JPH0428748B2 - - Google Patents

Info

Publication number
JPH0428748B2
JPH0428748B2 JP17810182A JP17810182A JPH0428748B2 JP H0428748 B2 JPH0428748 B2 JP H0428748B2 JP 17810182 A JP17810182 A JP 17810182A JP 17810182 A JP17810182 A JP 17810182A JP H0428748 B2 JPH0428748 B2 JP H0428748B2
Authority
JP
Japan
Prior art keywords
weight
parts
pellets
polyphenylene ether
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17810182A
Other languages
Japanese (ja)
Other versions
JPS5966452A (en
Inventor
Hiroshi Kuwabara
Taro Tokusawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP17810182A priority Critical patent/JPS5966452A/en
Publication of JPS5966452A publication Critical patent/JPS5966452A/en
Publication of JPH0428748B2 publication Critical patent/JPH0428748B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、ポリフエニレンエーテルの変性物と
ポリアミドとからなる樹脂組成物に関する。 近年、プラスチツク業界においては用途の多様
化に伴ない樹脂の複合化による高付加価値化が要
求されている。その為、ポリマーアロイ化が盛ん
になりつつある。ポリマーアロイは、既存ポリマ
ーの組合せによりポリマーアロイの各成分ポリマ
ーがもつ性質の長所を生かし、短所を相補して、
既存ポリマーだけでは対応しきれない用途の多様
化に対応するという技術思想から生まれたもので
ある。非常に相溶性の良好なポリマーの組合せに
おいては、成形加工性の改良、その他の改質の為
のアロイ化が行なわれているが、相溶性の大きく
異なるポリマーの組合せでは、成形物の製造すら
困難であり、たとえ成形物が得られてもその機械
的性質、特に衝撃強度、曲げ強度等は各成分単独
の場合の成形物の性質よりもはるかに劣り、脆く
全く使用に耐えないものであつた。相互のかけ離
れた特徴を生かすことで、はじめてポリマーアロ
イ化の意義があり、こののことから相溶性の悪い
ポリマーの組合せを如何に上手く工業的規模で作
り出すかが今後、益々重要性を増してくる。 ポリフエニレンエーテルは機械的性質、電気特
性、難燃性、耐熱性、耐水性などの性質の全般に
わたつてバランスのとれた優れた性質を有し、成
形加工性も良好でエンジニアリングプラスチツク
として多くの用途に用いられていることは周知の
とおりである。しかしながら、ポリフエニレンエ
ーテルはABS樹脂などの汎用のプラスチツクと
同様にアセトン,トルエン,ハロゲン系炭化水素
などの一般の有機溶剤に対して膨潤あるいは溶解
するという非常に大きな欠点を有しているため有
機溶剤に接触することの多い部位への用途には限
界があつた。 一方、耐有機溶剤性において優れた性質を有す
るエンジニアリングプラスチツクの数少ないもの
の1つにポリアミドがあげられる。しかし、ポリ
アミドは、代表的樹脂であるナイロン6がナイロ
ン66にみられるごとく吸湿率が高く、耐水性、寸
法安定性の悪いこと、熱変形温度が低いことなど
の欠点を有している。 このようにポリフエニレンエーテルとポリアミ
ドは、その持てる特性が非常に異なるが故に、組
合せによるそのポリマーアロイは両者の性質を補
完した新しい性質を有することが期待される。 特公昭45−997号公報にはポリフエニレンエー
テルの流動性を改良することを目的としてポリフ
エニレンエーテルとポリアミドからなる樹脂組成
物が提案されているが、両成分の相溶性がきわめ
て悪いため、特に、曲げ強度や衝撃強度等の機械
的性質の低下が著るしく成形物は極めて脆いもの
しか得られていなかつた。 本発明者らは、ポリフエニレンエーテルとポリ
アミドのポリマーアロイについて鋭意検討を加え
た結果、ポリフエニレンエーテルの特定の変性物
とポリアミドとからなる樹脂組成物が耐衝撃性に
おいてエンジニアリングプラスチツクに要求され
る水準の性能を十分に満足するという事実及びか
かる樹脂組成物がポリアミドの優れた耐溶剤性と
ポリフエニレンエーテルの優れた寸法安定性、耐
熱性を有するという事実を見い出し、本発明に到
達したものである。 すなわち本発明は (A) 一般式 (但し、R1,R2は炭素数1〜4のアルキル
基またはハロゲン原子を表わし、nは60〜300
である。) で示されるポリフエニレンエーテルに、該ポリフ
エニレンエーテルに対し、0.1重量%以上のラジ
カル発生剤の共存下、0.3重量%以上のカルボキ
シル基もしくは酸無水物構造を有する1,2−置
換オレフイン化合物を反応させて得られたカルボ
キシル基および/またはカルボン酸無水物構造を
置換基の一部として有するポリフエニレンエーテ
ル100重量部と、(B)ポリアミド10重量部乃至1000
重量部とからなる樹脂組成物である。 本発明の樹脂組成物を構成する(A)成分の調製に
用いられる前記一般式で示されるポリフエニレン
エーテルの好ましい具体例としてはポリ(2,6
−ジメチルフエニレン−1,4−エーテル),ポ
リ(2−メチル−6−エチルフエニレン−1,4
−エーテル),ポリ(2,6−ジエチルフエニレ
ン−1,4−エーテル),ポリ(2−メチル−6
−n−プロピルフエニレン−1,4−エーテル),
ポリ(2−エチル−6−クロルフエニレン−1,
4−エーテル),ポリ(2−エチル−6−クロル
フエニレン−1,4−エーテル)などが挙げられ
る。 又(A)成分の調製に用いられるカルボキシル基も
しくは酸無水物構造を有する1,2−置換オレフ
イン化合物の好ましい具体例としては無水マレイ
ン酸,無水ハイミツク酸,無水イタコン酸,無水
グルタコン酸,無水シトラコン酸,無水アコニツ
ト酸,5−ノルボルネン−2−メチル−2−カル
ボン酸,フタル酸等が挙げられる。カルボキシル
基もしくは酸無水物構造を有する1,2−置換オ
レフイン化合物の使用量はポリフエニレンエーテ
ルに対し、0.3重量%以上、好ましくは0.5〜4重
量%の範囲である。0.8重量%未満の場合には得
られた変性物とポリアミドとの樹脂組成物におい
て耐衝撃強度や曲げ強度等の機械的性能の向上が
認められない。 また、(A)成分の調製に用いられるラジカル発生
剤としては公知の有機過酸物,ジアゾ化合物類が
挙げられ、好ましい具体例としてはベンゾイルパ
ーオキシド,ジクミルパーオキシド,ジ−tert−
ブチルパーオキシド,tert−ブチルクミルパーオ
キシド,tert−ブチルハイドロパーオキシド,ク
メンハイドロパーオキシド,アゾビスイソブチロ
ニトリルなどが挙げられる。ラジカル発生剤の使
用量はポリフエニレンエーテルに対し、0.1重量
%以上、好ましくは0.3重量%〜5重量%の範囲
である。0.1重量%未満の場合には得られた変性
物とポリアミドとの樹脂組成物において性能向
上、特に耐衝撃強度の向上が認められない。 (A)成分の調製には次のごとき方法を採用するこ
とができる。 〔1〕 ポリフエニレンエーテルを含む溶液へ、ラ
ジカル発生剤及びカルボキシル基もしくはカル
ボン酸無水物構造を有する1,2−置換オレフ
イン化合物を加え、60℃〜150℃の温度で数十
分乃至数時間、撹拌する方法、 〔2〕 実質的に溶媒を含まない系で、220℃〜370
℃の範囲で20秒から30分の時間、好ましくは40
秒から5分間各成分を溶融混練する方法。 〔1〕の方法は、既存の反応装置、精製装置が
ある場合には好ましく採用されるが、〔2〕の方
法は汎用の二軸押出機の様な軽装備の設備で変性
が可能であり、脱溶媒工程、ポリマー精製工程が
なく短時間に変化することが可能であること等の
有利な面がある。 本発明の樹脂組成物を構成する(B)成分のポリア
ミドとしては脂肪族、芳香族あるいは脂環族のジ
カルボン酸とジアミンとから得られるポリアミ
ド,アミノカルボン酸や環状のラクタム類から得
られるポリアミドなどが挙げられるが、好ましい
具体例としてはナイロン6,ナイロン12,ナイロ
ン66,ナイロン6/10共重合体,ナイロン6/66
共重合体等が挙げられる。 本発明の樹脂組成物において、(A)成分と(B)成分
の含有比率は(A)成分100重量部に対し(B)成分10重
量部乃至1000重量部、好ましくは30重量部乃至
500重量部であり、目的とする用途により適宜選
択される。本発明の樹脂組成物の(A),(B)各成分の
種類や含有量を適宜選定することによつて、耐有
機溶剤性,耐水性,寸法安定性,熱変形温度及び
機械的性質を好ましい範囲内で種々調節すること
ができる。 本発明の樹脂組成物を製造するための二成分の
混合は公知のいかなる方法で行なつてもよい。例
えば各成分の粒状物または粉末をV型ブレンダ
ー,ヘンシエルミキサー,スーパーミキサーやニ
ーダーなどでで混合し、これを直接成形するか、
押出機,ニーダー,インテンシブミキサーなどで
溶融混合しチツプ化し、これを成形してもよい。
いずれにしても樹脂組成物の組成比、望まれる製
品の形や性質に応じて適当な方法を採用すればよ
い。 本発明の樹脂組成物は、樹脂の流動性や成形
品,耐衝撃性を向上させる為に他のポリマーを添
加させることが可能である。特にスチレン系樹
脂,オレフイン系樹脂,ポリフエニレンエーテル
系共重合樹脂あるいは重合可能なモノマー化合物
を、ポリフエニレンエーテルの変性物の製造時に
共存させておいてもよく、また、ポリアミドとの
樹脂組成物製造時に加えてもよい。 本発明の樹脂組成物は、例えば染料,顔料,充
填剤,難燃剤,光安定剤,酸化防止剤,可塑剤な
どの添加剤を含むことができるし、ガラス繊維,
カーボン繊維等の繊維状充填剤を加えて強化する
こともできる。 本発明の樹脂組成物は、エンジニアリングプラ
スチツクとして有用であるが、繊維,フイルム,
シートとして成形することが可能であり、自動車
部品(ラジエータータンク,ヒユーズボツクス,
ロツカーカバー等),電気部品(コネクタ,スイ
ツチ等),ハウジング(電卓,複写機,カメラ部
品,時計部品等)や、分離膜(逆浸透膜,限外
過膜,ガス分離膜等)等広範囲の用途に用いられ
る。 以下、実施例をあげて本発明をさらに具体的に
説明する。 参考例 1 クロロホルムを用いて25℃で測定した固有粘度
0.91dl/gのポリ(2,6−ジメチルフエニレン
−1,4−エーテル)の粉末1Kgと、無水マレイ
ン酸20gと、ジクミルパーオキシド10gとを室温
下でドライブレンドした後、スクリユー径29mm、
L/D=25の同方向回転方式のベント付二軸押出
機を用いてシリンダー温度300℃,スクリユー回
転数150rpmの条件で溶融混練して滞溜時間50秒
