JP2831772B2 - Power system monitoring and control system - Google Patents

Power system monitoring and control system

Info

Publication number
JP2831772B2
JP2831772B2 JP2009958A JP995890A JP2831772B2 JP 2831772 B2 JP2831772 B2 JP 2831772B2 JP 2009958 A JP2009958 A JP 2009958A JP 995890 A JP995890 A JP 995890A JP 2831772 B2 JP2831772 B2 JP 2831772B2
Authority
JP
Japan
Prior art keywords
curve
demand
solution
voltage
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009958A
Other languages
Japanese (ja)
Other versions
JPH03215128A (en
Inventor
守 鈴木
進 和田
寿男 加藤
真理 青柳
洋市 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Tokyo Electric Power Co Holdings Inc
Original Assignee
Toshiba Corp
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Electric Power Co Inc filed Critical Toshiba Corp
Priority to JP2009958A priority Critical patent/JP2831772B2/en
Publication of JPH03215128A publication Critical patent/JPH03215128A/en
Application granted granted Critical
Publication of JP2831772B2 publication Critical patent/JP2831772B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、良質な電力を高信頼度に安定して供給する
ことを支援する電力系統監視制御システムに関する。
DETAILED DESCRIPTION OF THE INVENTION [Purpose of the Invention] (Field of Industrial Application) The present invention relates to a power system monitoring and control system that supports stable and reliable supply of high-quality power.

(従来の技術) 第5図は電力系統監視制御システムの構成図であり、
電力系統1からの系統情報が情報伝送装置2−1,2−2
間に設けた伝送路3を介して電子計算機4に導入され、
ここで後述する処理を行なってMMI装置5に出力される
構成を有している。電子計算機による処理内容は第6図
のフローチャートに示される。即ち、処理S10では情報
伝送装置を介して伝送されてきた系統情報から被監視電
力系統の状態を求め、処理S20にて過去の実績あるいは
総需要予測結果より数分先あるいは数時間先の将来の電
力系統の状態を予測する。処理S30ではS10,S20の結果を
もとにして電圧の安定限界を求め、処理S40ではS30で求
めた電圧の安定限界より系統電圧の安定度の程度を判定
する。次いで処理S50では系統電圧を調整するための機
器が電圧安定度を高める効果の量を求め、処理S60にお
いて系統電圧が不安定であるときこれを安定にするため
に必要な調整量を求め、処理S70で演算結果としての諸
データを出力する。
(Prior Art) FIG. 5 is a configuration diagram of a power system monitoring and control system,
The system information from the power system 1 is transmitted to the information transmission devices 2-1 and 2-2.
Introduced to the computer 4 via the transmission line 3 provided between them,
Here, it has a configuration in which the processing described later is performed and output to the MMI device 5. The contents of the processing by the electronic computer are shown in the flowchart of FIG. That is, in the process S10, the state of the monitored power system is obtained from the system information transmitted through the information transmission device, and in the process S20, the future performance that is several minutes or several hours ahead of the past performance or the total demand prediction result. Predict the state of the power system. In processing S30, a voltage stability limit is obtained based on the results of S10 and S20, and in processing S40, the degree of system voltage stability is determined from the voltage stability limit obtained in S30. Next, in step S50, the device for adjusting the system voltage obtains the amount of the effect of increasing the voltage stability, and in step S60, when the system voltage is unstable, the adjustment amount necessary for stabilizing the system voltage is obtained. At S70, various data as a calculation result are output.

