JPH0428748B2 - - Google Patents
Info
- Publication number
- JPH0428748B2 JPH0428748B2 JP17810182A JP17810182A JPH0428748B2 JP H0428748 B2 JPH0428748 B2 JP H0428748B2 JP 17810182 A JP17810182 A JP 17810182A JP 17810182 A JP17810182 A JP 17810182A JP H0428748 B2 JPH0428748 B2 JP H0428748B2
- Authority
- JP
- Japan
- Prior art keywords
- weight
- parts
- pellets
- polyphenylene ether
- resin composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229920001955 polyphenylene ether Polymers 0.000 claims description 20
- 239000011342 resin composition Substances 0.000 claims description 20
- 239000004952 Polyamide Substances 0.000 claims description 19
- 229920002647 polyamide Polymers 0.000 claims description 19
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 7
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 claims description 5
- 150000008065 acid anhydrides Chemical group 0.000 claims description 4
- 150000001244 carboxylic acid anhydrides Chemical group 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 claims description 3
- 150000001336 alkenes Chemical class 0.000 claims description 2
- 125000000217 alkyl group Chemical group 0.000 claims description 2
- 125000004432 carbon atom Chemical group C* 0.000 claims description 2
- 125000005843 halogen group Chemical group 0.000 claims description 2
- 125000001424 substituent group Chemical group 0.000 claims description 2
- 239000000047 product Substances 0.000 description 25
- 239000008188 pellet Substances 0.000 description 23
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 15
- 229920000642 polymer Polymers 0.000 description 13
- 238000002156 mixing Methods 0.000 description 10
- 229920002292 Nylon 6 Polymers 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 8
- 238000001035 drying Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 6
- -1 olefin compound Chemical class 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 4
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 4
- 229920002302 Nylon 6,6 Polymers 0.000 description 4
- 238000005452 bending Methods 0.000 description 4
- 229920006351 engineering plastic Polymers 0.000 description 4
- 238000004898 kneading Methods 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- XMNIXWIUMCBBBL-UHFFFAOYSA-N 2-(2-phenylpropan-2-ylperoxy)propan-2-ylbenzene Chemical compound C=1C=CC=CC=1C(C)(C)OOC(C)(C)C1=CC=CC=C1 XMNIXWIUMCBBBL-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 238000000862 absorption spectrum Methods 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 238000005275 alloying Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- PAOHAQSLJSMLAT-UHFFFAOYSA-N 1-butylperoxybutane Chemical compound CCCCOOCCCC PAOHAQSLJSMLAT-UHFFFAOYSA-N 0.000 description 2
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- CIHOLLKRGTVIJN-UHFFFAOYSA-N tert‐butyl hydroperoxide Chemical compound CC(C)(C)OO CIHOLLKRGTVIJN-UHFFFAOYSA-N 0.000 description 2
- HMUNWXXNJPVALC-UHFFFAOYSA-N 1-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C(CN1CC2=C(CC1)NN=N2)=O HMUNWXXNJPVALC-UHFFFAOYSA-N 0.000 description 1
- GVJRTUUUJYMTNQ-UHFFFAOYSA-N 2-(2,5-dioxofuran-3-yl)acetic acid Chemical compound OC(=O)CC1=CC(=O)OC1=O GVJRTUUUJYMTNQ-UHFFFAOYSA-N 0.000 description 1
- KRDXTHSSNCTAGY-UHFFFAOYSA-N 2-cyclohexylpyrrolidine Chemical compound C1CCNC1C1CCCCC1 KRDXTHSSNCTAGY-UHFFFAOYSA-N 0.000 description 1
- SYIUWAVTBADRJG-UHFFFAOYSA-N 2H-pyran-2,6(3H)-dione Chemical compound O=C1CC=CC(=O)O1 SYIUWAVTBADRJG-UHFFFAOYSA-N 0.000 description 1
- FRIBMENBGGCKPD-UHFFFAOYSA-N 3-(2,3-dimethoxyphenyl)prop-2-enal Chemical compound COC1=CC=CC(C=CC=O)=C1OC FRIBMENBGGCKPD-UHFFFAOYSA-N 0.000 description 1