で押出して冷却浴を経た後、ペレツト化した。こ
のペレツト5g採取し、粉砕機で微粉末にした
後、100mlのエタノールを用いてソツクスレー抽
出器で48時間加熱還履を行なつた。次いで110℃
で5時間減圧乾燥して試料を得た。この試料の無
水マレイン酸との反応に由来する−CO2−構造の
存在をフーリエ積算型赤外線吸収スペクトルの
1600〜1800cm-1の吸収ピークの解析により確認し
た。 参考例 2 参考例1で用いたのと同じポリ(2,6−ジメ
チルフエニレン−1,4−エーテル)の粉末1Kg
と、無水マレイン酸20gとをドライブレンドした
後、ラジカル発生剤のない状態で参考例1と同じ
変性条件で処理した。得られたペレツトから5g
を採取し、ソツクスレー抽出器で参考例1と同様
の精製を行なつた後、参考例1と同様にして赤外
吸収スペクトルにより解析を行なつたが−CO2
に由来する吸収ピークは認められなかつた。 参考例 3 参考例1で用いたのと同じポリ(2,6−ジメ
チルフエニレン−1,4−エーテル)の粉末1Kg
と、ジクミルパーオキシド10gとをドライブレン
ドした後、参考例1と同一の変性条件で処理しペ
レツトを得た。 実施例1,比較例1〜3 参考例1〜3で得られた各ペレツトとナイロン
6とを混合したのち成形し、その成形品の物性を
測定し、比較した。ナイロン6としては相対粘度
2.6(96%硫酸で25℃,1%濃度にて測定。)のペ
レツトを用いた。 すなわち変性体参考例1のペレツト100重量部
とナイロン6のペレツト100重量部とをドライブ
レンした後、105℃で24時間減圧乾燥した。乾燥
後、スクリユー径29mm,L/D=25のベント付二
軸押出機を用いてシリンダー温度275℃、スクリ
ユー回転数150rpmで溶融混練した後、ペレツト
を得た。このペレツトを105℃で24時間減圧乾燥
した後、スクリユー径25mmの射出成形機を用いて
通常の方法に従い270℃で厚さ1/8インチの成形片
を得た(実施例1)。 比較のため参考例2及び参考例3の各ペレツト
と上記ナイロン6のペレツトを実施例1と同じ混
合割合で混合したのち実施例1と同じ溶融混練及
び成形条件で成形片を得た(比較例2,3)。更
に参考例1で用いたのと同じ変性する前のポリ
(2,6−ジメチルフエニレン−1,4−エーテ
ル)のペレツトとナイロン6のペレツトとを実施
例1と同じ混合割合で混合したのち実施例1と同
じ溶融混練及び成形条件で成形片を得た(比較例
3)。 表−1に各成形片の物性値を示す。実施例と比
較例の比較から明らかなように、本発明の樹脂組
成物は耐衝撃性や曲げ強度に著るしい向上が認め
られた。
The present invention relates to a resin composition comprising a modified polyphenylene ether and a polyamide. In recent years, in the plastics industry, with the diversification of uses, there has been a demand for high added value through composite resins. For this reason, polymer alloying is becoming popular. Polymer alloys are made by combining existing polymers to take advantage of the properties of each component polymer and to compensate for their weaknesses.
This product was born from the technical idea of responding to diversifying applications that cannot be met with existing polymers alone. For combinations of polymers with very good compatibility, alloying is performed to improve moldability and other modifications, but for combinations of polymers with significantly different compatibility, even the production of molded products is difficult. Even if a molded product is obtained, its mechanical properties, especially impact strength, bending strength, etc., are far inferior to the properties of the molded product obtained from each component alone, and it is brittle and completely unusable. Ta. Polymer alloying only becomes meaningful by taking advantage of their mutually distinct characteristics, and for this reason, how to successfully create combinations of poorly compatible polymers on an industrial scale will become increasingly important in the future. . Polyphenylene ether has excellent, well-balanced properties across the board, including mechanical properties, electrical properties, flame retardance, heat resistance, and water resistance, and has good moldability, making it widely used as an engineering plastic. As is well known, it is used for this purpose. However, like general-purpose plastics such as ABS resin, polyphenylene ether has a very large drawback of swelling or dissolving in common organic solvents such as acetone, toluene, and halogenated hydrocarbons. There were limits to its application to areas that often come into contact with solvents. On the other hand, polyamide is one of the few engineering plastics that have excellent organic solvent resistance. However, polyamide has drawbacks such as nylon 6, a typical resin, having a high moisture absorption rate as seen in nylon 66, poor water resistance, poor dimensional stability, and low heat distortion temperature. As described above, since polyphenylene ether and polyamide have very different properties, it is expected that a polymer alloy obtained by combining them will have new properties that complement the properties of both. Japanese Patent Publication No. 45-997 proposes a resin composition consisting of polyphenylene ether and polyamide for the purpose of improving the fluidity of polyphenylene ether, but the compatibility of both components is extremely poor. In particular, the mechanical properties such as bending strength and impact strength were significantly reduced, and the molded products were only extremely brittle. As a result of intensive studies on polymer alloys of polyphenylene ether and polyamide, the present inventors found that a resin composition consisting of a specific modified polyphenylene ether and polyamide has the impact resistance required for engineering plastics. The present invention was achieved by discovering the fact that the resin composition sufficiently satisfies the performance level of polyamide, and the fact that such a resin composition has the excellent solvent resistance of polyamide and the excellent dimensional stability and heat resistance of polyphenylene ether. It is something. That is, the present invention relates to (A) general formula (However, R 1 and R 2 represent an alkyl group having 1 to 4 carbon atoms or a halogen atom, and n is 60 to 300
It is. ) A 1,2-substituted olefin having a carboxyl group or an acid anhydride structure of 0.3% by weight or more in the presence of a radical generator of 0.1% by weight or more based on the polyphenylene ether. 100 parts by weight of polyphenylene ether having a carboxyl group and/or carboxylic anhydride structure obtained by reacting the compounds as part of the substituents, and (B) 10 parts by weight to 1000 parts by weight of polyamide.
It is a resin composition consisting of parts by weight. Preferred specific examples of the polyphenylene ether represented by the above general formula used in the preparation of component (A) constituting the resin composition of the present invention include poly(2,6
-dimethylphenylene-1,4-ether), poly(2-methyl-6-ethylphenylene-1,4)
-ether), poly(2,6-diethylphenylene-1,4-ether), poly(2-methyl-6
-n-propylphenylene-1,4-ether),
poly(2-ethyl-6-chlorophenylene-1,
4-ether), poly(2-ethyl-6-chlorophenylene-1,4-ether), and the like. Preferred specific examples of the 1,2-substituted olefin compound having a carboxyl group or acid anhydride structure used in the preparation of component (A) include maleic anhydride, hymic anhydride, itaconic anhydride, glutaconic anhydride, and citraconic anhydride. acid, aconitic anhydride, 5-norbornene-2-methyl-2-carboxylic acid, phthalic acid and the like. The amount of the 1,2-substituted olefin compound having a carboxyl group or an acid anhydride structure is 0.3% by weight or more, preferably from 0.5 to 4% by weight, based on the polyphenylene ether. If the amount is less than 0.8% by weight, no improvement in mechanical properties such as impact strength or bending strength will be observed in the resulting resin composition of the modified product and polyamide. In addition, the radical generator used in the preparation of component (A) includes known organic peroxides and diazo compounds, and preferred specific examples include benzoyl peroxide, dicumyl peroxide, di-tert-
Examples include butyl peroxide, tert-butylcumyl peroxide, tert-butyl hydroperoxide, cumene hydroperoxide, and azobisisobutyronitrile. The amount of the radical generator used is 0.1% by weight or more, preferably in the range of 0.3% to 5% by weight, based on the polyphenylene ether. If the amount is less than 0.1% by weight, no improvement in performance, particularly in impact strength, will be observed in the resulting resin composition of the modified product and polyamide. The following methods can be used to prepare component (A). [1] Add a radical generator and a 1,2-substituted olefin compound having a carboxyl group or carboxylic acid anhydride structure to a solution containing polyphenylene ether, and heat at a temperature of 60°C to 150°C for several tens of minutes to several hours. , stirring method, [2] In a system substantially free of solvent, at 220°C to 370°C
The time ranges from 20 seconds to 30 minutes, preferably 40 °C.
A method of melting and kneading each component for seconds to five minutes. Method [1] is preferably adopted when existing reaction equipment and purification equipment are available, but method [2] can be modified with light equipment such as a general-purpose twin screw extruder. There are advantages such as there is no need for a solvent removal step or a polymer purification step, and changes can be made in a short time. Examples of the polyamide of component (B) constituting the resin composition of the present invention include polyamides obtained from aliphatic, aromatic or alicyclic dicarboxylic acids and diamines, polyamides obtained from aminocarboxylic acids and cyclic lactams, etc. Preferred specific examples include nylon 6, nylon 12, nylon 66, nylon 6/10 copolymer, nylon 6/66
Examples include copolymers. In the resin composition of the present invention, the content ratio of component (A) and component (B) is 10 to 1000 parts by weight, preferably 30 parts by weight, to 100 parts by weight of component (A).
The amount is 500 parts by weight, and is appropriately selected depending on the intended use. By appropriately selecting the type and content of each component (A) and (B) of the resin composition of the present invention, organic solvent resistance, water resistance, dimensional stability, heat distortion temperature, and mechanical properties can be improved. Various adjustments can be made within a preferred range. Mixing of the two components for producing the resin composition of the present invention may be carried out by any known method. For example, you can mix the granules or powder of each component in a V-type blender, Henschel mixer, super mixer, kneader, etc., and then mold this directly.
The mixture may be melt-mixed using an extruder, kneader, intensive mixer, etc. to form chips, which may then be molded.
In any case, an appropriate method may be adopted depending on the composition ratio of the resin composition and the desired shape and properties of the product. Other polymers can be added to the resin composition of the present invention in order to improve the fluidity of the resin, molded products, and impact resistance. In particular, styrene resins, olefin resins, polyphenylene ether copolymer resins, or polymerizable monomer compounds may be coexisting during the production of modified polyphenylene ethers, and resin compositions with polyamides may also be used. It may be added during product manufacturing. The resin composition of the present invention may contain additives such as dyes, pigments, fillers, flame retardants, light stabilizers, antioxidants, and plasticizers, and may also contain glass fibers,
It can also be reinforced by adding fibrous fillers such as carbon fibers. The resin composition of the present invention is useful as an engineering plastic;
It can be formed into a sheet and is used for automotive parts (radiator tanks, fuse boxes, etc.)
A wide range of applications, including electrical parts (connectors, switches, etc.), housings (calculators, copiers, camera parts, watch parts, etc.), and separation membranes (reverse osmosis membranes, ultrafiltration membranes, gas separation membranes, etc.) used for. Hereinafter, the present invention will be explained in more detail with reference to Examples. Reference example 1 Intrinsic viscosity measured at 25℃ using chloroform
After dry blending 1 kg of 0.91 dl/g poly(2,6-dimethylphenylene-1,4-ether) powder, 20 g of maleic anhydride, and 10 g of dicumyl peroxide at room temperature, the screw diameter was 29 mm. ,
Using a co-rotating vented twin-screw extruder with L/D = 25, the mixture was melt-kneaded at a cylinder temperature of 300°C and screw rotation speed of 150 rpm, extruded with a residence time of 50 seconds, and passed through a cooling bath. Turned into pellets. 5 g of this pellet was collected, pulverized into fine powder using a pulverizer, and heated and refluxed in a Soxhlet extractor using 100 ml of ethanol for 48 hours. Then 110℃
A sample was obtained by drying under reduced pressure for 5 hours. The presence of a -CO 2 - structure derived from the reaction with maleic anhydride in this sample was detected in the Fourier-integrated infrared absorption spectrum.
This was confirmed by analyzing the absorption peak at 1600 to 1800 cm -1 . Reference Example 2 1 kg of the same poly(2,6-dimethylphenylene-1,4-ether) powder used in Reference Example 1
and 20 g of maleic anhydride were dry blended, and then treated under the same modification conditions as in Reference Example 1 in the absence of a radical generator. 5g from the pellets obtained
was collected and purified in the same manner as in Reference Example 1 using a Soxhlet extractor, and then analyzed by infrared absorption spectrum in the same manner as in Reference Example 1 .
No absorption peak originating from was observed. Reference Example 3 1 kg of the same poly(2,6-dimethylphenylene-1,4-ether) powder used in Reference Example 1
and 10 g of dicumyl peroxide were dry blended and treated under the same modification conditions as in Reference Example 1 to obtain pellets. Example 1, Comparative Examples 1 to 3 The pellets obtained in Reference Examples 1 to 3 were mixed with nylon 6 and then molded, and the physical properties of the molded products were measured and compared. Relative viscosity for nylon 6
Pellets of 2.6 (measured with 96% sulfuric acid at 25°C and 1% concentration) were used. That is, 100 parts by weight of the pellets of modified reference example 1 and 100 parts by weight of nylon 6 pellets were dry-blended and then dried under reduced pressure at 105°C for 24 hours. After drying, the mixture was melt-kneaded using a vented twin-screw extruder with a screw diameter of 29 mm and L/D=25 at a cylinder temperature of 275° C. and a screw rotation speed of 150 rpm to obtain pellets. After drying the pellets under reduced pressure at 105° C. for 24 hours, molded pieces with a thickness of 1/8 inch were obtained at 270° C. using an injection molding machine with a screw diameter of 25 mm according to a conventional method (Example 1). For comparison, the pellets of Reference Examples 2 and 3 and the above nylon 6 pellets were mixed at the same mixing ratio as in Example 1, and then molded pieces were obtained under the same melt-kneading and molding conditions as in Example 1 (Comparative Example). 2,3). Furthermore, the same unmodified poly(2,6-dimethylphenylene-1,4-ether) pellets used in Reference Example 1 and nylon 6 pellets were mixed at the same mixing ratio as in Example 1. A molded piece was obtained under the same melt-kneading and molding conditions as in Example 1 (Comparative Example 3). Table 1 shows the physical properties of each molded piece. As is clear from the comparison between Examples and Comparative Examples, the resin compositions of the present invention were found to have significantly improved impact resistance and bending strength.

【表】 参考例 4 クロロホルムを用いて25℃で測定した固有粘度
0.93dl/gのポリ(2,6−ジメチルフエニレン
−1,4−エーテル)のペレツト500重量部と、
ポリスチレン(三井東圧社製トーポレツクス55
0)400重量部と、無水マレイン酸15重量部と、
ジ−tert−ブチルパーオキシド10重量部とをドラ
イブレンドした後、スクリユー径43mm、L/D=
30の同方向回転方式のベント付二軸押出機を用い
てシリンダー温度270℃、スクリユー回転数
150rpmの条件で溶融混練して平均滞溜時間3分
間で押出し、ペレツトを得た。 実施例2〜4,比較例4〜6 参考例4で得たペレツト100重量部に対してナ
イロン6(相対粘度2.65,96%硫酸で25℃,1%
濃度にて測定。)のペレツトを各々200重量部,
100重量部,50重量部の割合でドライブレンドし
た後、105℃で24時間減圧乾燥した。乾燥後、参
考例4で用いたのと同じベント付二軸押出機を用
いてシリンダー温度260℃,スクリユー回転数
150rpmで溶融混合した後、ペレツトを得た。次
いで、このペレツトを105℃で24時間減圧乾燥し
た後、通常の射出成形機を用い、成形温度270℃
で厚さ1/8インチの成形物を得た。 比較のため、参考例4で用いた変性処理をしな
いポリ(2,6−ジメチルフエニレン−1,4−
エーテル)500重量部と、参考例4で用いたポリ
スチレン400重量部と、上記ナイロン6 200重量
部,100重量部,50重量部とをドライブレンドし
た後、実施例2〜4と同一の乾燥、溶融押出条件
でペレツトを得、ついで成形物を得た。 得られた成形物の性能を測定した結果を表−2
に示す。
[Table] Reference example 4 Intrinsic viscosity measured at 25℃ using chloroform
500 parts by weight of poly(2,6-dimethylphenylene-1,4-ether) pellets of 0.93 dl/g;
Polystyrene (Topolex 55 manufactured by Mitsui Toatsu Co., Ltd.)
0) 400 parts by weight, 15 parts by weight of maleic anhydride,
After dry blending with 10 parts by weight of di-tert-butyl peroxide, the screw diameter was 43 mm, L/D=
Using a co-rotating vented twin screw extruder with cylinder temperature of 270℃ and screw rotation speed.
The mixture was melt-kneaded at 150 rpm and extruded with an average residence time of 3 minutes to obtain pellets. Examples 2 to 4, Comparative Examples 4 to 6 Nylon 6 (relative viscosity 2.65, 96% sulfuric acid at 25°C, 1%
Measured by concentration. ) pellets, 200 parts by weight each,
After dry blending at a ratio of 100 parts by weight and 50 parts by weight, the mixtures were dried under reduced pressure at 105°C for 24 hours. After drying, use the same vented twin-screw extruder as used in Reference Example 4 to heat the cylinder at a temperature of 260°C and a screw rotation speed.
After melt mixing at 150 rpm, pellets were obtained. Next, the pellets were dried under reduced pressure at 105°C for 24 hours, and then molded at 270°C using a regular injection molding machine.
A molded product with a thickness of 1/8 inch was obtained. For comparison, poly(2,6-dimethylphenylene-1,4-
After dry blending 500 parts by weight of ether), 400 parts by weight of polystyrene used in Reference Example 4, and 200 parts by weight, 100 parts by weight, and 50 parts by weight of the above-mentioned nylon 6, drying was carried out in the same manner as in Examples 2 to 4. Pellets were obtained under melt extrusion conditions, and then molded products were obtained. Table 2 shows the results of measuring the performance of the obtained molded product.
Shown below.

【表】 実施例に比べ比較例はいずれも成形物の表面に
「ひけ」やフローマークを生じ、成形物は外観が
悪かつた。又、比較例の成形物は簡単に折損する
脆いものであつた。これに対し、実施例の成形物
は外観良好で、機械的性質も著るしい向上が認め
られた。 実施例の成形物は、組成割合を調整することに
より、ポリアミドのもつ優れた耐有機溶剤性と、
ポリフエニレンエーテルのもつ耐水性を兼ね備
え、かつポリアミドの低い熱変形温度が改良され
たものであつた。表−3に熱的性質及び化学的性
質を示す。
[Table] Compared to the Examples, all of the Comparative Examples had "sink marks" and flow marks on the surface of the molded products, and the molded products had poor appearance. Furthermore, the molded product of the comparative example was brittle and easily broke. In contrast, the molded products of Examples had good appearance and significantly improved mechanical properties. By adjusting the composition ratio, the molded product of the example has the excellent organic solvent resistance of polyamide,
It has the water resistance of polyphenylene ether and has an improved low heat distortion temperature of polyamide. Table 3 shows the thermal properties and chemical properties.

【表】【table】

【表】 参考例 5 15の反応釜に1.5Kgのエチルベンゼン、固有
粘度0.83のポリ(2,6−ジメチルフエニレン−
1,4−エーテル)2.0Kg及び無水マレイン酸40
gを仕込み、N2置換後、撹拌しながら反応釜内
温を室温から130℃に昇温し、ついでジ−tert−
ブチルパーオキシド20gを仕込、135−145℃の間
に保ちながら2時間重合反応を続けた。次いで反
応物を取出し、減圧乾燥機で溶媒のエチルベンゼ
ンを除去して変性物を得た。得られた変性物の赤
外吸収スペクトル分析から、無水マレイン酸ユニ
ツトの含量は1.96%であつた。 実施例5,比較例7 参考例5で得られた変性物300重量部とナイロ
ン66(相対粘度2.4,96%硫酸で25℃,1%濃度に
て測定。)のペレツト700重量部とをドライブレン
ドした後、105℃で一昼夜減圧乾燥した。乾燥後、
実施例1で用いたのと同様のベント付二軸押出機
を用いてシリンダ温度270℃、スクリユー回転数
150rpmの条件で溶融混練してペレツトを得た。
このペレツトを24時間105℃で減圧乾燥した後、
成形温度270℃で厚さ1/8インチの射出成形品を得
た。 比較のため、参考例5で用いのと同じ未変性の
ポリ(2,6−ジメチルフエニレン−1,4−エ
ーテル)と、上記ナイロン66とを実施例5と同一
の混合割合で混合したのち実施例5と同一の成形
条件で成形品を得、その性能を測定した。その結
果を表−4に示す。表−4から明らかなごとく無
水マレイン酸ユニツトを含まない比較例7の成形
物は、衝撃強度が低く、簡単に折損するのに対
し、実施例の成形物は良好な機械的性質を保持し
ていた。
[Table] Reference Example 5 1.5 kg of ethylbenzene and poly(2,6-dimethylphenylene-
1,4-ether) 2.0Kg and maleic anhydride 40
After replacing with N2 , the internal temperature of the reaction vessel was raised from room temperature to 130°C with stirring, and then di-tert-
20 g of butyl peroxide was charged, and the polymerization reaction was continued for 2 hours while maintaining the temperature between 135 and 145°C. Next, the reaction product was taken out, and the solvent ethylbenzene was removed using a vacuum dryer to obtain a modified product. Infrared absorption spectrum analysis of the obtained modified product revealed that the content of maleic anhydride units was 1.96%. Example 5, Comparative Example 7 300 parts by weight of the modified product obtained in Reference Example 5 and 700 parts by weight of pellets of nylon 66 (relative viscosity 2.4, measured with 96% sulfuric acid at 25°C and 1% concentration) were dried. After blending, the mixture was dried under reduced pressure at 105°C overnight. After drying,
Using a vented twin-screw extruder similar to that used in Example 1, the cylinder temperature was 270°C and the screw rotation speed was
Pellets were obtained by melt-kneading at 150 rpm.
After drying this pellet under reduced pressure at 105℃ for 24 hours,
An injection molded product with a thickness of 1/8 inch was obtained at a molding temperature of 270°C. For comparison, the same unmodified poly(2,6-dimethylphenylene-1,4-ether) used in Reference Example 5 and the above nylon 66 were mixed at the same mixing ratio as in Example 5. A molded article was obtained under the same molding conditions as in Example 5, and its performance was measured. The results are shown in Table-4. As is clear from Table 4, the molded product of Comparative Example 7, which does not contain maleic anhydride units, has low impact strength and breaks easily, whereas the molded product of Example maintains good mechanical properties. Ta.