一般に、電力系統の総需要Pとある母線電圧Vの間に
は第3図に示すように、総需要が増すにつれて高め解は
低くなり、低め解は高くなるという関係がある。これを
P−Vカーブと呼び、第6図に示す安定度限界計算手段
S30に用いる。第3図によってP−Vカーブの概要を説
明すると、先ず横軸に需要量(MW)をとり、この需要量
の変化によって縦軸にとった系統電圧(KV)がどのよう
に変化するかをプロットした図である。そして作成の仕
方としては各計測値をもとに潮流計算をするとき、先ず
現在の潮流値を基準にして需要量をやゝ増加させ、その
増加分に対して有効電力,無効電力の割合を計算する。
そして需要量の増加分に対しての各系統電圧を求めてプ
ロットする。このようにして順次系統電圧を求めてP−
Vカーブとする。P−Vカーブ推定の手段としては、現
在系統状態及び総需要を変化させた系統状態における高
め解,低め解を用いて、高め解VH0,…,VHnから得られる
曲線により推定する手段、低め解VL0,…,VLnから得られ
る曲線により推定する手段、及び先端の高め解2点と低
め解2点から得られる曲線によって近似する手段とがあ
る。
In general, there is a relationship between the total demand P of the power system and a certain bus voltage V, as shown in FIG. 3, that as the total demand increases, the higher solution becomes lower and the lower solution becomes higher. This is called a PV curve, and the stability limit calculating means shown in FIG.
Used for S30. An outline of the PV curve will be described with reference to FIG. 3. First, the demand (MW) is plotted on the horizontal axis, and how the system voltage (KV) plotted on the vertical axis changes with the change in the demand. It is the figure which plotted. When calculating the power flow based on each measured value, first increase the demand by a small amount based on the current power flow value, and then calculate the ratio of active power and reactive power to the increase. calculate.
Then, each system voltage with respect to the increase in the demand is obtained and plotted. In this way, the system voltage is sequentially obtained and P-
Let it be a V curve. Means for estimating a curve obtained from higher solutions V H0 ,..., V Hn using higher and lower solutions in the current system state and in the system state in which the total demand is changed; There are a means for estimating by a curve obtained from the lower solutions V L0 ,..., V Ln and a means for approximating by a curve obtained from two higher solutions and two lower solutions at the tip.

(発明が解決しようとする課題) 正常なP−Vカーブは第3図に示すように総需要の増
加に対して高め解が減少して低め解が上昇し、全体形状
が右方向に凸になる形であるが、P−Vカーブの中には
第4図(a)に示すような形のものがあり、このカーブ
の場合、需要の増加に対して低め解が減少する。したが
ってP−Vカーブの推定に際し先端部分の近似を高め解
2点,低め解2点で行なうと、第4図(b)に示すよう
に需要の少ない側に凸となるカーブを推定してしまい、
安定度限界が正確にできなくなる。
(Problems to be Solved by the Invention) As shown in FIG. 3, a normal PV curve has a higher solution with an increase in the total demand, a lower solution, a lower solution with a rise, and an overall shape convex to the right. As shown in FIG. 4 (a), there is a PV curve having a shape as shown in FIG. 4 (a). In this curve, a lower solution decreases with an increase in demand. Therefore, if the approximation of the leading end portion is performed at two higher solutions and two lower solutions in estimating the PV curve, a curve convex to the side with less demand is estimated as shown in FIG. 4 (b). ,
The stability limit cannot be set accurately.

本発明は上記事情に鑑みてなされたものであり、需要
増加に対して低め解が上昇しない場合でも需要の多い側
に凸となるP−Vカーブを推定し、安定度限界をより正
確に求めることのできる電力系統監視制御システムを提
供することを目的としている。
The present invention has been made in view of the above circumstances, and estimates a PV curve that is convex toward a side with high demand even when a solution does not increase in response to an increase in demand, and obtains a stability limit more accurately. It is an object of the present invention to provide a power system monitoring and control system capable of performing such operations.

[発明の構成] (課題を解決するための手段) 上記目的を達成するため、本発明では需要増加に対し
て低め解が上昇しない場合、高め解2点と低め解1点と
を用いてP−Vカーブを近似するように構成した。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, according to the present invention, if a lower solution does not increase in response to an increase in demand, P is calculated using two higher solutions and one lower solution. It was configured to approximate the -V curve.

(作 用) 需要増加に対して低め解が上昇しないとき、高め解2
点と低め解1点とでカーブを近似するため、需要の多い
方向に凸となるP−Vカーブが推定できる。
(Operation) When the lower solution does not rise in response to the increase in demand, the higher solution 2
Since the curve is approximated by a point and one lower solution point, a PV curve that is convex in a direction with high demand can be estimated.

(実施例) 以下図面を参照して実施例を説明する。(Example) Hereinafter, an example is described with reference to drawings.

