily wiped off with a dry cloth or damp cloth, so that the product maintains its beautiful appearance for a long time and does not reduce its moisture permeability. When the wallpaper of the present invention is used in combination with an appropriate heat insulating material such as phenol board, urethane board, or styrene board, the wallpaper feels similar to leather because it is composed of a moisture-permeable resin foam made of closed cells. etc., the texture is extremely good. [Example] Examples 1 to 3 Polyethylene glycol (average molecular weight 400) and isophorone diisocyanate were polymerized by heating in a conventional manner, and the obtained urethane polymer was dissolved in a toluene-isopropanol mixed solvent (weight mixing ratio 1:1). A urethane polymer solution with a solid content of 25% by weight was prepared. The moisture permeability of a 20μ thick film made from this solution by the casting method is 4300g/
It was m2・24hr. Next, to this solution, per 100 parts by weight of the solid content, 80 parts by weight of thermally expandable microcapsules (trade name: Microsphere F-50D, manufactured by Matsumoto Yushi Pharmaceutical Co., Ltd.) and a polymer hygroscopic agent (Sumitomo Manufactured by Kagaku Kogyo Co., Ltd., Sumikagel NP1010) or PS510, or Sunwet
IM300 (Sanyo Kasei Co., Ltd.) was added at a ratio of 30 parts by weight, and mixed uniformly using a paint roll to prepare a compound. This compound was applied uniformly onto flame retardant wallpaper paper (thickness 170μ) using the gravure coating method and placed in a heating oven.
It was dried at 50°C for 20 minutes to obtain a lower layer with a coating thickness of 60μ.
On top of that, the above urethane polymer solution with a solid content of 25% by weight was applied by gravure coating to a solid content of 15μ.
Apply it evenly to a thickness and heat it in a heating oven at 140℃.
By heating and foaming for 1 minute and then cooling,
A wallpaper with a thickness of 500 μm was obtained by laminating and fixing a moisture permeable resin foam layer consisting of substantially closed cells on the surface of a wallpaper mount. FIG. 1 is a sectional view showing the structure of a moisture-permeable anti-condensation wallpaper obtained by the above method. In FIG. 1, 1 is an upper layer of moisture-permeable resin, 2 is a lower layer of moisture-permeable resin foam, and 3 is a wallpaper mount made of flame-retardant paper. As shown in the figure, in the lower layer 2 of the moisture permeable resin foam, there are closed cells 5 formed in the moisture permeable resin 4 by heating the thermally expandable microcapsules. In this embodiment, the closed cell 5 has its outer periphery covered with a thermoplastic resin film 6 forming a boundary with the moisture permeable resin 4. Note that 7 is a highly hygroscopic moisture absorbent having a water absorption capacity of 200 times or more, which is dispersed and embedded in the moisture permeable resin 4 of the lower layer 2 of the moisture permeable resin foam. Therefore, as shown in FIG. 6, when the indoor humidity is high, the water vapor 8 shown by the arrow in the figure penetrates the moisture permeable resin of the upper layer 1 and penetrates into the interior, and further penetrates the moisture permeable resin 4 of the lower layer 2. It permeates and is incorporated into the moisture absorbent 7 present in the moisture permeable resin 4. On the other hand, when the indoor air becomes dry, as shown in FIG. 1
The liquid then passes through the moisture-permeable resin of the upper layer 1 and is released to the outside. Therefore, it reversibly absorbs and releases moisture following changes in indoor humidity, and as a result, the phenomenon of condensation on the wall surface is suppressed. Furthermore, since the lower layer 2 has closed cells 5 covered with a thermoplastic resin film 6,
It has heat insulating properties and exhibits a dew condensation prevention effect in this respect as well. In addition, the moisture absorbent is contained in the lower layer 2 and is covered with the moisture permeable resin upper layer 1, so even though the moisture absorbent 7 is a high moisture absorbent with a water absorption rate of 200 times or more, it does not absorb water. It is not sticky at times, and dirt can be easily wiped off, and in particular, it is possible to prevent a decrease in moisture permeability due to stickiness when water is absorbed. Regarding this wallpaper, we conducted a moisture permeability test using the method below.
A dew condensation test and a moisture absorption/release test were conducted. The results are shown in Table 1 and FIG. Moisture permeability test: Measured according to JIS Z-0208 B method. Condensation test: Paste wallpaper as a test piece on the entire outside side of a round tin can with an internal volume of 500ml using vinyl acetate adhesive, fill the can with ice water at 0°C, and place it in an atmosphere of 20°C and 50% RH. The time it takes for dew to begin to form on the wallpaper surface (dew condensation time) was measured when the wallpaper was placed on the wall. Moisture absorption/desorption test: Using wallpaper cut into 10 x 10 cm pieces as a test piece, attach aluminum foil to the back of the mount to prevent water vapor from penetrating from the back, and place it in an atmosphere of 40℃ and 90% RH. We measured the amount of water absorbed by the wallpaper over time over 24 hours. The results are shown in Figure 5. 1st
In the figure, the water absorption capacity indicates the amount of water absorbed when the moisture absorbent is immersed in water, and its value is determined by weighing 1 g of the moisture absorbing agent, immersing it in water, leaving it for 24 hours, measuring the weight, and using the formula below. I asked for it. Sample weight after water absorption/Sample weight before test From the above test results, this wallpaper has high moisture permeability.