【表】【table】

Claims (1)

【特許請求の範囲】 1 (A) 一般式 (但し、R1,R2は炭素数1〜4のアルキル
基またはハロゲン原子を表わし、nは60〜300
である。) で示されるポリフエニレンエーテルに、該ポリフ
エニレンエーテルに対し、0.1重量%以上のラジ
カル発生剤の共存下、0.3重量%以上のカルボキ
シル基もしくは酸無水物構造を有する1,2−置
換オレフイン化合物を反応させて得られたカルボ
キシル基および/またはカルボン酸無水物構造を
置換基の一部として有するポリフエニレンエーテ
ル100重量部と、(B)ポリアミド10重量部乃至1000
重量部とからなる樹脂組成物。
[Claims] 1 (A) General formula (However, R 1 and R 2 represent an alkyl group having 1 to 4 carbon atoms or a halogen atom, and n is 60 to 300
It is. ) A 1,2-substituted olefin having a carboxyl group or an acid anhydride structure of 0.3% by weight or more in the presence of a radical generator of 0.1% by weight or more based on the polyphenylene ether. 100 parts by weight of polyphenylene ether having a carboxyl group and/or carboxylic anhydride structure obtained by reacting the compounds as part of the substituents, and (B) 10 parts by weight to 1000 parts by weight of polyamide.
A resin composition consisting of parts by weight.
JP17810182A 1982-10-08 1982-10-08 Resin composition Granted JPS5966452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17810182A JPS5966452A (en) 1982-10-08 1982-10-08 Resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17810182A JPS5966452A (en) 1982-10-08 1982-10-08 Resin composition

Publications (2)

Publication Number Publication Date
JPS5966452A JPS5966452A (en) 1984-04-14
JPH0428748B2 true JPH0428748B2 (en) 1992-05-15

Family

ID=16042658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17810182A Granted JPS5966452A (en) 1982-10-08 1982-10-08 Resin composition

Country Status (1)

Country Link
JP (1) JPS5966452A (en)