第1図は本発明による電力系統監視制御システムのP
−Vカーブ推定のためのフローチャートである。
FIG. 1 shows the P of the power system monitoring and control system according to the present invention.
It is a flowchart for -V curve estimation.

第1図に示す処理は高め解側のカーブを近似する処理
S1と、低め解側のカーブを近似する処理S2と、低め解の
大小比較を行なう処理S3と、高め解2点,低め解1を用
いてカーブを近似する処理S4と、高め解2点,低め解2
点を用いてカーブを近似する処理S5とから構成されてい
る。
The process shown in Fig. 1 is a process that approximates the curve on the higher solution side.
S1, a process S2 for approximating the curve on the lower solution side, a process S3 for comparing the magnitude of the lower solution, a process S4 for approximating the curve using two higher solutions and the lower solution 1, a two-point solution, Lower solution 2
And a process S5 of approximating a curve using points.

次に作用説明をする。 Next, the operation will be described.

先ず、第2図において現在系統状態における高め解V
H0(第2図の),低め解VL0(第2図の),及び総
需要を変化させた状態(P0→P1→P2→P3)における高め
解VH1,VH2,VH3(第2図の,,),低め解VL1,
VL2,VL3(第2図の,,)を、潮流計算により求
めておく。
First, in FIG.
H0 (of FIG. 2), lower solution V L0 (of FIG. 2), and higher solution V H1 , V H2 , V in a state where total demand is changed (P 0 → P 1 → P 2 → P 3 ) H3 (, in Fig. 2), lower solution V L1 ,
V L2 , V L3 (,, in FIG. 2) are obtained by power flow calculation.

高め解側のカーブを近似する処理S1では、第2図,
,,の4点をスプライン近似法によって3本の3
次曲線で結び、第2図ののカーブを得る。低め解側の
カーブを近似する処理S2では、前記したS1と同様の手法
により第2図ののカーブを得る。低め解の大小比較を
行なう処理S3で、先端の低め解VL2,VL3電圧の大きさの
比較を行ない、VL2>VL3の時にはS4の処理を、またVL2
VL3の時にはS5の処理を行なう。高め解2点,低め解
1点を用いてカーブを近似する処理S4では、,,
の3点を通る2次曲線を最小二乗法によって求め、先端
部分のカーブ(第2図の)を得る。高め解2点,低め
解2点を用いてカーブを近似する処理S5では、,,
,の4点を内伸する2次曲線を最小二乗法によって
求め、先端部分のカーブを得る。
In the process S1 for approximating the curve on the higher solution side, FIG.
,, Are converted into three 3 points by the spline approximation method.
By connecting the following curves, the curve shown in FIG. 2 is obtained. In the process S2 for approximating the curve on the lower solution side, the curve in FIG. 2 is obtained by the same method as in the above-described S1. In the process S3 for performing size comparison of low solution performs a comparison of the size of the lower solution V L2, V L3 voltage of the tip, V L2> V processing S4, when the L3, also V L2
Performs processing of S5 is when the V L3. In the process S4 of approximating the curve using two higher solutions and one lower solution,
Is obtained by the least squares method to obtain a curve at the tip (FIG. 2). In the process S5 of approximating a curve using two higher solutions and two lower solutions,
, Are obtained by the least squares method to obtain a curve at the tip.

本実施例によれば、需要増加に対して低め解が上昇し
ない場合であっても、需要の多い側に凸となるP−Vカ
ーブを推定することができる。
According to the present embodiment, even if the lower solution does not increase with the increase in demand, it is possible to estimate the PV curve that is convex toward the side with higher demand.