It can be seen that the time until dew condensation is long, 8 hours or more, and that the surface exhibits good moisture absorption and desorption performance with no stickiness on the surface when water is absorbed. Example 4 In Example 1, 80 parts by weight of thermally expandable microcapsules were added to a 25% solids urethane polymer solution as a top coating compound per 100 parts by weight of solids in the solution, and the mixture was added using a paint roll. The mixture was mixed uniformly to prepare a compound. Using this compound, wallpaper with a thickness of 600 μm was obtained in the same manner as in Example 1. FIG. 2 is a cross-sectional view of a moisture-permeable anti-condensation wallpaper obtained by this method. In FIG. 2, reference numerals 1 to 7 are the same as in FIG. A large number of closed cells 5 are present in the moisture permeable resin 9. Therefore, in the upper layer 1 as well as in the lower layer 2, water vapor is absorbed and released by passing through the moisture permeable resin 9 existing between the closed cells 5. In this example, since the upper layer 1 also has closed cells 5 in the moisture permeable resin 9, the heat insulation properties are increased and the dew condensation prevention effect is further improved. It is also possible to prevent stickiness and a decrease in moisture permeability due to the stickiness. Regarding this wallpaper, performance tests were conducted in the same manner as in Examples 1 to 3, and the results are shown in Table 1. Examples 5 and 6 In Example 3, a polymer moisture absorbent (Kuraray Co., Ltd., KI Gel) or bentonite was added to the urethane polymer solution with a solid content of 25% as the top coating compound per 100 parts by weight of the solid content in the solution. A compound was prepared by adding 50 parts by weight. Using this compound, by the same method as in Example 1,
A wallpaper with a thickness of 500μ was obtained. Example 5 used KI gel as a moisture absorbent in the topcoat layer, and Example 6 used bentonite as a moisture absorbent. A performance test was conducted on the obtained wallpaper in the same manner as in Example 1. The results are shown in Table 1. FIG. 3 is a sectional view of a moisture-permeable anti-condensation wallpaper obtained by this method. In FIG. 3, numerals 1 to 7 are the same as in FIG. 1, but in this embodiment, especially the moisture-permeable resin 9
It contains a moisture absorbent 10 with a water absorption rate of 20 times.
As a result, in this embodiment, the moisture absorbent 10 also in the upper layer 1 captures a part of the water vapor that passes through the moisture permeable resin of the upper layer 1, and together with the moisture absorbent 7 in the lower layer, suppresses the condensation phenomenon. Since the magnification is 20x, the surface will not be sticky.
There is no decrease in hygroscopicity due to stickiness. Example 7 In Example 5, 50 parts by weight of thermally expandable microcapsules were added as a top coating compound,
A compound was prepared. Using this compound, wallpaper with a thickness of 600 μm was obtained by the same method as in Example 1. A performance test was conducted on the obtained wallpaper in the same manner as in Example 1. The results are shown in Table 1 and Figure 5. FIG. 4 is a sectional view of a moisture-permeable anti-condensation wallpaper obtained by this method. In Fig. 4, the numbers 1 to 7 are the same as in Fig. 1, 1 is an upper layer of moisture permeable resin, 2 is a lower layer of moisture permeable resin foam, 3 is a wallpaper mount made of flame retardant paper, and 4 is a moisture permeable resin foam. 5 is a resin, 5 is a closed cell, 6 is a thermoplastic resin film, and 7 is a moisture absorbent with a water absorption capacity of 200 times or more. This embodiment has 5 closed cells in the moisture permeable resin 9 of the upper layer 1.
It is different from the above embodiment in that it has both a moisture absorbent 10 with a water absorption capacity of 20 times, and the moisture absorbing and releasing properties of the heat insulating property of the upper layer 1 are further improved. Comparative Examples 1, 2, 3 A commercially available polyvinyl chloride wallpaper that does not contain a moisture absorbent, a commercially available polyvinyl chloride wallpaper that contains a polymer moisture absorbent, and the moisture permeable resin and a water absorption capacity of 2 to 2.
A moisture-permeable anti-condensation wallpaper was prepared by uniformly mixing a 200 times larger polymer KI gel moisture absorbent and the microcapsules, applying the resulting compound to the surface of the wallpaper, and heating and foaming it. A humidity test, a dew condensation test, and a moisture absorption/release test were conducted.
The results are shown in Table 1 and FIG. 5 as Comparative Examples 1, 2, and 3. As shown in Table 1, all of the wallpapers of the present invention have moisture permeability of 2000 g/m 2 · 24 hr. or more, which is significantly higher than that of commercially available vinyl chloride wallpapers.
In the dew condensation test, the time until condensation occurred was as long as 8 hours or more, and the product had sufficient dew condensation prevention performance, and as shown in FIG. 5, the moisture absorption and release action was performed promptly. In addition, the wallpaper surface does not become sticky when water is absorbed, and it has excellent performance as wallpaper.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