- AYKYXWQEBUNJCN-UHFFFAOYSA-N 3-methylfuran-2,5-dione Chemical compound CC1=CC(=O)OC1=O AYKYXWQEBUNJCN-UHFFFAOYSA-N 0.000 description 1
- OFNISBHGPNMTMS-UHFFFAOYSA-N 3-methylideneoxolane-2,5-dione Chemical compound C=C1CC(=O)OC1=O OFNISBHGPNMTMS-UHFFFAOYSA-N 0.000 description 1
- 239000004342 Benzoyl peroxide Substances 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-N Carbamic acid Chemical class NC(O)=O KXDHJXZQYSOELW-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- JHWNWJKBPDFINM-UHFFFAOYSA-N Laurolactam Chemical compound O=C1CCCCCCCCCCCN1 JHWNWJKBPDFINM-UHFFFAOYSA-N 0.000 description 1
- 229920000299 Nylon 12 Polymers 0.000 description 1
- 229920000577 Nylon 6/66 Polymers 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- TZYHIGCKINZLPD-UHFFFAOYSA-N azepan-2-one;hexane-1,6-diamine;hexanedioic acid Chemical compound NCCCCCCN.O=C1CCCCCN1.OC(=O)CCCCC(O)=O TZYHIGCKINZLPD-UHFFFAOYSA-N 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 229920006026 co-polymeric resin Polymers 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000000805 composite resin Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- LSXWFXONGKSEMY-UHFFFAOYSA-N di-tert-butyl peroxide Chemical compound CC(C)(C)OOC(C)(C)C LSXWFXONGKSEMY-UHFFFAOYSA-N 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- 150000008049 diazo compounds Chemical class 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000012765 fibrous filler Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 150000001451 organic peroxides Chemical class 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 238000001223 reverse osmosis Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
Description
本発明は、ポリフエニレンエーテルの変性物と
ポリアミドとからなる樹脂組成物に関する。
近年、プラスチツク業界においては用途の多様
化に伴ない樹脂の複合化による高付加価値化が要
求されている。その為、ポリマーアロイ化が盛ん
になりつつある。ポリマーアロイは、既存ポリマ
ーの組合せによりポリマーアロイの各成分ポリマ
ーがもつ性質の長所を生かし、短所を相補して、
既存ポリマーだけでは対応しきれない用途の多様
化に対応するという技術思想から生まれたもので
ある。非常に相溶性の良好なポリマーの組合せに
おいては、成形加工性の改良、その他の改質の為
のアロイ化が行なわれているが、相溶性の大きく
異なるポリマーの組合せでは、成形物の製造すら
困難であり、たとえ成形物が得られてもその機械
的性質、特に衝撃強度、曲げ強度等は各成分単独
の場合の成形物の性質よりもはるかに劣り、脆く
全く使用に耐えないものであつた。相互のかけ離
れた特徴を生かすことで、はじめてポリマーアロ
イ化の意義があり、こののことから相溶性の悪い
ポリマーの組合せを如何に上手く工業的規模で作
り出すかが今後、益々重要性を増してくる。
ポリフエニレンエーテルは機械的性質、電気特
性、難燃性、耐熱性、耐水性などの性質の全般に
わたつてバランスのとれた優れた性質を有し、成
形加工性も良好でエンジニアリングプラスチツク
として多くの用途に用いられていることは周知の
とおりである。しかしながら、ポリフエニレンエ
ーテルはABS樹脂などの汎用のプラスチツクと
同様にアセトン,トルエン,ハロゲン系炭化水素
などの一般の有機溶剤に対して膨潤あるいは溶解
するという非常に大きな欠点を有しているため有
機溶剤に接触することの多い部位への用途には限
界があつた。
一方、耐有機溶剤性において優れた性質を有す
るエンジニアリングプラスチツクの数少ないもの
の1つにポリアミドがあげられる。しかし、ポリ
アミドは、代表的樹脂であるナイロン6がナイロ
ン66にみられるごとく吸湿率が高く、耐水性、寸
法安定性の悪いこと、熱変形温度が低いことなど
の欠点を有している。
このようにポリフエニレンエーテルとポリアミ
ドは、その持てる特性が非常に異なるが故に、組
合せによるそのポリマーアロイは両者の性質を補
完した新しい性質を有することが期待される。
特公昭45−997号公報にはポリフエニレンエー
テルの流動性を改良することを目的としてポリフ
エニレンエーテルとポリアミドからなる樹脂組成
物が提案されているが、両成分の相溶性がきわめ
て悪いため、特に、曲げ強度や衝撃強度等の機械
的性質の低下が著るしく成形物は極めて脆いもの
しか得られていなかつた。
本発明者らは、ポリフエニレンエーテルとポリ
アミドのポリマーアロイについて鋭意検討を加え
た結果、ポリフエニレンエーテルの特定の変性物
とポリアミドとからなる樹脂組成物が耐衝撃性に
おいてエンジニアリングプラスチツクに要求され
る水準の性能を十分に満足するという事実及びか
かる樹脂組成物がポリアミドの優れた耐溶剤性と
ポリフエニレンエーテルの優れた寸法安定性、耐
熱性を有するという事実を見い出し、本発明に到
達したものである。
すなわち本発明は
(A) 一般式
(但し、R1,R2は炭素数1〜4のアルキル
基またはハロゲン原子を表わし、nは60〜300
である。)
で示されるポリフエニレンエーテルに、該ポリフ
エニレンエーテルに対し、0.1重量%以上のラジ
カル発生剤の共存下、0.3重量%以上のカルボキ
シル基もしくは酸無水物構造を有する1,2−置
換オレフイン化合物を反応させて得られたカルボ
キシル基および/またはカルボン酸無水物構造を
置換基の一部として有するポリフエニレンエーテ
ル100重量部と、(B)ポリアミド10重量部乃至1000
重量部とからなる樹脂組成物である。
本発明の樹脂組成物を構成する(A)成分の調製に
用いられる前記一般式で示されるポリフエニレン
エーテルの好ましい具体例としてはポリ(2,6
−ジメチルフエニレン−1,4−エーテル),ポ
リ(2−メチル−6−エチルフエニレン−1,4
−エーテル),ポリ(2,6−ジエチルフエニレ
ン−1,4−エーテル),ポリ(2−メチル−6
−n−プロピルフエニレン−1,4−エーテル),
ポリ(2−エチル−6−クロルフエニレン−1,
4−エーテル),ポリ(2−エチル−6−クロル
フエニレン−1,4−エーテル)などが挙げられ
る。
又(A)成分の調製に用いられるカルボキシル基も
しくは酸無水物構造を有する1,2−置換オレフ
イン化合物の好ましい具体例としては無水マレイ
ン酸,無水ハイミツク酸,無水イタコン酸,無水
グルタコン酸,無水シトラコン酸,無水アコニツ
ト酸,5−ノルボルネン−2−メチル−2−カル
ボン酸,フタル酸等が挙げられる。カルボキシル
