JPH04287203A - Disturbance state estimating device - Google Patents

Disturbance state estimating device

Info

Publication number
JPH04287203A
JPH04287203A JP5240691A JP5240691A JPH04287203A JP H04287203 A JPH04287203 A JP H04287203A JP 5240691 A JP5240691 A JP 5240691A JP 5240691 A JP5240691 A JP 5240691A JP H04287203 A JPH04287203 A JP H04287203A
Authority
JP
Japan
Prior art keywords
disturbance
change
rate
disturbance state
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5240691A
Other languages
Japanese (ja)
Inventor
Tamio Ueda
民生 上田
Yumi Saito
斉藤 ゆみ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP5240691A priority Critical patent/JPH04287203A/en
Publication of JPH04287203A publication Critical patent/JPH04287203A/en
Pending legal-status Critical Current

Links

Landscapes

  • Feedback Control In General (AREA)
  • Control Of Temperature (AREA)

Abstract

PURPOSE:To estimate return type disturbance and non-return type disturbance with a simple constitution. CONSTITUTION:This disturbance estimating device is constituted of a rate-of- change calculating section 13 which calculates the rate of change H1 in the output amount of a controlling object 1 when disturbance occurs in the controlling operations for bringing the output amount of the controlling object 1 to a target value and the rate of change H2 when the output amount is returned after the change and a disturbance state estimating section 14 which estimates the state of the disturbance from the rates of change H1 and H2.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、温度制御システム等に
用いられる外乱状態推定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a disturbance state estimation device used in temperature control systems and the like.

【0002】0002

【従来の技術】例えば、炉の温度制御を行うに際し、整
定状態において外乱があると炉内の温度(制御量)が変
化する。そして、目標値と制御量との偏差に基づく制御
作用が働いて操作量が修正され加熱状態が変化されるこ
とにより制御量は再び目標値に整定される。
2. Description of the Related Art For example, when controlling the temperature of a furnace, if there is a disturbance in a settled state, the temperature (control amount) inside the furnace changes. Then, a control action based on the deviation between the target value and the controlled amount operates to correct the manipulated variable and change the heating state, so that the controlled variable is set to the target value again.

【0003】上記のように、現在における制御作用は単
に偏差に基づいて行うのが基本であり、上記の外乱時に
おける制御作用も外乱状態に関係なく行われている。し
たがって、システムにおいて外乱時の制御作用が大きく
なるように制御特性を設定すると整定時間は短くなるも
ののオーバーシュートが発生し、逆に小さくなるように
制御特性を設定するとオーバーシュートは発生しないも
のの整定時間が長くなることになる。
As mentioned above, the current control action is basically performed simply based on the deviation, and the control action at the time of the above-mentioned disturbance is also performed regardless of the disturbance state. Therefore, if the control characteristics in the system are set so that the control effect during disturbances is large, the settling time will be shortened but overshoot will occur, whereas if the control characteristics are set so that the control effect is small, no overshoot will occur but the settling time will be shortened. will become longer.

【0004】上記の外乱としては、大別して復帰(パル
ス、電断)型外乱と非復帰(ステップ)型外乱があり、
例えば、炉のドアの開閉、加熱ヒータの電断で炉内の温
度が一時的に変化する場合が復帰型外乱であり、炉内の
被加熱物が交換され炉内の温度が継続的に変化する場合
が非復帰型外乱あり、復帰型外乱においてオーバーシュ
ートが発生しやすく、非復帰型外乱において整定時間が
長くなる傾向にある。
The above-mentioned disturbances can be roughly divided into return (pulse, electric cut) type disturbances and non-return (step) type disturbances.
For example, a reset type disturbance is when the temperature inside the furnace changes temporarily due to the opening and closing of the furnace door or the power outage of the heater, and the temperature inside the furnace changes continuously when the heated object in the furnace is replaced. In cases where this occurs, there is a non-recoverable disturbance; overshoot is likely to occur in a non-recoverable disturbance, and settling time tends to be longer in a non-recoverable disturbance.

【0005】[0005]

【発明が解決しようとする課題】上記の事情に鑑みて、
外乱状態推定装置なるものが開発されているが、従来の
外乱状態推定装置は、制御対象のモデルと逆モデルとが
必要となるので非常に構成が複雑となるとともに、コス
トも高く実用性に乏しいものであった。
[Problem to be solved by the invention] In view of the above circumstances,
Disturbance state estimation devices have been developed, but conventional disturbance state estimation devices require a model of the controlled object and an inverse model, making the configuration extremely complex, high cost, and impractical. It was something.