本発明の壁紙によれば、独立気泡であるので断
熱性に優れ、さらに吸湿剤が透湿性樹脂層を通し
て吸放湿機能を発揮するので、断熱性を保有した
まま、湿気を吸放湿し、両者の相乗効果によつて
良好な結露防止効果を発揮する。特に前記のマイ
クロカプセルを使用して得られた透湿性樹脂発泡
体層では結露防止効果が一層優れていると同時
に、その製造も簡単で、特殊な装置を必要とせ
ず、極めて安価に製造することができる。また下
層に吸水倍率の極めて高い吸水剤を用いても上層
表面はベタつかず、防汚性に富むと同時に透湿性
の低下をも防止することができ、また風合いの面
でもすぐれており、当該技術分野に資するところ
きわめて大きいものがある。
According to the wallpaper of the present invention, since it is a closed cell, it has excellent heat insulation properties, and since the moisture absorbent exhibits moisture absorption and release functions through the moisture permeable resin layer, it absorbs and releases moisture while retaining its heat insulation properties. The synergistic effect of both provides a good dew condensation prevention effect. In particular, the moisture-permeable resin foam layer obtained using the above-mentioned microcapsules has a superior dew condensation prevention effect, and at the same time, it is easy to manufacture, does not require special equipment, and can be manufactured at an extremely low cost. I can do it. In addition, even if a water-absorbing agent with extremely high water absorption capacity is used in the lower layer, the surface of the upper layer will not become sticky, and at the same time it has excellent stain resistance, it can also prevent a decrease in moisture permeability, and it also has an excellent texture. There are some very significant contributions to the field.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の透湿性結露防止壁紙の一例の
断面図、第2図〜第4図は本発明の壁紙の他の実
施態様の断面図、第5図は本発明の実施例および
比較例の壁紙について測定した吸放湿性能を示す
グラフ、第6図及び第7図は第1図における壁紙
を用いて水蒸気が吸放湿する状態を概念的に示す
断面図である。 1……上層、2……下層、3……壁紙用台紙、
4……透湿性樹脂、5……独立気泡、6……熱可
塑性樹脂膜、7……吸湿剤、9……透湿性樹脂、
10……吸湿剤。
FIG. 1 is a sectional view of an example of the moisture permeable dew condensation prevention wallpaper of the present invention, FIGS. 2 to 4 are sectional views of other embodiments of the wallpaper of the present invention, and FIG. 5 is an example of the present invention and a comparison. Graphs illustrating the moisture absorption and desorption performance measured for the example wallpaper, and FIGS. 6 and 7 are cross-sectional views conceptually showing the state in which water vapor absorbs and desorbs moisture using the wallpaper in FIG. 1. 1...upper layer, 2...lower layer, 3...wallpaper mount,
4... Moisture permeable resin, 5... Closed cell, 6... Thermoplastic resin film, 7... Moisture absorbent, 9... Moisture permeable resin,
10... Moisture absorbent.