基もしくは酸無水物構造を有する1,2−置換オ
レフイン化合物の使用量はポリフエニレンエーテ
ルに対し、0.3重量%以上、好ましくは0.5〜4重
量%の範囲である。0.8重量%未満の場合には得
られた変性物とポリアミドとの樹脂組成物におい
て耐衝撃強度や曲げ強度等の機械的性能の向上が
認められない。
また、(A)成分の調製に用いられるラジカル発生
剤としては公知の有機過酸物,ジアゾ化合物類が
挙げられ、好ましい具体例としてはベンゾイルパ
ーオキシド,ジクミルパーオキシド,ジ−tert−
ブチルパーオキシド,tert−ブチルクミルパーオ
キシド,tert−ブチルハイドロパーオキシド,ク
メンハイドロパーオキシド,アゾビスイソブチロ
ニトリルなどが挙げられる。ラジカル発生剤の使
用量はポリフエニレンエーテルに対し、0.1重量
%以上、好ましくは0.3重量%〜5重量%の範囲
である。0.1重量%未満の場合には得られた変性
物とポリアミドとの樹脂組成物において性能向
上、特に耐衝撃強度の向上が認められない。
(A)成分の調製には次のごとき方法を採用するこ
とができる。
〔1〕 ポリフエニレンエーテルを含む溶液へ、ラ
ジカル発生剤及びカルボキシル基もしくはカル
ボン酸無水物構造を有する1,2−置換オレフ
イン化合物を加え、60℃〜150℃の温度で数十
分乃至数時間、撹拌する方法、
〔2〕 実質的に溶媒を含まない系で、220℃〜370
℃の範囲で20秒から30分の時間、好ましくは40
秒から5分間各成分を溶融混練する方法。
〔1〕の方法は、既存の反応装置、精製装置が
ある場合には好ましく採用されるが、〔2〕の方
法は汎用の二軸押出機の様な軽装備の設備で変性
が可能であり、脱溶媒工程、ポリマー精製工程が
なく短時間に変化することが可能であること等の
有利な面がある。
本発明の樹脂組成物を構成する(B)成分のポリア
ミドとしては脂肪族、芳香族あるいは脂環族のジ
カルボン酸とジアミンとから得られるポリアミ
ド,アミノカルボン酸や環状のラクタム類から得
られるポリアミドなどが挙げられるが、好ましい
具体例としてはナイロン6,ナイロン12,ナイロ
ン66,ナイロン6/10共重合体,ナイロン6/66
共重合体等が挙げられる。
本発明の樹脂組成物において、(A)成分と(B)成分
の含有比率は(A)成分100重量部に対し(B)成分10重
量部乃至1000重量部、好ましくは30重量部乃至
500重量部であり、目的とする用途により適宜選
択される。本発明の樹脂組成物の(A),(B)各成分の
種類や含有量を適宜選定することによつて、耐有
機溶剤性,耐水性,寸法安定性,熱変形温度及び
機械的性質を好ましい範囲内で種々調節すること
ができる。
本発明の樹脂組成物を製造するための二成分の
混合は公知のいかなる方法で行なつてもよい。例
えば各成分の粒状物または粉末をV型ブレンダ
ー,ヘンシエルミキサー,スーパーミキサーやニ
ーダーなどでで混合し、これを直接成形するか、
押出機,ニーダー,インテンシブミキサーなどで
溶融混合しチツプ化し、これを成形してもよい。
いずれにしても樹脂組成物の組成比、望まれる製
品の形や性質に応じて適当な方法を採用すればよ
い。
本発明の樹脂組成物は、樹脂の流動性や成形
品,耐衝撃性を向上させる為に他のポリマーを添
加させることが可能である。特にスチレン系樹
脂,オレフイン系樹脂,ポリフエニレンエーテル
系共重合樹脂あるいは重合可能なモノマー化合物
を、ポリフエニレンエーテルの変性物の製造時に
共存させておいてもよく、また、ポリアミドとの
樹脂組成物製造時に加えてもよい。
本発明の樹脂組成物は、例えば染料,顔料,充
填剤,難燃剤,光安定剤,酸化防止剤,可塑剤な
どの添加剤を含むことができるし、ガラス繊維,
カーボン繊維等の繊維状充填剤を加えて強化する
こともできる。
本発明の樹脂組成物は、エンジニアリングプラ
スチツクとして有用であるが、繊維,フイルム,
シートとして成形することが可能であり、自動車
部品(ラジエータータンク,ヒユーズボツクス,
ロツカーカバー等),電気部品(コネクタ,スイ
ツチ等),ハウジング(電卓,複写機,カメラ部
品,時計部品等)や、分離膜(逆浸透膜,限外
過膜,ガス分離膜等)等広範囲の用途に用いられ
る。
以下、実施例をあげて本発明をさらに具体的に
説明する。
参考例 1
クロロホルムを用いて25℃で測定した固有粘度
0.91dl/gのポリ(2,6−ジメチルフエニレン
−1,4−エーテル)の粉末1Kgと、無水マレイ
ン酸20gと、ジクミルパーオキシド10gとを室温
下でドライブレンドした後、スクリユー径29mm、
L/D=25の同方向回転方式のベント付二軸押出
機を用いてシリンダー温度300℃,スクリユー回
転数150rpmの条件で溶融混練して滞溜時間50秒
で押出して冷却浴を経た後、ペレツト化した。こ
のペレツト5g採取し、粉砕機で微粉末にした
後、100mlのエタノールを用いてソツクスレー抽
出器で48時間加熱還履を行なつた。次いで110℃
で5時間減圧乾燥して試料を得た。この試料の無
水マレイン酸との反応に由来する−CO2−構造の
存在をフーリエ積算型赤外線吸収スペクトルの
1600〜1800cm-1の吸収ピークの解析により確認し
た。
参考例 2
参考例1で用いたのと同じポリ(2,6−ジメ
チルフエニレン−1,4−エーテル)の粉末1Kg
と、無水マレイン酸20gとをドライブレンドした
後、ラジカル発生剤のない状態で参考例1と同じ
変性条件で処理した。得られたペレツトから5g
を採取し、ソツクスレー抽出器で参考例1と同様
の精製を行なつた後、参考例1と同様にして赤外
吸収スペクトルにより解析を行なつたが−CO2−
に由来する吸収ピークは認められなかつた。
参考例 3
参考例1で用いたのと同じポリ(2,6−ジメ
チルフエニレン−1,4−エーテル)の粉末1Kg
と、ジクミルパーオキシド10gとをドライブレン
ドした後、参考例1と同一の変性条件で処理しペ
レツトを得た。
実施例1,比較例1〜3
参考例1〜3で得られた各ペレツトとナイロン
6とを混合したのち成形し、その成形品の物性を
測定し、比較した。ナイロン6としては相対粘度
2.6(96%硫酸で25℃,1%濃度にて測定。)のペ
レツトを用いた。
すなわち変性体参考例1のペレツト100重量部
とナイロン6のペレツト100重量部とをドライブ
レンした後、105℃で24時間減圧乾燥した。乾燥
後、スクリユー径29mm,L/D=25のベント付二
軸押出機を用いてシリンダー温度275℃、スクリ
ユー回転数150rpmで溶融混練した後、ペレツト
を得た。このペレツトを105℃で24時間減圧乾燥
した後、スクリユー径25mmの射出成形機を用いて
通常の方法に従い270℃で厚さ1/8インチの成形片
を得た(実施例1)。
比較のため参考例2及び参考例3の各ペレツト
と上記ナイロン6のペレツトを実施例1と同じ混
合割合で混合したのち実施例1と同じ溶融混練及
び成形条件で成形片を得た(比較例2,3)。更
に参考例1で用いたのと同じ変性する前のポリ
(2,6−ジメチルフエニレン−1,4−エーテ
ル)のペレツトとナイロン6のペレツトとを実施
例1と同じ混合割合で混合したのち実施例1と同
じ溶融混練及び成形条件で成形片を得た(比較例
3)。
表−1に各成形片の物性値を示す。実施例と比
較例の比較から明らかなように、本発明の樹脂組
成物は耐衝撃性や曲げ強度に著るしい向上が認め
られた。
The present invention relates to a resin composition comprising a modified polyphenylene ether and a polyamide. In recent years, in the plastics industry, with the diversification of uses, there has been a demand for high added value through composite resins. For this reason, polymer alloying is becoming popular. Polymer alloys are made by combining existing polymers to take advantage of the properties of each component polymer and to compensate for their weaknesses.