【0006】また、推定内容も上記の復帰型外乱、非復
帰型外乱を推定するものではなく、制御の実状に即した
外乱推定が行われていなかった。
Furthermore, the content of the estimation does not estimate the above-mentioned returnable disturbance or non-returnable disturbance, and disturbance estimation has not been performed in accordance with the actual control situation.

【0007】本発明は、上記の問題点に鑑みて行うもの
で、簡単な構成により、復帰型外乱、非復帰型外乱の推
定が行えるようにすることを目的とするものである。
The present invention has been made in view of the above problems, and it is an object of the present invention to enable estimation of reversible disturbances and non-recoverable disturbances with a simple configuration.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
、本発明の外乱状態推定装置は、制御対象の出力量を目
標値とすべく行われる制御動作の外乱発生時における出
力量の変化に際しての変化率H1と前記変化の後の復帰
変化に際しての変化率H2とをそれぞれ算出する変化率
算出部と、前記それぞれの変化率H1,H2に基づいて
外乱状態を推定する外乱状態推定部とからなる構成とし
た。
[Means for Solving the Problems] In order to achieve the above object, the disturbance state estimating device of the present invention provides a disturbance state estimating device that detects a change in the output amount when a disturbance occurs in a control operation that is performed to set the output amount of a controlled object to a target value. a change rate calculation unit that calculates a rate of change H1 and a rate of change H2 at the time of a return change after the change, and a disturbance state estimation unit that estimates a disturbance state based on the respective change rates H1 and H2. The structure is as follows.

【0009】[0009]

【作用】本発明構成によると、制御対象の出力量を目標
値とすべく行われる制御動作の外乱発生時における出力
量の変化に際しての変化率H1と前記変化の後の復帰変
化に際しての変化率H2に基づいて外乱状態が推定され
る。
[Operation] According to the configuration of the present invention, the rate of change H1 when the output amount changes when a disturbance occurs in the control operation performed to set the output amount of the controlled object to the target value, and the change rate when returning after the change. A disturbance state is estimated based on H2.

【0010】0010

【実施例】図1は温度制御システムの全体制御系統図で
あり、1は炉等の制御対象、2は目標値rと制御対象1
からの制御量としての出力温度yとの偏差eに基づいて
操作量Uを出力する温度補償器、3は制御対象1からの
出力温度yに基づいて外乱状態を推定する外乱状態推定
装置、4は外乱状態推定装置3からの推定信号に基づい
て温度補償器2に補正信号を出力する外乱状態適応装置
である。
[Example] Fig. 1 is an overall control system diagram of the temperature control system, where 1 is the controlled object such as a furnace, and 2 is the target value r and the controlled object 1.
3 is a temperature compensator that outputs a manipulated variable U based on a deviation e from an output temperature y as a controlled variable; 3 is a disturbance state estimation device that estimates a disturbance state based on the output temperature y from the controlled object 1; 4 is a disturbance state adaptation device that outputs a correction signal to the temperature compensator 2 based on the estimated signal from the disturbance state estimation device 3.

【0011】上記温度補償器2は、偏差eに基づいて比
例操作量を出力する比例操作量出力部7、偏差eの微分
を行う微分器8、微分器8の微分値に基づいて微分操作
量を出力する微分操作量出力部9、偏差eの積分を行う
積分器10、積分器10の積分値に基づいて積分操作量
を出力する積分操作量出力部11とから構成され、それ
ぞれの出力部7,9,11からの出力の総和を操作量U
として出力する。
The temperature compensator 2 includes a proportional operation amount output section 7 that outputs a proportional operation amount based on the deviation e, a differentiator 8 that differentiates the deviation e, and a differential operation amount based on the differential value of the differentiator 8. It is composed of a differential operation amount output section 9 that outputs the differential operation amount, an integrator 10 that integrates the deviation e, and an integral operation amount output section 11 that outputs the integral operation amount based on the integral value of the integrator 10. The sum of the outputs from 7, 9, and 11 is the manipulated variable U
Output as .

【0012】外乱状態推定装置3は、外乱発生時におけ
る出力温度yの変化に際しての変化率H1と前記変化の
後の復帰変化に際しての変化率H2とをそれぞれ算出す
る変化率算出部13と、それぞれの変化率に基づいて外
乱状態を推定する外乱状態推定部14とから構成され、
復帰型外乱で有る場合に推定信号を出力するように構成
されている。
The disturbance state estimating device 3 includes a change rate calculation unit 13 that calculates a change rate H1 when the output temperature y changes when a disturbance occurs and a change rate H2 when the output temperature y returns after the change; a disturbance state estimator 14 that estimates a disturbance state based on the rate of change of the disturbance state;
It is configured to output an estimated signal when there is a return type disturbance.