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5719233A (en) * 1984-05-21 1998-02-17 General Electric Company Modified polyphenylene ether-polyamide compositions and process
US4600741A (en) * 1984-09-27 1986-07-15 General Electric Company Polyphenylene ether-polyamide blends
US5061746A (en) * 1984-11-07 1991-10-29 General Electric Company Silane derivatives which improve properties of PPE-polyamide compositions
JPH064760B2 (en) * 1985-03-07 1994-01-19 旭化成工業株式会社 Polyamide-containing impact-resistant resin composition
US4873286A (en) * 1985-05-20 1989-10-10 General Electric Company Modified polyphenylene ether-polyamide compositions and process
NL8502116A (en) * 1985-07-24 1987-02-16 Gen Electric PROCESS FOR PREPARING A POLYMER MIXTURE CONTAINING A POLYPHENYLENE ETHER AND A POLYAMIDE
US4654405A (en) * 1985-12-05 1987-03-31 Borg-Warner Chemicals, Inc. Carboxylated phenylene ether resins
US4732938A (en) * 1985-12-06 1988-03-22 Borg-Warner Chemicals, Inc. Thermoplastic polyamide--polyphenylene ether compositions
USRE35509E (en) * 1986-03-07 1997-05-13 General Electrical Company Polyphenylene ether/polyamide blends having improved physical properties
US5000897A (en) * 1986-03-20 1991-03-19 General Electric Company Polyphenylene ether-polyamide compositions and methods for preparation
JPS62253652A (en) * 1986-03-28 1987-11-05 Japan Synthetic Rubber Co Ltd Thermoplastic resin composition
JP2606863B2 (en) * 1986-05-27 1997-05-07 ゼネラル・エレクトリック・カンパニイ Functionalized polyphenylene ether, process for its preparation and polyphenylene ether-polyamide composition prepared therefrom
US4994525A (en) * 1986-05-27 1991-02-19 General Electric Company Functionalized polyphenylene ethers, method of preparation, and polyphenylene ether-polyamide compositions prepared therefrom
US4755566A (en) * 1986-06-26 1988-07-05 General Electric Company Trialkylamine salt-functionalized polyphenylene ethers, methods for their preparation, and compositions containing them
JPH0737564B2 (en) * 1986-07-28 1995-04-26 東レ株式会社 Thermoplastic resin composition
JPH0788467B2 (en) * 1986-07-30 1995-09-27 旭化成工業株式会社 Undercar parts for automobiles
JPH0788468B2 (en) * 1986-07-30 1995-09-27 旭化成工業株式会社 Materials for automobile engine parts
JP2517950B2 (en) * 1987-03-24 1996-07-24 三菱瓦斯化学株式会社 Molding resin composition
EP0260123B1 (en) * 1986-09-10 1992-07-15 Mitsubishi Gas Chemical Company, Inc. Polyphenylene ether resin composition
JPS6368663A (en) * 1986-09-10 1988-03-28 Mitsubishi Gas Chem Co Inc Polyphenylene ether resin composition
US5237002A (en) * 1986-10-31 1993-08-17 Sumitomo Chemical Company, Limited Thermoplastic resin composition
DE3787275T2 (en) * 1987-03-18 1994-03-17 Asahi Chemical Ind Impact-resistant polyamide resin composition and process for its production.
NL8701585A (en) * 1987-07-06 1989-02-01 Gen Electric POLYMER MIXTURE WITH FUNCTIONALIZED POLYPHENYLENE ETHER AND POLYETHERIMIDE.
DE3726283A1 (en) * 1987-08-07 1989-02-16 Basf Ag THERMOPLASTIC MOLDS
US4808674A (en) * 1987-08-24 1989-02-28 General Electric Company Aryl ester-grafted polyphenylene ethers and phenylene ether-amide graft copolymers prepared therefrom
US4963620A (en) * 1987-08-25 1990-10-16 Borg-Warner Chemicals, Inc. Polyphenylene ether-polyamide blends
US4826933A (en) * 1987-08-25 1989-05-02 Borg-Warner Chemicals, Inc. Polyphenylene ether-polyamide blends
US5162447A (en) * 1987-09-18 1992-11-10 Sumitomo Chemical Co., Ltd. Process for making a thermoplastic resin composition
JPS6475527A (en) * 1987-09-18 1989-03-22 Sumitomo Chemical Co Production of thermoplastic resin composition
JPH0615664B2 (en) * 1987-12-04 1994-03-02 東レ株式会社 Resin composition
US4806602A (en) * 1988-03-21 1989-02-21 General Electric Company Anhydride capping polyphenylene ether with carboxylic acid
US5164440A (en) * 1988-07-20 1992-11-17 Ube Industries, Ltd. High rigidity and impact resistance resin composition
US5248720A (en) * 1988-09-06 1993-09-28 Ube Industries, Ltd. Process for preparing a polyamide composite material
DE3831348A1 (en) * 1988-09-15 1990-03-29 Huels Chemische Werke Ag IMPACT STRIP THERMOPLASTIC MOLDING MATERIALS BASED ON POLYPHENYLENE ETHER GRAFT COPOLYMERS AND POLYAMIDES AND METHOD FOR THE PRODUCTION THEREOF
JPH02120359A (en) * 1988-10-28 1990-05-08 Ube Ind Ltd Resin composition for connector
JP2961546B2 (en) * 1989-02-09 1999-10-12 住友化学工業株式会社 Thermoplastic resin composition
IT1251150B (en) * 1991-08-05 1995-05-04 Enichem Polimeri THERMOPLASTIC COMPOSITION TOUGH BASED ON POLYPHENYLENETERE AND POLYAMIDE
US5470902A (en) * 1992-10-21 1995-11-28 Sumitomo Wiring Systems, Ltd. Resin composition for automobile relay box and automobile relay box comprising the same
US5424360A (en) * 1992-12-16 1995-06-13 Sumitomo Chemical Company, Limited Thermoplastic resin composition
US5336732A (en) * 1993-02-12 1994-08-09 Alliedsignal Inc. Process for forming polyamide/poly(phenylene ether) blends
US5449721A (en) * 1993-09-08 1995-09-12 Sumitomo Chemical Co., Ltd. Thermoplastic resin compositions comprising polyphenylene ether, polyamide and fluorocarbon resins
WO2001062828A1 (en) * 2000-02-23 2001-08-30 Asahi Kasei Kabushiki Kaisha Modified polyphenylene ether
EP1241228B1 (en) 2001-03-16 2005-10-19 Ube Industries, Ltd. Process for producing thermoplastic resin composition
JP5286630B2 (en) * 2005-03-29 2013-09-11 東レ株式会社 Method for producing thermoplastic resin composition
JP5124932B2 (en) * 2005-03-29 2013-01-23 東レ株式会社 Method for producing thermoplastic resin composition

Also Published As

Publication number Publication date
JPS5966452A (en) 1984-04-14

Similar Documents

Publication Publication Date Title
JPH0428748B2 (en)
JPH0352486B2 (en)
JPH0135860B2 (en)
JPS5931534B2 (en) Method for producing graft copolymer
JPS63113069A (en) Thermoplastic resin composition
JPS63165452A (en) Polymer composition
WO2019026688A1 (en) Resin composition and molded article
JPS6326775B2 (en)
JPS63183954A (en) Thermoplastic resin composition
JPH05170907A (en) Production of carboxyl group-containing polyphenylene sulfide
JPH0347814A (en) Imidated copolymer and resin modifier and resin compatibilizing agent produced by using the same
JPH0570669B2 (en)
JPH02155951A (en) Polyethylene sulfide resin composition
JP2855272B2 (en) Flame retardant polyamide resin composition
JPH02272026A (en) Polyphenylene ether capped with aryloxytriazine, and its preparation
JPS62129345A (en) Thermoplastic resin composition
JP2949699B2 (en) Thermoplastic resin composition
JPH01129058A (en) Thermoplastic resin composition
JPH049180B2 (en)
JPH0269563A (en) Reinforced polyamide resin composition
JPS6086162A (en) Polyamide resin composition
JPS587426A (en) Reinforced polymer composition
JP3478372B2 (en) Polyphenylene sulfide resin composition for precision molding
JPH0673290A (en) Thermoplastic resin composition
JPS6383162A (en) Resin composition