This product was born from the technical idea of responding to diversifying applications that cannot be met with existing polymers alone. For combinations of polymers with very good compatibility, alloying is performed to improve moldability and other modifications, but for combinations of polymers with significantly different compatibility, even the production of molded products is difficult. Even if a molded product is obtained, its mechanical properties, especially impact strength, bending strength, etc., are far inferior to the properties of the molded product obtained from each component alone, and it is brittle and completely unusable. Ta. Polymer alloying only becomes meaningful by taking advantage of their mutually distinct characteristics, and for this reason, how to successfully create combinations of poorly compatible polymers on an industrial scale will become increasingly important in the future. . Polyphenylene ether has excellent, well-balanced properties across the board, including mechanical properties, electrical properties, flame retardance, heat resistance, and water resistance, and has good moldability, making it widely used as an engineering plastic. As is well known, it is used for this purpose. However, like general-purpose plastics such as ABS resin, polyphenylene ether has a very large drawback of swelling or dissolving in common organic solvents such as acetone, toluene, and halogenated hydrocarbons. There were limits to its application to areas that often come into contact with solvents. On the other hand, polyamide is one of the few engineering plastics that have excellent organic solvent resistance. However, polyamide has drawbacks such as nylon 6, a typical resin, having a high moisture absorption rate as seen in nylon 66, poor water resistance, poor dimensional stability, and low heat distortion temperature. As described above, since polyphenylene ether and polyamide have very different properties, it is expected that a polymer alloy obtained by combining them will have new properties that complement the properties of both. Japanese Patent Publication No. 45-997 proposes a resin composition consisting of polyphenylene ether and polyamide for the purpose of improving the fluidity of polyphenylene ether, but the compatibility of both components is extremely poor. In particular, the mechanical properties such as bending strength and impact strength were significantly reduced, and the molded products were only extremely brittle. As a result of intensive studies on polymer alloys of polyphenylene ether and polyamide, the present inventors found that a resin composition consisting of a specific modified polyphenylene ether and polyamide has the impact resistance required for engineering plastics. The present invention was achieved by discovering the fact that the resin composition sufficiently satisfies the performance level of polyamide, and the fact that such a resin composition has the excellent solvent resistance of polyamide and the excellent dimensional stability and heat resistance of polyphenylene ether. It is something. That is, the present invention relates to (A) general formula (However, R 1 and R 2 represent an alkyl group having 1 to 4 carbon atoms or a halogen atom, and n is 60 to 300
It is. ) A 1,2-substituted olefin having a carboxyl group or an acid anhydride structure of 0.3% by weight or more in the presence of a radical generator of 0.1% by weight or more based on the polyphenylene ether. 100 parts by weight of polyphenylene ether having a carboxyl group and/or carboxylic anhydride structure obtained by reacting the compounds as part of the substituents, and (B) 10 parts by weight to 1000 parts by weight of polyamide.
It is a resin composition consisting of parts by weight. Preferred specific examples of the polyphenylene ether represented by the above general formula used in the preparation of component (A) constituting the resin composition of the present invention include poly(2,6
-dimethylphenylene-1,4-ether), poly(2-methyl-6-ethylphenylene-1,4)
-ether), poly(2,6-diethylphenylene-1,4-ether), poly(2-methyl-6
-n-propylphenylene-1,4-ether),
poly(2-ethyl-6-chlorophenylene-1,
4-ether), poly(2-ethyl-6-chlorophenylene-1,4-ether), and the like. Preferred specific examples of the 1,2-substituted olefin compound having a carboxyl group or acid anhydride structure used in the preparation of component (A) include maleic anhydride, hymic anhydride, itaconic anhydride, glutaconic anhydride, and citraconic anhydride. acid, aconitic anhydride, 5-norbornene-2-methyl-2-carboxylic acid, phthalic acid and the like. The amount of the 1,2-substituted olefin compound having a carboxyl group or an acid anhydride structure is 0.3% by weight or more, preferably from 0.5 to 4% by weight, based on the polyphenylene ether. If the amount is less than 0.8% by weight, no improvement in mechanical properties such as impact strength or bending strength will be observed in the resulting resin composition of the modified product and polyamide. In addition, the radical generator used in the preparation of component (A) includes known organic peroxides and diazo compounds, and preferred specific examples include benzoyl peroxide, dicumyl peroxide, di-tert-
Examples include butyl peroxide, tert-butylcumyl peroxide, tert-butyl hydroperoxide, cumene hydroperoxide, and azobisisobutyronitrile. The amount of the radical generator used is 0.1% by weight or more, preferably in the range of 0.3% to 5% by weight, based on the polyphenylene ether. If the amount is less than 0.1% by weight, no improvement in performance, particularly in impact strength, will be observed in the resulting resin composition of the modified product and polyamide. The following methods can be used to prepare component (A). [1] Add a radical generator and a 1,2-substituted olefin compound having a carboxyl group or carboxylic acid anhydride structure to a solution containing polyphenylene ether, and heat at a temperature of 60°C to 150°C for several tens of minutes to several hours. , stirring method, [2] In a system substantially free of solvent, at 220°C to 370°C
The time ranges from 20 seconds to 30 minutes, preferably 40 °C.