【0013】外乱状態適応装置4は、外乱状態推定装置
3からの推定信号に基づいて、温度補償器2の積分器1
0に外乱後の積分量をリセットさせる補正信号を出力す
るように構成されている。
The disturbance state adaptation device 4 adjusts the integrator 1 of the temperature compensator 2 based on the estimated signal from the disturbance state estimation device 3.
It is configured to output a correction signal that resets the integral amount after disturbance to zero.

【0014】上記温度制御システムは、この実施例では
制御対象1を除く部分がソフトウェアにより構成され、
その温度制御動作はマイクロコンピュータが所定のプロ
グラムにしたがって行うものである。
[0014] In this embodiment, the temperature control system described above is configured by software except for the controlled object 1.
The temperature control operation is performed by a microcomputer according to a predetermined program.

【0015】次に、上記温度制御システムの動作を、図
2のフローチャート、図3の外乱状態グラフ図を参照し
て行う。
Next, the operation of the temperature control system will be described with reference to the flowchart in FIG. 2 and the disturbance state graph in FIG.

【0016】通常は目標値応答制御を行っており、この
場合は外乱状態適応機能はoffしている(ステップ1
,2:図3のAで示す部分での動作)。
Normally, target value response control is performed, and in this case, the disturbance state adaptation function is turned off (step 1).
, 2: Operation in the part indicated by A in FIG. 3).

【0017】そして、何等かの外乱が発生して出力温度
yが変化すると、外乱状態適応機能がonし、その出力
温度y変化が設定温度幅xを越えるとその際の積分量U
I、その際の温度y0、その際の時刻taをそれぞれ記
憶する(ステップ3,4,5:図3のBで示す部分での
動作)。
When some kind of disturbance occurs and the output temperature y changes, the disturbance state adaptation function is turned on, and when the change in the output temperature y exceeds the set temperature range x, the integral amount U at that time is changed.
I, the temperature y0 at that time, and the time ta at that time are respectively stored (steps 3, 4, 5: operation in the part shown by B in FIG. 3).

【0018】そして出力温度yの変化率の符号が負から
正に切り替わると、その際の時刻tbを記憶するととも
に、出力温度yがy0に達した時点からの経過時間tb
−ta=t1、時刻tbにt1/n時間であるt2を加
えた次にデータを取る時刻tc、時刻taからtbに至
る間での出力温度yの変化率H1=(y1−y0)/t
1のそれぞれを算出して記憶する(ステップ6,7:図
3のCで示す部分での動作)。上記nは、例えば[3]
に設定され、t2はt1の1/3とされるもので、これ
は、t2が適正な変化率H2の算出のための十分な時間
となり、また、tcが後に説明する積分量UIのリセッ
トによる操作量減少動作の開始時期として遅くないタイ
ミングとなるように設定している。
When the sign of the rate of change of the output temperature y changes from negative to positive, the time tb at that time is stored, and the elapsed time tb from the time when the output temperature y reaches y0 is stored.
-ta=t1, time tc when data is taken next after adding t2 which is t1/n time to time tb, rate of change in output temperature y from time ta to tb H1=(y1-y0)/t
1 is calculated and stored (steps 6 and 7: operation in the portion shown by C in FIG. 3). The above n is, for example, [3]
, and t2 is set to 1/3 of t1. This is because t2 is sufficient time to calculate the appropriate rate of change H2, and tc is set to 1/3 of t1, and tc is set to 1/3 of t1. The timing is set so that it is not too late to start the operation amount reduction operation.

【0019】そして、次にデータを取る時刻tcとなる
と、時刻tbからtcに至る間での出力温度yの変化率
H2=(y2−y1)/t2を算出する。さらに、|H
2/H1|を算出し、図3のグラフ図に示すように、|
H2/H1|>1である場合には復帰型の外乱と判定す
る(ステップ8,9,10,11:図3のDで示す部分
での動作)。
Then, when it comes to the time tc at which data is to be taken next, the rate of change in the output temperature y from time tb to tc is calculated as H2=(y2-y1)/t2. Furthermore, |H
2/H1| is calculated, and as shown in the graph of FIG. 3, |
If H2/H1|>1, it is determined that the disturbance is a return type disturbance (steps 8, 9, 10, 11: operations in the portion shown by D in FIG. 3).