Claims (1)

【特許請求の範囲】 1 壁紙用台紙の表面に、吸水倍率200倍以上の
高分子吸湿剤が分散・埋設された独立気泡からな
る透湿性樹脂発泡体の下層と、透湿性樹脂を主成
分とし、当該透湿性樹脂発砲体の下層を被覆する
上層とを積層・固着したことを特徴とする透湿性
結露防止壁紙。 2 独立気泡が、熱膨張したマイクロカプセルの
熱可塑性樹脂膜で構成された気泡体である請求項
1記載の透湿性結露防止壁紙。 3 上層が透湿性樹脂層もしくは独立気泡からな
る透湿性樹脂発泡体層である請求項1又は2記載
の透湿性結露防止壁紙。 4 上層の透湿性樹脂中に、吸水倍率2〜200倍
の有機または無機質よりなる吸湿剤が分散・埋設
された請求項1,2又は3記載の透湿性結露防止
壁紙。 5 気化性液体を熱可塑性樹脂で包埋してなる熱
膨張性マイクロカプセルと、透湿性を有する樹脂
および吸水倍率200倍以上の高分子吸湿剤を均一
に混合し、得られたコンパウンドを壁紙用台紙の
表面に下塗りし、さらにその上に透湿性樹脂を主
成分としたコンパウンドを上塗りして、加熱発泡
させたことを特徴とする透湿性結露防止壁紙の製
造方法。 6 上塗り用のコンパウンドに、気化性液体を熱
可塑性樹脂で包埋してなる熱膨張性マイクロカプ
セルが混合されている請求項5記載の透湿性結露
防止壁紙の製造方法。 7 上塗り用のコンパウンドに、吸水倍率2〜
200倍の有機または無機質よりなる吸湿剤が混合
されている請求項5又は6記載の透湿性結露防止
壁紙の製造方法。
[Claims] 1. A lower layer of moisture permeable resin foam made of closed cells in which a polymeric moisture absorbent with a water absorption capacity of 200 times or more is dispersed and embedded on the surface of a wallpaper mount, and a moisture permeable resin foam as the main component. , a moisture-permeable dew-preventing wallpaper characterized by laminating and fixing an upper layer covering a lower layer of the moisture-permeable resin foam. 2. The moisture-permeable anti-condensation wallpaper according to claim 1, wherein the closed cells are foams composed of a thermoplastic resin film of thermally expanded microcapsules. 3. The moisture-permeable anti-condensation wallpaper according to claim 1 or 2, wherein the upper layer is a moisture-permeable resin layer or a moisture-permeable resin foam layer consisting of closed cells. 4. The moisture permeable anti-condensation wallpaper according to claim 1, 2 or 3, wherein an organic or inorganic moisture absorbent having a water absorption capacity of 2 to 200 times is dispersed and embedded in the moisture permeable resin of the upper layer. 5 Heat-expandable microcapsules made by embedding a vaporizable liquid in thermoplastic resin, a moisture-permeable resin, and a polymer moisture absorbent with a water absorption capacity of 200 times or more are uniformly mixed, and the resulting compound is used for wallpaper. A method for producing moisture-permeable anti-condensation wallpaper, characterized in that the surface of a mount is undercoated, a compound mainly composed of a moisture-permeable resin is overcoated, and the mixture is heated and foamed. 6. The method for producing moisture permeable anti-condensation wallpaper according to claim 5, wherein the top coating compound contains thermally expandable microcapsules formed by embedding a vaporizable liquid in a thermoplastic resin. 7. Water absorption rate 2~2 for topcoat compound
7. The method for producing moisture-permeable dew condensation-preventing wallpaper according to claim 5 or 6, wherein 200 times as much organic or inorganic moisture absorbent is mixed.
JP5417988A 1988-03-08 1988-03-08 Moisture-permeable and anticondensation wall paper and production thereof Granted JPH01229898A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5417988A JPH01229898A (en) 1988-03-08 1988-03-08 Moisture-permeable and anticondensation wall paper and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5417988A JPH01229898A (en) 1988-03-08 1988-03-08 Moisture-permeable and anticondensation wall paper and production thereof