A method of melting and kneading each component for seconds to five minutes. Method [1] is preferably adopted when existing reaction equipment and purification equipment are available, but method [2] can be modified with light equipment such as a general-purpose twin screw extruder. There are advantages such as there is no need for a solvent removal step or a polymer purification step, and changes can be made in a short time. Examples of the polyamide of component (B) constituting the resin composition of the present invention include polyamides obtained from aliphatic, aromatic or alicyclic dicarboxylic acids and diamines, polyamides obtained from aminocarboxylic acids and cyclic lactams, etc. Preferred specific examples include nylon 6, nylon 12, nylon 66, nylon 6/10 copolymer, nylon 6/66
Examples include copolymers. In the resin composition of the present invention, the content ratio of component (A) and component (B) is 10 to 1000 parts by weight, preferably 30 parts by weight, to 100 parts by weight of component (A).
The amount is 500 parts by weight, and is appropriately selected depending on the intended use. By appropriately selecting the type and content of each component (A) and (B) of the resin composition of the present invention, organic solvent resistance, water resistance, dimensional stability, heat distortion temperature, and mechanical properties can be improved. Various adjustments can be made within a preferred range. Mixing of the two components for producing the resin composition of the present invention may be carried out by any known method. For example, you can mix the granules or powder of each component in a V-type blender, Henschel mixer, super mixer, kneader, etc., and then mold this directly.
The mixture may be melt-mixed using an extruder, kneader, intensive mixer, etc. to form chips, which may then be molded.
In any case, an appropriate method may be adopted depending on the composition ratio of the resin composition and the desired shape and properties of the product. Other polymers can be added to the resin composition of the present invention in order to improve the fluidity of the resin, molded products, and impact resistance. In particular, styrene resins, olefin resins, polyphenylene ether copolymer resins, or polymerizable monomer compounds may be coexisting during the production of modified polyphenylene ethers, and resin compositions with polyamides may also be used. It may be added during product manufacturing. The resin composition of the present invention may contain additives such as dyes, pigments, fillers, flame retardants, light stabilizers, antioxidants, and plasticizers, and may also contain glass fibers,
It can also be reinforced by adding fibrous fillers such as carbon fibers. The resin composition of the present invention is useful as an engineering plastic;
It can be formed into a sheet and is used for automotive parts (radiator tanks, fuse boxes, etc.)
A wide range of applications, including electrical parts (connectors, switches, etc.), housings (calculators, copiers, camera parts, watch parts, etc.), and separation membranes (reverse osmosis membranes, ultrafiltration membranes, gas separation membranes, etc.) used for. Hereinafter, the present invention will be explained in more detail with reference to Examples. Reference example 1 Intrinsic viscosity measured at 25℃ using chloroform
After dry blending 1 kg of 0.91 dl/g poly(2,6-dimethylphenylene-1,4-ether) powder, 20 g of maleic anhydride, and 10 g of dicumyl peroxide at room temperature, the screw diameter was 29 mm. ,
Using a co-rotating vented twin-screw extruder with L/D = 25, the mixture was melt-kneaded at a cylinder temperature of 300°C and screw rotation speed of 150 rpm, extruded with a residence time of 50 seconds, and passed through a cooling bath. Turned into pellets. 5 g of this pellet was collected, pulverized into fine powder using a pulverizer, and heated and refluxed in a Soxhlet extractor using 100 ml of ethanol for 48 hours. Then 110℃
A sample was obtained by drying under reduced pressure for 5 hours. The presence of a -CO 2 - structure derived from the reaction with maleic anhydride in this sample was detected in the Fourier-integrated infrared absorption spectrum.
This was confirmed by analyzing the absorption peak at 1600 to 1800 cm -1 . Reference Example 2 1 kg of the same poly(2,6-dimethylphenylene-1,4-ether) powder used in Reference Example 1
and 20 g of maleic anhydride were dry blended, and then treated under the same modification conditions as in Reference Example 1 in the absence of a radical generator. 5g from the pellets obtained
was collected and purified in the same manner as in Reference Example 1 using a Soxhlet extractor, and then analyzed by infrared absorption spectrum in the same manner as in Reference Example 1 .
No absorption peak originating from was observed. Reference Example 3 1 kg of the same poly(2,6-dimethylphenylene-1,4-ether) powder used in Reference Example 1
and 10 g of dicumyl peroxide were dry blended and treated under the same modification conditions as in Reference Example 1 to obtain pellets. Example 1, Comparative Examples 1 to 3 The pellets obtained in Reference Examples 1 to 3 were mixed with nylon 6 and then molded, and the physical properties of the molded products were measured and compared. Relative viscosity for nylon 6
Pellets of 2.6 (measured with 96% sulfuric acid at 25°C and 1% concentration) were used. That is, 100 parts by weight of the pellets of modified reference example 1 and 100 parts by weight of nylon 6 pellets were dry-blended and then dried under reduced pressure at 105°C for 24 hours. After drying, the mixture was melt-kneaded using a vented twin-screw extruder with a screw diameter of 29 mm and L/D=25 at a cylinder temperature of 275° C. and a screw rotation speed of 150 rpm to obtain pellets. After drying the pellets under reduced pressure at 105° C. for 24 hours, molded pieces with a thickness of 1/8 inch were obtained at 270° C. using an injection molding machine with a screw diameter of 25 mm according to a conventional method (Example 1). For comparison, the pellets of Reference Examples 2 and 3 and the above nylon 6 pellets were mixed at the same mixing ratio as in Example 1, and then molded pieces were obtained under the same melt-kneading and molding conditions as in Example 1 (Comparative Example). 2,3). Furthermore, the same unmodified poly(2,6-dimethylphenylene-1,4-ether) pellets used in Reference Example 1 and nylon 6 pellets were mixed at the same mixing ratio as in Example 1. A molded piece was obtained under the same melt-kneading and molding conditions as in Example 1 (Comparative Example 3). Table 1 shows the physical properties of each molded piece. As is clear from the comparison between Examples and Comparative Examples, the resin compositions of the present invention were found to have significantly improved impact resistance and bending strength.