【0020】復帰型外乱の場合は外乱が一時的であるの
で制御効果が著しく、絶対値において変化率H1より変
化率H2のほうが大きくなる。これに対し、非復帰型外
乱の場合は外乱が継続するので制御効果が緩やかで、通
常、図4のグラフ図のような外乱の制御特性を示し、|
H2/H1|≦1となる。なお、|H2/H1|>1.
4となる場合は、図5のグラフ図のような外乱の制御特
性を示す電断外乱と判定でき、制御システムにおいて、
さらに、この判定内容を使用することも可能である。
In the case of a return type disturbance, since the disturbance is temporary, the control effect is significant, and the rate of change H2 is larger than the rate of change H1 in absolute value. On the other hand, in the case of non-returnable disturbances, the disturbance continues, so the control effect is gradual, and the disturbance control characteristics are usually shown in the graph of FIG.
H2/H1|≦1. Note that |H2/H1|>1.
4, it can be determined that it is a power interruption disturbance that exhibits the control characteristics of the disturbance as shown in the graph of FIG. 5, and in the control system,
Furthermore, it is also possible to use this determination content.

【0021】そして、復帰型外乱と判定した場合は積分
器10の積分量を出力温度がy0を越えた際の積分量U
Iにリセットする(ステップ12:図3のDで示す部分
での動作)。このリセットにより積分操作量が減少され
全体の操作量Uも減少される故に変化率も緩やかになり
、その結果、図3に実線で示すように、出力温度は殆ど
オーバーシュートすることなく整定される。積分量UI
がリセットされない場合は、操作量Uが減少されないの
で点線で示すようにオーバーシュートが発生する。
When it is determined that the disturbance is a return type disturbance, the integral amount of the integrator 10 is changed to the integral amount U when the output temperature exceeds y0.
I (step 12: operation in the part indicated by D in FIG. 3). This reset reduces the integral manipulated variable and the overall manipulated variable U, so the rate of change becomes gradual, and as a result, the output temperature is stabilized with almost no overshoot, as shown by the solid line in Figure 3. . Integral amount UI
If is not reset, the manipulated variable U is not reduced, so overshoot occurs as shown by the dotted line.

【0022】この温度制御システムでは、上記のように
復帰型外乱の場合は積分操作量が減少されオーバーシュ
ートが解消されるので、外乱時の制御作用が大きくなる
ように、すなわち、非復帰型外乱の場合の制御特性が良
好なようにセットしておけばよい。
In this temperature control system, as mentioned above, in the case of a resettable disturbance, the integral operation amount is reduced and overshoot is eliminated. The setting should be made so that the control characteristics are good in the case of .

【0023】図6は積分制御量のリセット動作部分の他
の実施例を示し、リセット動作の後に偏差r−yが設定
値zより小さくなったかどうかの判定を行い、設定値z
より小さくならない場合はリセット動作を繰り返し行う
ように構成しており、これにより、より厳密にオーバー
シュートの発生を防ぐ構成としている。
FIG. 6 shows another embodiment of the reset operation part of the integral control amount. After the reset operation, it is determined whether the deviation ry has become smaller than the set value z, and the set value z is determined.
If it does not become smaller, the configuration is such that the reset operation is repeated, thereby more precisely preventing the occurrence of overshoot.

【0024】図7は積分制御量のリセット動作部分のさ
らに異なる他の実施例を示し、この実施例では、リセッ
ト動作の後に変化率H3が設定値H0より小さくなった
かどうかの判定を行い、設定値H0より小さくならない
場合は図6に示す実施例と同様に、リセット動作を繰り
返し行うように構成している。
FIG. 7 shows another embodiment of the reset operation portion of the integral control amount. In this embodiment, after the reset operation, it is determined whether the rate of change H3 has become smaller than the set value H0, and the set value is determined. If the value does not become smaller than the value H0, the configuration is such that the reset operation is repeated as in the embodiment shown in FIG.

【0025】[0025]

【発明の効果】本発明は以上のように構成されたもので
あるので、簡単で低コストな構成において、復帰型外乱
、非復帰型外乱の推定が容易に行えるようになり、この
推定内容を利用することにより、より実状に即した温度
制御等の制御動作が行えるようになる。
[Effects of the Invention] Since the present invention is configured as described above, it is possible to easily estimate reversible disturbances and non-recoverable disturbances with a simple and low-cost configuration, and the contents of this estimation can be By utilizing this, it becomes possible to perform control operations such as temperature control that are more in line with actual conditions.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明に係る制御システムの全体制御系統図。FIG. 1 is an overall control system diagram of a control system according to the present invention.

【図2】制御システムの動作実施例を示すフローチャー
ト。
FIG. 2 is a flowchart showing an operational example of the control system.

【図3】制御実施例に対応する外乱状態グラフ図。FIG. 3 is a disturbance state graph diagram corresponding to a control example.

【図4】ステップ外乱状態グラフ図。FIG. 4 is a step disturbance state graph diagram.

【図5】電断外乱状態グラフ図。FIG. 5 is a graph diagram of a power interruption disturbance state.

【図6】制御システムの他の動作実施例を示す部分フロ
ーチャート。
FIG. 6 is a partial flowchart illustrating another operational embodiment of the control system.

【図7】制御システムのさらに他の動作実施例を示す部
分フローチャート。
FIG. 7 is a partial flowchart showing yet another operational example of the control system.

【符号の説明】[Explanation of symbols]

1    制御対象 13  変化率算出部 14  外乱状態推定部 1. Controlled object 13 Change rate calculation section 14 Disturbance state estimation unit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  制御対象(1)の出力量を目標値とす
べく行われる制御動作の外乱発生時における出力量の変
化に際しての変化率H1と前記変化の後の復帰変化に際
しての変化率H2とをそれぞれ算出する変化率算出部(
13)と、前記それぞれの変化率H1,H2に基づいて
外乱状態を推定する外乱状態推定部(14)と、からな
る外乱状態推定装置。
1. A rate of change H1 when the output amount changes when a disturbance occurs in a control operation performed to make the output amount of the controlled object (1) a target value, and a change rate H2 when the output amount returns after the change. and a change rate calculation unit (
13); and a disturbance state estimation unit (14) that estimates a disturbance state based on the respective change rates H1 and H2.
JP5240691A 1991-03-18 1991-03-18 Disturbance state estimating device Pending JPH04287203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5240691A JPH04287203A (en) 1991-03-18 1991-03-18 Disturbance state estimating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5240691A JPH04287203A (en) 1991-03-18 1991-03-18 Disturbance state estimating device

Publications (1)

Publication Number Publication Date
JPH04287203A true JPH04287203A (en) 1992-10-12

Family

ID=12913910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5240691A Pending JPH04287203A (en) 1991-03-18 1991-03-18 Disturbance state estimating device

Country Status (1)

Country Link
JP (1) JPH04287203A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008047531A1 (en) * 2006-09-25 2008-04-24 Kelk Ltd. Device and method for adjusting temperature of fluid
WO2022034658A1 (en) * 2020-08-12 2022-02-17 理化工業株式会社 Control device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008047531A1 (en) * 2006-09-25 2008-04-24 Kelk Ltd. Device and method for adjusting temperature of fluid
US8490684B2 (en) 2006-09-25 2013-07-23 Kelk Ltd. Device and method for adjusting temperature of fluid
WO2022034658A1 (en) * 2020-08-12 2022-02-17 理化工業株式会社 Control device

Similar Documents

Publication Publication Date Title
EP0208442B1 (en) Thermostat adaptively controlling space temperature
EP1321836B1 (en) Controller, temperature controller and heat processor using same
US6335605B1 (en) Vector controller for induction motor
Diop et al. Preserving stability/performance when facing an unknown time-delay
JP2003070278A (en) Feedforward parameter estimation for electric machine
US6753511B2 (en) System and method for thermal limiting of the temperature of a cooktop without using a temperature sensor
JPH04287203A (en) Disturbance state estimating device
JP3275316B2 (en) Control system
JPH0565882B2 (en)
JP3772340B2 (en) Valve positioner
JPS6154516A (en) Solar power generator system
JP2506900B2 (en) Time proportional controller
JPH10206038A (en) Furnace heating control method using fuzzy logic
JP2943349B2 (en) Temperature control system
JPH0833375A (en) Speed control device
JP3468350B2 (en) Time proportional control device
JP2831772B2 (en) Power system monitoring and control system
WO2022269950A1 (en) Electric motor control device
JP2767595B2 (en) Position proportional control device
JP3473347B2 (en) Control device
JPH11224104A (en) Control method and control unit, and control system using the same
JP2620248B2 (en) PID control device
JP3212336B2 (en) Limit value control method for PI controller
JPH04183226A (en) Demand control method for electric power
JPS583534A (en) Automatic monitoring interval setting system