Publications (2)

Publication Number Publication Date
JPH01229898A JPH01229898A (en) 1989-09-13
JPH0428840B2 true JPH0428840B2 (en) 1992-05-15

Family

ID=12963317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5417988A Granted JPH01229898A (en) 1988-03-08 1988-03-08 Moisture-permeable and anticondensation wall paper and production thereof

Country Status (1)

Country Link
JP (1) JPH01229898A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5821424A (en) * 1981-07-29 1983-02-08 Unitika Ltd Fiber-forming copolyamide
JPS5821425A (en) * 1981-06-16 1983-02-08 モンサント・カンパニ− Manufacture of nylon block polymer
JPS5898482A (en) * 1981-12-09 1983-06-11 ダイニック株式会社 Production of foamed wall material having air permeability
JPS62162518A (en) * 1986-01-13 1987-07-18 Mitsubishi Chem Ind Ltd Manufacture of moisture-permeability laminated member
JPS62184191A (en) * 1986-02-07 1987-08-12 関東レザ−株式会社 Production of dew condensation preventing wallpaper having embossed pattern
JPH01139899A (en) * 1987-08-12 1989-06-01 Toyo Tire & Rubber Co Ltd Humidity permeable dew condensation preventing wallpaper and its production

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5821425A (en) * 1981-06-16 1983-02-08 モンサント・カンパニ− Manufacture of nylon block polymer
JPS5821424A (en) * 1981-07-29 1983-02-08 Unitika Ltd Fiber-forming copolyamide
JPS5898482A (en) * 1981-12-09 1983-06-11 ダイニック株式会社 Production of foamed wall material having air permeability
JPS62162518A (en) * 1986-01-13 1987-07-18 Mitsubishi Chem Ind Ltd Manufacture of moisture-permeability laminated member
JPS62184191A (en) * 1986-02-07 1987-08-12 関東レザ−株式会社 Production of dew condensation preventing wallpaper having embossed pattern
JPH01139899A (en) * 1987-08-12 1989-06-01 Toyo Tire & Rubber Co Ltd Humidity permeable dew condensation preventing wallpaper and its production

Also Published As

Publication number Publication date
JPH01229898A (en) 1989-09-13

Similar Documents

Publication Publication Date Title
JP3941465B2 (en) Hygroscopic material and method for producing the same
JPS58163420A (en) Dryable sheet
JPH0421840Y2 (en)
JPH0428840B2 (en)
JPH0476779B2 (en)
JPH0478759B2 (en)
JP2000177088A (en) Decoration sheet
JP2002159825A (en) Moisture absorbing and desorbing material and method for manufacturing the same
JP4114401B2 (en) Flame-retardant moisture-absorbing and releasing foam cosmetic material and method for producing the same
JP4561175B2 (en) Humidity control sheet
JP3783555B2 (en) Hygroscopic material and method for producing the same
JP3312567B2 (en) Method for producing foam sheet having moisture absorption and moisture release properties
JPH0542952B2 (en)
JPH0661864B2 (en) Breathable foam sheet and method for producing the same
JPH05222679A (en) Moisture-permeable waterproof cloth
JPH10146941A (en) Interior decorative laminated sheet
JPH0611526B2 (en) Moisture-absorbing / desorbing dew condensation preventing sheet and method for producing the same
JP2004216217A (en) Method for manufacturing moisture absorbing/desorbing material
JP2598760Y2 (en) Heat-insulating, moisture-permeable, waterproof fabric
JP2002159828A (en) Moisture absorbing and desorbing material
JPH0545477Y2 (en)
JPH1176815A (en) Humidity regulating material
JP2001096656A (en) Decorative board for interior finish work
JPH10250025A (en) Humidity control decorative sheet for interior finish and its manufacture
JPS58112727A (en) Water-absorging and hygroscopic sheet material and its manufacture