【表】
参考例 4
クロロホルムを用いて25℃で測定した固有粘度
0.93dl/gのポリ(2,6−ジメチルフエニレン
−1,4−エーテル)のペレツト500重量部と、
ポリスチレン(三井東圧社製トーポレツクス55
0)400重量部と、無水マレイン酸15重量部と、
ジ−tert−ブチルパーオキシド10重量部とをドラ
イブレンドした後、スクリユー径43mm、L/D=
30の同方向回転方式のベント付二軸押出機を用い
てシリンダー温度270℃、スクリユー回転数
150rpmの条件で溶融混練して平均滞溜時間3分
間で押出し、ペレツトを得た。
実施例2〜4,比較例4〜6
参考例4で得たペレツト100重量部に対してナ
イロン6(相対粘度2.65,96%硫酸で25℃,1%
濃度にて測定。)のペレツトを各々200重量部,
100重量部,50重量部の割合でドライブレンドし
た後、105℃で24時間減圧乾燥した。乾燥後、参
考例4で用いたのと同じベント付二軸押出機を用
いてシリンダー温度260℃,スクリユー回転数
150rpmで溶融混合した後、ペレツトを得た。次
いで、このペレツトを105℃で24時間減圧乾燥し
た後、通常の射出成形機を用い、成形温度270℃
で厚さ1/8インチの成形物を得た。
比較のため、参考例4で用いた変性処理をしな
いポリ(2,6−ジメチルフエニレン−1,4−
エーテル)500重量部と、参考例4で用いたポリ
スチレン400重量部と、上記ナイロン6 200重量
部,100重量部,50重量部とをドライブレンドし
た後、実施例2〜4と同一の乾燥、溶融押出条件
でペレツトを得、ついで成形物を得た。
得られた成形物の性能を測定した結果を表−2
に示す。[Table] Reference example 4 Intrinsic viscosity measured at 25℃ using chloroform
500 parts by weight of poly(2,6-dimethylphenylene-1,4-ether) pellets of 0.93 dl/g;
Polystyrene (Topolex 55 manufactured by Mitsui Toatsu Co., Ltd.)
0) 400 parts by weight, 15 parts by weight of maleic anhydride,
After dry blending with 10 parts by weight of di-tert-butyl peroxide, the screw diameter was 43 mm, L/D=
Using a co-rotating vented twin screw extruder with cylinder temperature of 270℃ and screw rotation speed.
The mixture was melt-kneaded at 150 rpm and extruded with an average residence time of 3 minutes to obtain pellets. Examples 2 to 4, Comparative Examples 4 to 6 Nylon 6 (relative viscosity 2.65, 96% sulfuric acid at 25°C, 1%
Measured by concentration. ) pellets, 200 parts by weight each,
After dry blending at a ratio of 100 parts by weight and 50 parts by weight, the mixtures were dried under reduced pressure at 105°C for 24 hours. After drying, use the same vented twin-screw extruder as used in Reference Example 4 to heat the cylinder at a temperature of 260°C and a screw rotation speed.
After melt mixing at 150 rpm, pellets were obtained. Next, the pellets were dried under reduced pressure at 105°C for 24 hours, and then molded at 270°C using a regular injection molding machine.
A molded product with a thickness of 1/8 inch was obtained. For comparison, poly(2,6-dimethylphenylene-1,4-
After dry blending 500 parts by weight of ether), 400 parts by weight of polystyrene used in Reference Example 4, and 200 parts by weight, 100 parts by weight, and 50 parts by weight of the above-mentioned nylon 6, drying was carried out in the same manner as in Examples 2 to 4. Pellets were obtained under melt extrusion conditions, and then molded products were obtained. Table 2 shows the results of measuring the performance of the obtained molded product.
Shown below.
【表】
実施例に比べ比較例はいずれも成形物の表面に
「ひけ」やフローマークを生じ、成形物は外観が
悪かつた。又、比較例の成形物は簡単に折損する
脆いものであつた。これに対し、実施例の成形物
は外観良好で、機械的性質も著るしい向上が認め
られた。
実施例の成形物は、組成割合を調整することに
より、ポリアミドのもつ優れた耐有機溶剤性と、
ポリフエニレンエーテルのもつ耐水性を兼ね備
え、かつポリアミドの低い熱変形温度が改良され
たものであつた。表−3に熱的性質及び化学的性
質を示す。[Table] Compared to the Examples, all of the Comparative Examples had "sink marks" and flow marks on the surface of the molded products, and the molded products had poor appearance. Furthermore, the molded product of the comparative example was brittle and easily broke. In contrast, the molded products of Examples had good appearance and significantly improved mechanical properties. By adjusting the composition ratio, the molded product of the example has the excellent organic solvent resistance of polyamide,
It has the water resistance of polyphenylene ether and has an improved low heat distortion temperature of polyamide. Table 3 shows the thermal properties and chemical properties.
【表】【table】
【表】
参考例 5
15の反応釜に1.5Kgのエチルベンゼン、固有
粘度0.83のポリ(2,6−ジメチルフエニレン−
1,4−エーテル)2.0Kg及び無水マレイン酸40
gを仕込み、N2置換後、撹拌しながら反応釜内
温を室温から130℃に昇温し、ついでジ−tert−
ブチルパーオキシド20gを仕込、135−145℃の間
に保ちながら2時間重合反応を続けた。次いで反
応物を取出し、減圧乾燥機で溶媒のエチルベンゼ
ンを除去して変性物を得た。得られた変性物の赤
外吸収スペクトル分析から、無水マレイン酸ユニ
ツトの含量は1.96%であつた。
実施例5,比較例7
参考例5で得られた変性物300重量部とナイロ
ン66(相対粘度2.4,96%硫酸で25℃,1%濃度に
て測定。)のペレツト700重量部とをドライブレン
ドした後、105℃で一昼夜減圧乾燥した。乾燥後、
実施例1で用いたのと同様のベント付二軸押出機
を用いてシリンダ温度270℃、スクリユー回転数
150rpmの条件で溶融混練してペレツトを得た。
このペレツトを24時間105℃で減圧乾燥した後、
成形温度270℃で厚さ1/8インチの射出成形品を得
た。
比較のため、参考例5で用いのと同じ未変性の
ポリ(2,6−ジメチルフエニレン−1,4−エ
ーテル)と、上記ナイロン66とを実施例5と同一
の混合割合で混合したのち実施例5と同一の成形
条件で成形品を得、その性能を測定した。その結
果を表−4に示す。表−4から明らかなごとく無
水マレイン酸ユニツトを含まない比較例7の成形
物は、衝撃強度が低く、簡単に折損するのに対
し、実施例の成形物は良好な機械的性質を保持し
ていた。[Table] Reference Example 5 1.5 kg of ethylbenzene and poly(2,6-dimethylphenylene-
1,4-ether) 2.0Kg and maleic anhydride 40
After replacing with N2 , the internal temperature of the reaction vessel was raised from room temperature to 130°C with stirring, and then di-tert-
20 g of butyl peroxide was charged, and the polymerization reaction was continued for 2 hours while maintaining the temperature between 135 and 145°C. Next, the reaction product was taken out, and the solvent ethylbenzene was removed using a vacuum dryer to obtain a modified product. Infrared absorption spectrum analysis of the obtained modified product revealed that the content of maleic anhydride units was 1.96%. Example 5, Comparative Example 7 300 parts by weight of the modified product obtained in Reference Example 5 and 700 parts by weight of pellets of nylon 66 (relative viscosity 2.4, measured with 96% sulfuric acid at 25°C and 1% concentration) were dried. After blending, the mixture was dried under reduced pressure at 105°C overnight. After drying,
Using a vented twin-screw extruder similar to that used in Example 1, the cylinder temperature was 270°C and the screw rotation speed was
Pellets were obtained by melt-kneading at 150 rpm.
After drying this pellet under reduced pressure at 105℃ for 24 hours,
An injection molded product with a thickness of 1/8 inch was obtained at a molding temperature of 270°C. For comparison, the same unmodified poly(2,6-dimethylphenylene-1,4-ether) used in Reference Example 5 and the above nylon 66 were mixed at the same mixing ratio as in Example 5. A molded article was obtained under the same molding conditions as in Example 5, and its performance was measured. The results are shown in Table-4. As is clear from Table 4, the molded product of Comparative Example 7, which does not contain maleic anhydride units, has low impact strength and breaks easily, whereas the molded product of Example maintains good mechanical properties. Ta.
Claims (1)
基またはハロゲン原子を表わし、nは60〜300
である。) で示されるポリフエニレンエーテルに、該ポリフ
エニレンエーテルに対し、0.1重量%以上のラジ
カル発生剤の共存下、0.3重量%以上のカルボキ
シル基もしくは酸無水物構造を有する1,2−置
換オレフイン化合物を反応させて得られたカルボ
キシル基および/またはカルボン酸無水物構造を
置換基の一部として有するポリフエニレンエーテ
ル100重量部と、(B)ポリアミド10重量部乃至1000
重量部とからなる樹脂組成物。[Claims] 1 (A) General formula (However, R 1 and R 2 represent an alkyl group having 1 to 4 carbon atoms or a halogen atom, and n is 60 to 300
It is. ) A 1,2-substituted olefin having a carboxyl group or an acid anhydride structure of 0.3% by weight or more in the presence of a radical generator of 0.1% by weight or more based on the polyphenylene ether. 100 parts by weight of polyphenylene ether having a carboxyl group and/or carboxylic anhydride structure obtained by reacting the compounds as part of the substituents, and (B) 10 parts by weight to 1000 parts by weight of polyamide.
A resin composition consisting of parts by weight.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17810182A JPS5966452A (en) | 1982-10-08 | 1982-10-08 | Resin composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17810182A JPS5966452A (en) | 1982-10-08 | 1982-10-08 | Resin composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5966452A JPS5966452A (en) | 1984-04-14 |
JPH0428748B2 true JPH0428748B2 (en) | 1992-05-15 |
Family
ID=16042658
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17810182A Granted JPS5966452A (en) | 1982-10-08 | 1982-10-08 | Resin composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5966452A (en) |
Families Citing this family (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5719233A (en) * | 1984-05-21 | 1998-02-17 | General Electric Company | Modified polyphenylene ether-polyamide compositions and process |
US4600741A (en) * | 1984-09-27 | 1986-07-15 | General Electric Company | Polyphenylene ether-polyamide blends |
US5061746A (en) * | 1984-11-07 | 1991-10-29 | General Electric Company | Silane derivatives which improve properties of PPE-polyamide compositions |
JPH064760B2 (en) * | 1985-03-07 | 1994-01-19 | 旭化成工業株式会社 | Polyamide-containing impact-resistant resin composition |
US4873286A (en) * | 1985-05-20 | 1989-10-10 | General Electric Company | Modified polyphenylene ether-polyamide compositions and process |
NL8502116A (en) * | 1985-07-24 | 1987-02-16 | Gen Electric | PROCESS FOR PREPARING A POLYMER MIXTURE CONTAINING A POLYPHENYLENE ETHER AND A POLYAMIDE |
US4654405A (en) * | 1985-12-05 | 1987-03-31 | Borg-Warner Chemicals, Inc. | Carboxylated phenylene ether resins |
US4732938A (en) * | 1985-12-06 | 1988-03-22 | Borg-Warner Chemicals, Inc. | Thermoplastic polyamide--polyphenylene ether compositions |
USRE35509E (en) * | 1986-03-07 | 1997-05-13 | General Electrical Company | Polyphenylene ether/polyamide blends having improved physical properties |
US5000897A (en) * | 1986-03-20 | 1991-03-19 | General Electric Company | Polyphenylene ether-polyamide compositions and methods for preparation |
JPS62253652A (en) * | 1986-03-28 | 1987-11-05 | Japan Synthetic Rubber Co Ltd | Thermoplastic resin composition |
JP2606863B2 (en) * | 1986-05-27 | 1997-05-07 | ゼネラル・エレクトリック・カンパニイ | Functionalized polyphenylene ether, process for its preparation and polyphenylene ether-polyamide composition prepared therefrom |
US4994525A (en) * | 1986-05-27 | 1991-02-19 | General Electric Company | Functionalized polyphenylene ethers, method of preparation, and polyphenylene ether-polyamide compositions prepared therefrom |
US4755566A (en) * | 1986-06-26 | 1988-07-05 | General Electric Company | Trialkylamine salt-functionalized polyphenylene ethers, methods for their preparation, and compositions containing them |
JPH0737564B2 (en) * | 1986-07-28 | 1995-04-26 | 東レ株式会社 | Thermoplastic resin composition |
JPH0788467B2 (en) * | 1986-07-30 | 1995-09-27 | 旭化成工業株式会社 | Undercar parts for automobiles |
JPH0788468B2 (en) * | 1986-07-30 | 1995-09-27 | 旭化成工業株式会社 | Materials for automobile engine parts |
JP2517950B2 (en) * | 1987-03-24 | 1996-07-24 | 三菱瓦斯化学株式会社 | Molding resin composition |
EP0260123B1 (en) * | 1986-09-10 | 1992-07-15 | Mitsubishi Gas Chemical Company, Inc. | Polyphenylene ether resin composition |
JPS6368663A (en) * | 1986-09-10 | 1988-03-28 | Mitsubishi Gas Chem Co Inc | Polyphenylene ether resin composition |
US5237002A (en) * | 1986-10-31 | 1993-08-17 | Sumitomo Chemical Company, Limited | Thermoplastic resin composition |
DE3787275T2 (en) * | 1987-03-18 | 1994-03-17 | Asahi Chemical Ind | Impact-resistant polyamide resin composition and process for its production. |
NL8701585A (en) * | 1987-07-06 | 1989-02-01 | Gen Electric | POLYMER MIXTURE WITH FUNCTIONALIZED POLYPHENYLENE ETHER AND POLYETHERIMIDE. |
DE3726283A1 (en) * | 1987-08-07 | 1989-02-16 | Basf Ag | THERMOPLASTIC MOLDS |
US4808674A (en) * | 1987-08-24 | 1989-02-28 | General Electric Company | Aryl ester-grafted polyphenylene ethers and phenylene ether-amide graft copolymers prepared therefrom |
US4963620A (en) * | 1987-08-25 | 1990-10-16 | Borg-Warner Chemicals, Inc. | Polyphenylene ether-polyamide blends |
US4826933A (en) * | 1987-08-25 | 1989-05-02 | Borg-Warner Chemicals, Inc. | Polyphenylene ether-polyamide blends |
US5162447A (en) * | 1987-09-18 | 1992-11-10 | Sumitomo Chemical Co., Ltd. | Process for making a thermoplastic resin composition |
JPS6475527A (en) * | 1987-09-18 | 1989-03-22 | Sumitomo Chemical Co | Production of thermoplastic resin composition |
JPH0615664B2 (en) * | 1987-12-04 | 1994-03-02 | 東レ株式会社 | Resin composition |
US4806602A (en) * | 1988-03-21 | 1989-02-21 | General Electric Company | Anhydride capping polyphenylene ether with carboxylic acid |
US5164440A (en) * | 1988-07-20 | 1992-11-17 | Ube Industries, Ltd. | High rigidity and impact resistance resin composition |
US5248720A (en) * | 1988-09-06 | 1993-09-28 | Ube Industries, Ltd. | Process for preparing a polyamide composite material |
DE3831348A1 (en) * | 1988-09-15 | 1990-03-29 | Huels Chemische Werke Ag | IMPACT STRIP THERMOPLASTIC MOLDING MATERIALS BASED ON POLYPHENYLENE ETHER GRAFT COPOLYMERS AND POLYAMIDES AND METHOD FOR THE PRODUCTION THEREOF |
JPH02120359A (en) * | 1988-10-28 | 1990-05-08 | Ube Ind Ltd | Resin composition for connector |
JP2961546B2 (en) * | 1989-02-09 | 1999-10-12 | 住友化学工業株式会社 | Thermoplastic resin composition |
IT1251150B (en) * | 1991-08-05 | 1995-05-04 | Enichem Polimeri | THERMOPLASTIC COMPOSITION TOUGH BASED ON POLYPHENYLENETERE AND POLYAMIDE |
US5470902A (en) * | 1992-10-21 | 1995-11-28 | Sumitomo Wiring Systems, Ltd. | Resin composition for automobile relay box and automobile relay box comprising the same |
US5424360A (en) * | 1992-12-16 | 1995-06-13 | Sumitomo Chemical Company, Limited | Thermoplastic resin composition |
US5336732A (en) * | 1993-02-12 | 1994-08-09 | Alliedsignal Inc. | Process for forming polyamide/poly(phenylene ether) blends |
US5449721A (en) * | 1993-09-08 | 1995-09-12 | Sumitomo Chemical Co., Ltd. | Thermoplastic resin compositions comprising polyphenylene ether, polyamide and fluorocarbon resins |
WO2001062828A1 (en) * | 2000-02-23 | 2001-08-30 | Asahi Kasei Kabushiki Kaisha | Modified polyphenylene ether |
EP1241228B1 (en) | 2001-03-16 | 2005-10-19 | Ube Industries, Ltd. | Process for producing thermoplastic resin composition |
JP5286630B2 (en) * | 2005-03-29 | 2013-09-11 | 東レ株式会社 | Method for producing thermoplastic resin composition |
JP5124932B2 (en) * | 2005-03-29 | 2013-01-23 | 東レ株式会社 | Method for producing thermoplastic resin composition |
-
1982
- 1982-10-08 JP JP17810182A patent/JPS5966452A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5966452A (en) | 1984-04-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0428748B2 (en) | ||
JPH0352486B2 (en) | ||
JPH0135860B2 (en) | ||
JPS5931534B2 (en) | Method for producing graft copolymer | |
JPS63113069A (en) | Thermoplastic resin composition | |
JPS63165452A (en) | Polymer composition | |
WO2019026688A1 (en) | Resin composition and molded article | |
JPS6326775B2 (en) | ||
JPS63183954A (en) | Thermoplastic resin composition | |
JPH05170907A (en) | Production of carboxyl group-containing polyphenylene sulfide | |
JPH0347814A (en) | Imidated copolymer and resin modifier and resin compatibilizing agent produced by using the same | |
JPH0570669B2 (en) | ||
JPH02155951A (en) | Polyethylene sulfide resin composition | |
JP2855272B2 (en) | Flame retardant polyamide resin composition | |
JPH02272026A (en) | Polyphenylene ether capped with aryloxytriazine, and its preparation | |
JPS62129345A (en) | Thermoplastic resin composition | |
JP2949699B2 (en) | Thermoplastic resin composition | |
JPH01129058A (en) | Thermoplastic resin composition | |
JPH049180B2 (en) | ||
JPH0269563A (en) | Reinforced polyamide resin composition | |
JPS6086162A (en) | Polyamide resin composition | |
JPS587426A (en) | Reinforced polymer composition | |
JP3478372B2 (en) | Polyphenylene sulfide resin composition for precision molding | |
JPH0673290A (en) | Thermoplastic resin composition | |
JPS6383162A (en) | Resin composition |