ここで本発明が需要の多い側に凸となるP−Vカーブ
を推定することの意味を説明する。先ず、この種のシス
テムでは安定性の監視のために電力余裕を算出する。そ
して電力余裕とはP−Vカーブの先端となる需要の最大
値Pmaxを求めると共に、現時点の需要P0との差から電力
余裕(Pmax−P0)を求めるようにしている。この場合、
電力余裕を正しく算出するためには、需要の多い側に凸
となるP−Vカーブを推定する必要がある。本手法を用
いれば、常に需要の多い側に凸となるP−Vカーブを推
定することができ、その結果、電力余裕を正しく求ける
ことができる。
Here, the meaning of the present invention in estimating the PV curve that is convex on the side where demand is high will be described. First, in this type of system, a power margin is calculated to monitor stability. And the power margin is to seek with obtaining the maximum value P max demand the tip of the P-V curve, the power margin from the difference between the demand P 0 of the current a (P max -P 0). in this case,
In order to correctly calculate the power margin, it is necessary to estimate a PV curve that is convex toward the side where demand is high. By using this method, it is possible to always estimate a PV curve that is convex on the side where the demand is high, and as a result, it is possible to correctly obtain the power margin.

高め解2点,低め解1点を用いてカーブを近似する処
理S4において、,,の代りに,,を用いて
も同様である。
In the process S4 of approximating a curve using two higher solution points and one lower solution point, the same applies even when, instead of, is used.

[発明の効果] 以上説明した如く本発明によれば、需要増加に対して
低め解が上昇しない場合であっても、需要の多い側に凸
となるP−Vカーブを推定することができ、その結果、
安定度限界を正しく求めることの可能な電力系統監視制
御システムを提供することができる。
[Effects of the Invention] As described above, according to the present invention, it is possible to estimate a PV curve that is convex toward a side where demand is high, even when a lower solution does not increase with an increase in demand. as a result,
It is possible to provide a power system monitoring and control system capable of correctly obtaining a stability limit.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明による電力系統監視制御システムのP−
Vカーブ推定処理のフローチャート、第2図はP−Vカ
ーブを推定する場合の考え方を示す図、第3図はP−V
カーブを説明する図、第4図(a),(b)は従来の方
法の問題点を説明する図、第5図は電力系統監視制御シ
ステムの構成例図、第6図は電力系統監視制御システム
の処理内容を示すフローチャートである。 S1……高め解のカーブを近似する手段 S2……低め解のカーブを近似する手段 S3……2つの低め解を比較する手段 S4……カーブを近似する手段
FIG. 1 shows the P-line of the power system monitoring control system according to the present invention.
FIG. 2 is a flowchart of a V-curve estimating process, FIG. 2 is a diagram showing a concept of estimating a PV curve, and FIG.
4 (a) and 4 (b) are diagrams for explaining the problems of the conventional method, FIG. 5 is a configuration example of a power system monitoring control system, and FIG. 6 is a power system monitoring control. It is a flowchart which shows the processing content of a system. S1 Means for approximating a higher solution curve S2 Means for approximating a lower solution curve S3 Means for comparing two lower solutions S4 Means for approximating a curve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加藤 寿男 埼玉県浦和市北浦和5丁目14番2号 東 京電力株式会社埼玉支店内 (72)発明者 青柳 真理 東京都府中市東芝町1 株式会社東芝府 中工場内 (72)発明者 上村 洋市 東京都府中市東芝町1 株式会社東芝府 中工場内 (56)参考文献 特開 平2−55528(JP,A) 特開 平2−206329(JP,A) 特開 平3−215125(JP,A) (58)調査した分野(Int.Cl.6,DB名) H02J 3/00──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Toshio Kato 5-14-2 Kitaurawa, Urawa-shi, Saitama Tokyo Metropolitan Electric Power Company Saitama Branch (72) Inventor Mari Mari Aoyagi 1 Toshiba-cho, Fuchu-shi, Tokyo In the Toshiba Fuchu factory (72) Inventor Hiroshi Uemura Toshiba-cho, Fuchu-shi Tokyo 1 In the Toshiba Fuchu factory (56) References JP-A-2-55528 (JP, A) JP-A-2-206329 ( JP, A) JP-A-3-215125 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H02J 3/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】情報伝送装置を介して伝送されてきた系統
情報から被監視電力系統の状態を求める系統状態決定手
段と、前記系統状態を示す各計測値を基に、系統の需要
量を増加させながら潮流計算により前記所定の需要量で
の系統の電圧の高め解と低め解とを求めて、系統の需要
量Pと系統の電圧Vとの関係を示すP−Vカーブを求め
ると共に、前記P−Vカーブを基に電圧の安定限界を求
める安定度限界計算手段と、前記安定度計算手段で求め
た電圧の安定度限界より系統の電圧安定度を判定するよ
うにした電力系統監視制御システムにおいて、前記安定
度限界計算手段に、需要増加に対して電圧低め解が上昇
しない場合、電圧高め解の2点と電圧低め解の1点とを
用いてP−Vカーブが需要の多い側に凸状となるように
P−Vカーブを推定する手段を設けたことを特徴とする
電力系統監視制御システム。
1. A system status determining means for obtaining a state of a monitored power system from system information transmitted via an information transmission device, and increasing a system demand based on each measurement value indicating the system status. While calculating the power flow calculation to obtain a higher solution and a lower solution of the voltage of the system at the predetermined demand, a PV curve showing the relationship between the system demand P and the system voltage V is obtained, and A stability limit calculating means for obtaining a voltage stability limit based on a PV curve, and a power system monitoring and control system for determining the voltage stability of the system from the voltage stability limit obtained by the stability calculating means. In the stability limit calculation means, if the lower voltage solution does not increase with increasing demand, the PV curve is shifted to the side with higher demand by using two points of the higher voltage solution and one point of the lower voltage solution. Push the PV curve so that it becomes convex. Power system monitoring control system characterized in that a means for.
JP2009958A 1990-01-19 1990-01-19 Power system monitoring and control system Expired - Fee Related JP2831772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009958A JP2831772B2 (en) 1990-01-19 1990-01-19 Power system monitoring and control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009958A JP2831772B2 (en) 1990-01-19 1990-01-19 Power system monitoring and control system

Publications (2)

Publication Number Publication Date
JPH03215128A JPH03215128A (en) 1991-09-20
JP2831772B2 true JP2831772B2 (en) 1998-12-02

Family

ID=11734455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009958A Expired - Fee Related JP2831772B2 (en) 1990-01-19 1990-01-19 Power system monitoring and control system

Country Status (1)

Country Link
JP (1) JP2831772B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5693987B2 (en) * 2011-02-04 2015-04-01 中国電力株式会社 Method for creating stability limit curve, method for determining stability of power system, and method for stabilization
CN114966297B (en) * 2022-08-01 2022-11-11 成都国营锦江机器厂 Application method of electronic regulator comprehensive test bed

Also Published As

Publication number Publication date
JPH03215128A (en) 1991-09-20

Similar Documents

Publication Publication Date Title
US4757248A (en) Induction motor torque control system
US20050140329A1 (en) Control system and method for permanent magnet synchronous motor
WO2016136630A1 (en) System stability estimation device and system stability estimation method
JP2001352773A (en) Online autotuning servo controller
JP2831772B2 (en) Power system monitoring and control system
US11817776B2 (en) Power factor correction control method, apparatus, and device, and storage medium
JP3290797B2 (en) Overcurrent relay
CN108880357A (en) The adaptive Non-smooth surface curren tracing control method of permanent magnet synchronous motor
JP2004187390A (en) Monitor and control apparatus for voltage reactive power
JP3064854B2 (en) Transformer oil temperature measurement device
JP3031934B2 (en) Voltage margin and active power margin calculation device
JP2549868Y2 (en) Demand prediction device
JP2005287128A (en) Power system stability supervisory system
CN114977941B (en) Inertia identification method, device and medium for alternating current servo system
EP4060890A1 (en) System for controlling a synchronous machine and method thereof
CN116317768A (en) Zero position self-learning method for phase current and bus voltage of hybrid electric vehicle motor
JP3144075B2 (en) AC motor constant measurement method
JPH05181503A (en) Stablized feedback control method
JP3250015B2 (en) Protection relay and tester and test system
JP2647157B2 (en) Power system monitoring and control system
JPH0731174A (en) Disturbance load torque estimation system
JP2822427B2 (en) Process control method
CN115566952A (en) Permanent magnet synchronous motor stator electromagnetic parameter identification method
CN118054706A (en) Demagnetizing compensation method and device for permanent magnet synchronous motor of vehicle
JPH06113465A (en) Monitoring system for stability of electric power system

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees