JPH04286983A - Underground buried object searcher - Google Patents

Underground buried object searcher

Info

Publication number
JPH04286983A
JPH04286983A JP3074314A JP7431491A JPH04286983A JP H04286983 A JPH04286983 A JP H04286983A JP 3074314 A JP3074314 A JP 3074314A JP 7431491 A JP7431491 A JP 7431491A JP H04286983 A JPH04286983 A JP H04286983A
Authority
JP
Japan
Prior art keywords
buried pipe
reflected
buried
receiving antenna
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3074314A
Other languages
Japanese (ja)
Inventor
Hiroshi Kanda
神田 博
Seishi Akutsu
阿久津 晴司
Koji Komatsu
小松 幸二
Takashi Yoshinaga
吉永 敬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP3074314A priority Critical patent/JPH04286983A/en
Publication of JPH04286983A publication Critical patent/JPH04286983A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

PURPOSE:To identify the existence of a buried pipe and specify its laying direction even in the case where a reflected wave group does not have hyperbola-like continuity by converting a reflected signal from the buried pipe into a frequency area to calculate a spectral distribution. CONSTITUTION:An electromagnetic wave is transmitted into the underground 4 from a transmission antenna part 1 and the reflected wave from a buried pipe 5 and the like are received by a receiving antenna part 2. A received observation signal is sampled 11, the sampled signal is converted into a frequency area in a waveform analyzer 12, a spectral distribution is calculated, and a reflected image of the buried pipe 5 is identified on the basis of a spectrum peak frequency, a direct current component ratio and half-value width. Next, the antenna part 2 alone is moved along its laying direction right above the identified pipe 5, the reflected wave is sampled 11 at specified intervals, and the reflected signals alone from the pipe 5 are extracted by the device 12. Next, the change of a propagation delay time of the reflected wave from the pipe 5 corresponding to the movement distance of the antenna part 2 is examined in a calculation part 14, the dielectric constant of the underground 4 is found and buried depth is calculated on the basis thereof.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、地中に埋設された埋設
管等を探査する地中埋設物探査装置に関するものである
。 【0002】 【従来の技術】一般に、埋設管等の探査にあたっては、
パルスレーダー法による地中レーダーシステムが用いら
れているが、これらは図10(a)に示すとおり、送信
アンテナと受信アンテナとが配された送・受信アンテナ
部6を地表面において埋設管5の敷設方向に対し横断方
向に移動させる。この時送信アンテナからは広がり(θ
)を持って電磁波を送出しているため、その広がり(θ
)内において埋設管5からの反射波を捉えることができ
る。従って送・受信アンテナ部6が移動地点毎に観測す
る埋設管5からの反射波群101の観測時間、すなわち
電磁波伝搬時間tは、   D’≒(L2 +D2 )1/2 ・・・・・・・
・・・・・・・・(1)  t=2D’/V・・・・・
・・・・・・・・・・・・・・・(2)   V=C/
εS1/2・・・・・・・・・・・・・・・・・・・・
(3)   式(1) ,式(2) ,式(3) から
  t=2[(L2 +D2 )・εS ]1/2 /
C・・・・・・・・(4)  【0003】となり、図10(b)に示すとおり、送・
受信アンテナ部6の移動距離Lとは双曲線状の相関を有
する。ここで、Dは埋設管の埋設深度、Vは埋設媒質中
,即ち土中4における電磁波伝搬速度、Cは光速、εS
 は同誘電率である。また、受信された反射波は、演算
装置15を介し地中断面像として表示装置13に表示し
、上記した埋設管反射波群101は反射波振幅強度に基
づく双曲線状の反射像102として捉えられる。 【0004】しかし、地中は、空気中等に比べ極めて不
均一であるため、上記した埋設管反射波群101ととも
に種々の雑反射波群103が観測される。これら観測さ
れた種々の反射波群の中から埋設管等の存在を認識し、
且つ認識した埋設管までの電磁波伝搬時間tを埋設深度
Dに置き換えるための第1の例として特開平1−280
275号公報に開示されている合成開口法がある。これ
は、観測された地中断面単位の反射波群に対して所定の
ステップで比誘電率を変化させて合成開口を行い、各々
の比誘電率での反射波群の例えば振幅強度の集積度を求
める。この時、双曲線状の相関を持って観測される埋設
管反射波群は、双曲線状の相関を持たない雑反射波群に
比べその集積度が高く、真の比誘電率で合成開口が行わ
れた時その集積度は最大となる。これらから埋設管の存
在を認識し、埋設媒質中、即ち土中の比誘電率を推定し
て埋設深度を得るような方法である。しかし、図11(
a)に示すように、実際の道路下では埋設管を敷設する
ための垂直掘削面a,a’が存在する。しかもこの垂直
掘削面内側は、主に砂等の埋戻し材cにより構成されて
おり、垂直掘削面は在来地盤bと電気特性、即ち比誘電
率が大きく異なっている場合が多い。従って、電磁波は
比誘電率の変化面で反射を起こすことから、埋設管5に
対して一般的に行われている横断探査では、図11(b
)に示すように、送・受信アンテナ部6が埋設管の両側
に存在する垂直掘削面内a−a’間を移動している時し
か埋設管反射像102に双曲線形状の連続性がない場合
が多い。このように双曲線形状の連続性が短い場合、合
成開口による埋設管反射波群の集積度は、雑反射波に比
べて差異が無いかまたは小さいため、埋設管5の存在を
認識できず、双曲線形状の連続性が不可欠である第1の
例の合成開口法は適用できない。また、双曲線状に観測
されても、中,大口径管路や複条数からなる管路群等の
場合、事前に管路径や形態を把握して合成開口を行う必
要があり、これらが事前に把握できない場合は、精度の
高い埋設深度を得ることができない。 【0005】従来技術の第2の例としては、第1の例の
ような埋設管からの反射波群の双曲線状の相関には依存
せずに埋設管の存在を認識する方法であって、特願昭6
2−268130号に記載されている周波数解析法であ
る。これは、観測された各々の反射信号を所定の時間に
分割し、分割された信号を周波数領域に変換してスペク
トル分布を求め、このスペクトル分布からスペクトルピ
ーク周波数,直流成分比および半値幅等のスペクトル分
布にパラメータ値を算出する方法である。この方法によ
れば、埋設管からの反射波パラメータ値は、特定の範囲
に集中するので、各々のパラメータ値が所定の範囲以外
の値を有する反射信号を不要反射波として除去すること
により、埋設管からの反射信号のみを抽出し、その存在
を認識できる。しかし、この方法では、埋設媒質中の比
誘電率を知る有効な方法が無く、例えば測定箇所近傍で
予め埋設深度の既知の基準管により比誘電率を補正する
ようにしている。また、第1の例の合成開口法及び第2
の例の周波数解析法は、図10(a)に示すように、長
手方向に連続する埋設管5に対して横断方向に送・受信
アンテナ部6を移動させて探査を行い、その反射波を捉
える方法である。従って、1回目の横断探査で埋設管に
存在を認識し、次に送・受信アンテナ部6の移動ライン
を長手方向に平行移動して再び探査を行って埋設管の存
在を認識したとしても、それらが同一に埋設管であるか
否かは確認できず、敷設方向は道路形態等から推定する
にとどまっている。 【0006】さらに、従来技術の第3の例としては、埋
設媒質中の比誘電率推定方法として昭和57年10月の
物理探査学会の論文集P59〜P60の論文「電磁波反
射法による地中埋設物探査」に、主として地層境界面を
対象としたワイドアングル測定法が述べられている。こ
の方法では、図12(a)に示すように、送信アンテナ
と受信アンテナとをそれぞれの函に配した送信アンテナ
部1と受信アンテナ部2とにより、受信アンテナ部2の
みを移動させ、主に平面的な広がりを持つ比誘電率の変
化面、即ち地層境界面7からの反射波を観測する。この
時、受信アンテナ部2が移動地点毎に観測する地層境界
面7からの反射波の電磁波伝搬時間tは、  t=(L
2 +4D2 )1/2 /V・・・・・・・・・・・
・・・(5)から   t=2[(L2 +4D2 )・εS ]1/2 
/C・・・・・・・・(6)  となり、図12(b)に示すとおり、受信アンテナ部2
の移動距離Lとは放物線状の相関を有する。このことか
ら放物線状の相関を持つ反射波群201により形成され
る反射像202の曲線(放物線)はL2 −t2 の平
面上では直線となり、この直線の傾きから電磁波の伝搬
速度、即ち比誘電率が推定できるとしている。しかし、
アスファルト等の表層部、砕石等からなる路盤部、また
在来地盤からなる路床部等、多層構造の道路下では、一
般に比誘電率は浅層部では小さく、深層部では大きくな
る傾向がある。従って、ワイドアングル測定法で求まる
比誘電率は、地表面と地層境界面7間の各層の平均値で
あり、精度の高い埋設深度を得るための地表面,埋設管
間の比誘電率を求めたことにはならない。そこで、地層
境界面7の代わりに長手方向に連続性を持つ埋設管に対
してワイドアングル法を用いれば、各々に正確な比誘電
率を求めることができる。しかし、地中に埋設された埋
設管の直上で受信アンテナ部2を移動させるためには、
事前に埋設管の敷設方向を把握する必要があり、ワイド
アングル法のみではこれを行うことができない。 【0007】 【発明が解決しようとする課題】従来の第1の例に示さ
れる合成開口法は、埋設管を探査する場合、埋設管反射
像に双曲線形状の連続性がないような場合には、埋設管
の存在を認識できないという欠点があった。また、埋設
管反射像が双曲線状に観測されても、事前に管路径や形
態を把握して合成開口を行う必要があり、これらが事前
に把握できない場合は、精度の高い埋設深度を得ること
ができないという欠点があった。また、第2の例に示さ
れる周波数解析法は、埋設管が敷設されている埋設媒質
中の比誘電率を実際に求めることができなく、既知の基
準管により比誘電率を補正しているので、正確な埋設深
度を得ることができないという欠点があった。さらに、
これら合成開口法及び周波数解析法は、共に、埋設管の
敷設方向を道路形態等から推定するにとどまっている。 また、第3の例である埋設媒質中の比誘電率推定方法は
、正確な比誘電率を求めることはできるが、比誘電率の
算出のために埋設管の直上で受信アンテナ部を移動させ
る場合、事前に埋設管の敷設方向を把握しておかなけれ
ばならないという欠点があった。従って本発明の目的は
、地中レーダーシステムにおいて、一般的に行われてい
る横断探査で、埋設管からの反射波群が双曲線状の連続
性を持たない場合でもその存在を認識し、敷設方向を特
定するとともに、双曲線状の連続性とは無関係に、また
、埋設管の管径,形態に左右されずに、地表面,埋設管
間の電磁波伝搬媒質中、即ち土中の比誘電率を求め、正
確な埋設深度を得ることにある。 【0008】 【課題を解決するための手段】上述の目的を達成するた
め、本発明は、送信アンテナを配した送信アンテナ部と
、受信アンテナを配した受信アンテナ部と、送信アンテ
ナにパルス信号を送信するパルス発生装置と、受信アン
テナで受信した反射信号をサンプリングするサンプリン
グ装置と、反射信号を周波数領域に変換してスペクトル
分布を算出しスペクトルピーク周波数,直流成分比およ
び半値幅に基づいて埋設管からの反射信号を認識する波
形解析装置と、地表面上において,認識された埋設管の
直上をその敷設方向に受信アンテナ部のみを徐々に移動
させ受信アンテナの移動距離に対応した埋設管からの反
射波の伝搬時間の変化から埋設媒質の比誘電率を求め,
この比誘電率に基づいて埋設深度を算出する計算部と、
画像表示装置とを備えたものである。 【0009】 【作用】埋設管からの反射信号は周波数領域に変換され
そのスペクトル分布が算出される。そして、このスペク
トルピーク周波数,直流成分比および半値幅に基づき埋
設管反射像が認識される。この認識された埋設管の直上
をその敷設方向に沿って移動する受信アンテナ部の移動
距離に対応する反射波の伝搬時間の変化から埋設媒質の
比誘電率が求められ、この比誘電率に基づいて埋設深度
が算出される。 【0010】 【実施例】本発明のうち埋設管に存在の認識及び敷設方
向を仮定する第1の手段としては、従来技術の第2の例
である周波数解析法を用い、また敷設方向の特定および
電磁波伝搬媒質中、即ち土中の比誘電率を求め、埋設深
度を得るための第2の手段としては、従来技術の第3の
例であるワイドアングル法を用い、第1の手段と第2の
手段は各々別の装置を必要とせず、同一装置で容易にこ
れらを実施できるようにしたものであり、従来装置が第
1の手段と第2の手段とを別々の装置で構成していたも
のとは異なる。また、埋設管に対し一般的に行われてい
る横断探査で、埋設管からの反射波群の双曲線状に相関
には依存せずにこれらを可能としたこと等を最も主要な
特徴とし、従来技術の第1の例において不可欠であった
埋設管からの反射波群の双曲線状の相関が不要となる。 【0011】以下、本発明の実施例について図面を参照
して説明する。図1(a),(b)は、本発明に係る地
中埋設管探査装置の一実施例を示すブロック図であり、
図1(a)は埋設管5の存在の認識及び敷設方向を仮定
するための第1の手段、図1(b)は敷設方向の特定、
及びその埋設管5と地表面間の埋設媒質、即ち土中の比
誘電率を求め埋設深度を得るための第2の手段を示し、
これらの第1,第2の手段は同一装置である。 【0012】まず、図1(a)に基づいて埋設管5の存
在の認識及び敷設方向を仮定するための第1の手段の構
成と動作について説明する。パルス発生装置10から出
力される高出力のインパルス(モノパルス)信号が広帯
域周波数特性を有する送信アンテナ部1に供給され、送
信アンテナ部1でインパルス信号から電磁波に変換され
て地中4へ送出されると、地中4に存在している埋設管
5からの反射波やその他の雑反射波が広帯域周波数特性
を有する受信アンテナ部2で観測信号,即ち反射信号と
して受信され、受信された観測信号はサンプリング装置
11でサンプリングされる。次に、治具3により連結さ
れ、且つ埋設管5に対して直角に配置した送・受信アン
テナ部1,2を埋設管5に対して横断方向に移動させ、
所定の間隔でサンプリングを繰り返す。サンプリングさ
れた観測信号は、波形解析装置12に供給され、目標物
体である埋設管5からの反射信号のみを抽出し、埋設管
5からの反射信号のみを表示装置13に表示する。これ
らの一連の動作により連結された送・受信アンテナ部1
,2の移動距離に対応した地中断面像が表示され、且つ
埋設管5の反射信号のみが表示されるため容易にその存
在を認識でき、地表面上における埋設管5の直上点が特
定できる。 【0013】次に、図1(b)に示す敷設方向の特定、
及び埋設深度を得るための第2の手段の動作を説明する
。送・受信アンテナ部1,2を埋設管5の直上に、且つ
敷設方向と平行に配置し、治具3により分離する。次に
第1の手段に述べたと同様な作用、即ち送信アンテナ部
1から送出した電磁波を地中4あるいは埋設管5からの
反射波として受信アンテナ部2で受信し、サンプリング
装置11でサンプリングする。次に、後述する方法で埋
設管5の直上を受信アンテナ部2のみを移動させ、所定
の間隔で反射波のサンプリングを繰り返し、サンプリン
グされた観測信号は波形解析装置12に供給され、埋設
管5からの反射信号のみを抽出して表示装置13に表示
する。次に計算部14において、受信アンテナ部2の移
動距離に対応した埋設管からの反射波の伝搬時間の変化
を調べ、地表面,埋設管間の埋設媒質、即ち土中の比誘
電率を求め、これに基づいて埋設深度を計算する。 【0014】次に、波形解析装置12の作用について説
明する。波形解析装置12では、まずサンプリング装置
11でサンプリングされて供給された反射信号を所定の
時間毎に分割する。すなわち、地中4からの反射信号は
、埋設管5からの反射信号以外にも種々の雑反射信号が
異なる時間位置で重畳しているものであるため、これら
の種々の反射信号を個別に分割する。この分割方法には
、一定の時間幅ΔTで分割する一定時間分割法、ゼロ・
クロス法により1周期相当の時間毎に分割するゼロ・ク
ロス分割法等があるが、本実施例ではゼロ・クロス法に
より分割する例について説明する。 【0015】図2は、波形解析装置12に供給される反
射信号21のゼロ・クロス法による波形分割の1例であ
る。図2に示す矢印の区間がゼロ・クロス法による1周
期相当の時間間隔であり、分割波形毎に波形Noが付さ
れている。ここでは波形No1を分割した例を図3の上
部に示す。分割された波形21’は、波形解析装置12
において高速フーリエ変換処理により周波数領域に変換
され、スペクトル分布が求められる。すなわち、図3の
下部に示すスペクトル分布から最大強度(ピーク)のス
ペクトルを検出し、スペクトルピーク周波数fp、スペ
クトルピーク周波数fpに対するスペクトル強度Ip、
直流成分強度Idc及び半値幅Wを読み取る。また、直
流成分強度Idcとスペクトル強度Ipとから次式によ
り直流成分比Rdcを算出する。   Rdc=Idc/Ip・・・・・・・・・・・・・
・・・(7) 以上の過程を観測信号の分割波形全てに対して行い、図
4,5の特性を利用して、   fp1<fp<fp2,W1<W<W2,Rdc1
<Rdc<Rdc2以外の値を有する分割波形を不要反
射波として除去する。 【0016】ここで、図4,図5は、数々の実験により
得られた観測信号から導かれた各種分割波形のfp−R
dc,fp−W分布を示したグラフである。同図におい
て黒丸は埋設管5からの反射波の特性を示し、また、白
丸は不要反射波の特性を示している。埋設管5からの反
射波は、明らかに或る範囲、すなわち、  fp1<f
p<fp2,W1<W<W2,Rdc1<Rdc<Rd
c2の範囲に集中して分布していることがわかる。fp
1,fp2,W1,W2,Rdc1,Rdc2の値の1
例を表1に示す。 【0017】 【表1】 【0018】なお、分割波形には、スペクトルピーク周
波数fp、半値幅W及び直流成分比Rdcのフィルタリ
ング条件の何れかを満たす波形も存在するが、表2に示
されるように、観測信号内で3条件を同時に満たす分割
波形は1つ(即ち、波形No4)であり、この分割波形
が埋設管5の反射波形と考えられ、この分割波形のみを
抽出する。ここで、表2は図2に示された分割波形毎に
計算されたスペクトルピーク周波数fp、半値幅W及び
直流成分比Rdcの値を示す。 【0019】 【表2】 【0020】以上述べた波形解析処理を図2の観測信号
に施せば、図6に示すように、不要反射信号が取り除か
れて埋設管5からの反射信号波形のみが得られる。また
、図6は図7のA−Aに相当する波形であるため、これ
らの作用をアンテナ部の移動に伴い、所定の間隔でサン
プリングされた観測信号全てに施せば、図7に示したと
おり、横軸をアンテナ移動距離,縦軸を電磁波伝搬時間
の座標系に構成した地中断面図中にその反射波振幅強度
に基づく埋設管の反射像のみが表示される。 【0021】図8に本実施例の斜視図を示す。図8(a
)は第1,第2の手段それぞれの送・受信アンテナ部1
,2と埋設管5の関係を示す図、図8(b)はそれぞれ
の地中断面像301,302及び埋設管反射像102,
202である。埋設管5の存在の認識及び敷設方向の仮
定をするための第1の手段においては、治具3により送
信アンテナ部1と受信アンテナ部2とを連結し、道路形
態等から推測される埋設管敷設方向に対して横断方向、
即ちA→C方向に送・受信アンテナ部1,2を移動させ
、埋設管5からの反射信号を捉える。観測された種々の
反射信号は、波形解析装置12により埋設管5からの反
射信号のみが抽出され、図8(b)に示したように、A
→C方向への送・受信アンテナ部1,2の移動距離に対
応した地中断面像301中に埋設管5の反射像102の
みを表示する。この操作で容易に埋設管5の存在が認識
でき、その直上点、すなわちB点が特定できる。 次に、アンテナ走査ラインを変更し、A’→C’におい
て再度上記操作を行いB’点を特定する。ここで特定し
た2点、すなわちB→B’が埋設管敷設方向となるが、
この段階では特定した2点が同一の埋設管であるか否か
は分からず、従って敷設方向は仮定となる。次に、敷設
方向の特定及び埋設深度を得るための第2の手段におい
ては、送・受信アンテナ部1,2を治具3により分離し
、受信アンテナ部2のみを埋設管5の敷設方向直上であ
ると仮定したB→B’方向に移動させ、埋設管等からの
反射信号を捉える。観測された種々の反射信号は、第1
の手段と同様に波形解析装置12により埋設管5からの
反射信号のみが抽出され、図8(b)に示したとおり、
B→B’方向への受信アンテナ部2の移動距離に対応し
た地中断面像302の中から埋設管反射像202のみを
表示する。 【0022】図9は、第2の手段を詳細に説明する図で
あり、図9(a)は送・受信アンテナ部1,2と埋設管
5との関係を示す図、図9(b)は受信アンテナ部2の
移動に伴う埋設管反射像202及び比誘電率を推定する
ためのグラフ(理論放物線401等)である。第1の手
段により仮定した2点、即ちB,B’点が同一の埋設管
であれば、受信アンテナ部2は埋設管5の直上を移動し
ており、図9(a)に示すとおり、受信アンテナ部2が
移動点毎に観測する埋設管5からの反射波の電磁波伝搬
時間t1 は、送信アンテナ部1と受信アンテナ部2と
の間の初期距離をWとすると、   t0 =2〔[(W/2)2 +D2 ]・εS 
〕1/2 /C・・・・・・・・(8)  t1 =2
{〔[(W+L)/2]2 +D2 〕・εS }1/
2 /C・・・・(9)   式(8),(9) から   t1 =[(L2 +2WL)・εS +t02・
C2 ]1/2 /C・・・・・ (10)  となり、図9(b)に示したとおり、電磁波伝搬時間t
1 と受信アンテナ部2の移動距離Lとは放物線状の相
関を持つ。すなわち、放物線状の相関に連続性があれば
、B→B’点は同一の埋設管であることが確認でき、こ
こで埋設管5の敷設方向が特定できる。 【0023】次に、電磁波伝搬媒質中、即ち土中4の比
誘電率を求め、埋設深度を得る段階において、図9(b
)に示したとおり、放物線状に観測された埋設管反射波
群201により形成される埋設管反射像202は、式(
10)のとおり、比誘電率の違いにより電磁波伝搬時間
が変化し、その傾きが変化する。従ってこの傾きを評価
すれば比誘電率が求まることになる。そこで、この傾き
を評価し比誘電率を推定する方法の1例としては、上記
したとおり、L2 −t2 平面上での直線の傾きから
比誘電率を推定する方法等の他に、これらの反射波群に
対し合成開口を行う方法、反射波群の時間位置と受信ア
ンテナ部2との移動距離からピタゴラスの定理により求
める方法等が考えられるが、表示装置13に表示された
ままの反射像202から最も簡単に推定する方法として
、理論放物線の重ね合わせ法について以下説明する。 【0024】図9(b)に示したとおり、表示装置13
に、測定により得られた放物線状の反射像202と、仮
定した比誘電率で式(10)による理論放物線を表示さ
せる。すなわち、L=0mの時の反射波時間位置T0 
−pをカーソルキー等で座標指示することで電磁波伝搬
時間t0 を読み取り、また予め設定した一般的な土中
の比誘電率から式(10)により表示装置13に理論放
物線401を表示させる。次に、式(10)中の比誘電
率εs を例えばカーソルキー等により小数点以下第1
位を概ね0.5づつシフトさせて理論放物線401の傾
きを変化させ反射像202に理論放物線を重ね合わせる
。この場合、完全に重なり合った時の理論放物線402
を形成させている比誘電率が真の比誘電率である。なお
、この時比誘電率を変化させつつ同時にD=C・t0 
/(2・εs )1/2 による埋設深度の表示も行う
。これらの操作により放物線状に得た埋設管5からの反
射像202で比誘電率が求まり、高精度の埋設深度デー
タを得ることができる。これらは、A→C方向への横断
探査で、図11に示したように、垂直掘削面a,a’の
影響等から埋設管5の反射波群に双曲線状の連続性が無
い場合でも、B→B’方向ではアンテナ部は垂直掘削面
を横断せず、同一の埋設深度(埋戻し材)中での動作で
あるため効率良く放物線状の反射像を観測でき、また、
放物線形状は埋設管5の管径等に左右されないため、精
度の高い比誘電率、即ち埋設深度を得ることができる。 なお、この地中埋設物探査装置は、地中埋設物の探査の
みならず、例えばコンクリート中の鉄筋等の不可視物体
の探査にも応用できるものである。 【0025】 【発明の効果】以上説明したように、本発明の装置を用
いれば、埋設管に対し横断方向に探査した時の送・受信
アンテナ部の移動距離と電磁波伝搬時間の双曲線状の相
関とは全く無関係に埋設管の存在を認識できる。また、
敷設方向の特定、及び埋設媒質中の比誘電率を求める段
階においては、埋設管敷設方向に受信アンテナを移動さ
せることから垂直掘削面の影響等が無く、また埋設管の
管径に左右されないため、比誘電率を推定するに充分な
放物線状の反射波群を得ることができ、精度の高い埋設
深度を得ることができる。
Description: [0001] The present invention relates to an underground object exploration device for exploring underground pipes and the like buried underground. [Prior Art] Generally, when exploring buried pipes, etc.,
Underground radar systems based on the pulse radar method are used, and as shown in FIG. Move it in a direction transverse to the laying direction. At this time, it spreads from the transmitting antenna (θ
), its spread (θ
) can capture reflected waves from the buried pipe 5. Therefore, the observation time of the group of reflected waves 101 from the buried pipe 5 observed by the transmitting/receiving antenna section 6 at each moving point, that is, the electromagnetic wave propagation time t, is D'≒(L2 +D2)1/2...・
・・・・・・・・・(1) t=2D'/V・・・・・・
・・・・・・・・・・・・・・・(2) V=C/
εS1/2・・・・・・・・・・・・・・・・・・
(3) From equation (1), equation (2), and equation (3), t=2[(L2 +D2)・εS]1/2/
C......(4) 0003], and as shown in FIG. 10(b), the
It has a hyperbolic correlation with the moving distance L of the receiving antenna unit 6. Here, D is the burial depth of the buried pipe, V is the electromagnetic wave propagation speed in the buried medium, that is, underground 4, C is the speed of light, and εS
are the same permittivity. Further, the received reflected waves are displayed on the display device 13 as a ground plane image via the arithmetic unit 15, and the buried pipe reflected wave group 101 described above is captured as a hyperbolic reflected image 102 based on the reflected wave amplitude intensity. . However, since the underground is extremely non-uniform compared to the air, various miscellaneous reflected wave groups 103 are observed in addition to the buried pipe reflected wave group 101 described above. Recognizing the existence of buried pipes from among the various reflected waves observed,
In addition, as a first example for replacing the recognized electromagnetic wave propagation time t to the buried pipe with the buried depth D, Japanese Patent Application Laid-Open No. 1-280
There is a synthetic aperture method disclosed in Japanese Patent No. 275. This is done by changing the relative permittivity in predetermined steps for the group of reflected waves observed on the earth's surface to form a synthetic aperture, and then calculating the degree of integration of the amplitude intensity of the group of reflected waves at each relative permittivity. seek. At this time, the buried pipe reflected waves observed with a hyperbolic correlation have a higher degree of integration than the miscellaneous reflected waves that do not have a hyperbolic correlation, and synthetic aperture is performed using the true dielectric constant. The degree of integration is at its maximum when This method recognizes the existence of a buried pipe from these and estimates the relative permittivity of the buried medium, that is, the soil, to obtain the buried depth. However, Fig. 11 (
As shown in a), there are vertical excavation surfaces a and a' for laying buried pipes under an actual road. Furthermore, the inside of this vertically excavated surface is mainly composed of backfilling material c such as sand, and the vertically excavated surface often has electrical properties, that is, dielectric constant, that are significantly different from those of the conventional ground b. Therefore, since electromagnetic waves are reflected on surfaces with varying relative dielectric constants, in the cross-sectional survey generally performed on buried pipes 5,
), the buried pipe reflected image 102 has hyperbolic continuity only when the transmitting/receiving antenna section 6 is moving between a and a' in the vertical excavation plane on both sides of the buried pipe. There are many. When the continuity of the hyperbolic shape is short in this way, the degree of accumulation of the buried pipe reflected waves due to the synthetic aperture is the same or smaller than the miscellaneous reflected waves, so the existence of the buried pipe 5 cannot be recognized, and the hyperbolic shape The synthetic aperture method of the first example, in which shape continuity is essential, cannot be applied. Furthermore, even if a hyperbolic shape is observed, in the case of medium- or large-diameter pipes or groups of pipes with multiple threads, it is necessary to understand the pipe diameter and shape in advance and perform synthetic openings. If it is not possible to determine the burial depth accurately, it is not possible to obtain a highly accurate burial depth. A second example of the prior art is a method of recognizing the existence of a buried pipe without depending on the hyperbolic correlation of a group of reflected waves from the buried pipe as in the first example, Special request 1976
This is a frequency analysis method described in No. 2-268130. This method divides each observed reflected signal into a predetermined time period, converts the divided signals into the frequency domain to obtain the spectral distribution, and calculates the spectral peak frequency, DC component ratio, half-value width, etc. from this spectral distribution. This method calculates parameter values based on the spectral distribution. According to this method, reflected wave parameter values from buried pipes are concentrated in a specific range, so by removing reflected signals whose parameter values are outside the predetermined range as unnecessary reflected waves, Only the reflected signal from the tube can be extracted and its presence recognized. However, with this method, there is no effective way to know the dielectric constant in the buried medium, and the dielectric constant is corrected in advance using a reference tube of known buried depth, for example, near the measurement location. In addition, the synthetic aperture method of the first example and the second example
As shown in FIG. 10(a), the frequency analysis method in this example performs an investigation by moving the transmitting/receiving antenna section 6 in the transverse direction of the buried pipe 5 that is continuous in the longitudinal direction, and then detects the reflected waves. This is a way to capture it. Therefore, even if the presence of a buried pipe is recognized in the first cross-sectional survey, and then the movement line of the transmitting/receiving antenna unit 6 is moved in parallel in the longitudinal direction and the survey is performed again, the existence of the buried pipe is recognized. It has not been possible to confirm whether these are the same underground pipes, and the direction of installation can only be estimated based on road configuration, etc. [0006] Furthermore, as a third example of the prior art, as a method for estimating the relative dielectric constant in a buried medium, there is a paper published in October 1982 in the collection of papers of the Japan Society for Physical Exploration, P59-P60, ``Underground Buried Using Electromagnetic Wave Reflection Method''. ``Object Exploration'' describes a wide-angle measurement method mainly targeting strata boundary surfaces. In this method, as shown in FIG. 12(a), by using a transmitting antenna section 1 and a receiving antenna section 2 in which a transmitting antenna and a receiving antenna are arranged in respective boxes, only the receiving antenna section 2 is moved, and the main The reflected wave from the surface of change in relative permittivity with a planar spread, that is, the strata boundary surface 7, is observed. At this time, the electromagnetic wave propagation time t of the reflected wave from the strata boundary surface 7 observed by the receiving antenna section 2 at each moving point is t=(L
2 +4D2 ) 1/2 /V・・・・・・・・・・・・
...(5), t=2 [(L2 +4D2)・εS ]1/2
/C・・・・・・(6) As shown in FIG. 12(b), the receiving antenna section 2
has a parabolic correlation with the moving distance L. From this, the curve (parabola) of the reflected image 202 formed by the group of reflected waves 201 having a parabolic correlation becomes a straight line on the L2 - t2 plane, and from the slope of this straight line, the propagation velocity of the electromagnetic wave, that is, the dielectric constant can be estimated. but,
Under a road with a multilayer structure, such as a surface layer of asphalt, a roadbed made of crushed stone, or a roadbed made of conventional soil, the relative dielectric constant generally tends to be small in shallow layers and large in deep layers. . Therefore, the relative permittivity determined by the wide-angle measurement method is the average value of each layer between the ground surface and the strata boundary surface 7, and the relative permittivity between the ground surface and buried pipes is calculated to obtain a highly accurate burial depth. It doesn't matter. Therefore, if the wide-angle method is used for buried pipes that are continuous in the longitudinal direction instead of the strata boundary surface 7, accurate dielectric constants can be obtained for each pipe. However, in order to move the receiving antenna unit 2 directly above the underground pipe,
It is necessary to know the direction in which the buried pipe will be laid in advance, and this cannot be done using only the wide-angle method. [0007] The synthetic aperture method shown in the first conventional example is difficult to use when exploring a buried pipe and when there is no continuity of hyperbolic shape in the reflected image of the buried pipe. However, there was a drawback that the existence of buried pipes could not be recognized. In addition, even if the buried pipe reflection image is observed to have a hyperbolic shape, it is necessary to understand the pipe diameter and shape in advance and perform synthetic apertures.If these cannot be known in advance, it is necessary to obtain a highly accurate burial depth. The disadvantage was that it was not possible. Furthermore, the frequency analysis method shown in the second example cannot actually determine the relative permittivity of the buried medium in which the buried pipe is laid, and the relative permittivity is corrected using a known reference pipe. Therefore, there was a drawback that accurate burial depth could not be obtained. moreover,
Both the synthetic aperture method and the frequency analysis method only estimate the installation direction of the buried pipe from the road shape and the like. In addition, the third example, a method for estimating the relative permittivity in a buried medium, can obtain an accurate relative permittivity, but the receiving antenna section must be moved directly above the buried pipe in order to calculate the relative permittivity. In this case, the disadvantage is that the direction in which the buried pipe will be laid must be known in advance. Therefore, an object of the present invention is to recognize the existence of a group of reflected waves from a buried pipe even when they do not have hyperbolic continuity in a cross-sectional survey that is generally performed in an underground radar system, and to At the same time, we can calculate the relative dielectric constant of the ground surface and the electromagnetic wave propagation medium between the buried pipes, that is, the soil, regardless of the hyperbolic continuity and the diameter and shape of the buried pipes. The objective is to obtain accurate burial depth. [Means for Solving the Problems] In order to achieve the above-mentioned object, the present invention includes a transmitting antenna part having a transmitting antenna, a receiving antenna part having a receiving antenna, and a pulse signal to the transmitting antenna. A pulse generator for transmitting, a sampling device for sampling the reflected signal received by the receiving antenna, and a sampling device for converting the reflected signal into the frequency domain to calculate the spectral distribution and detecting the buried pipe based on the spectral peak frequency, DC component ratio, and half width. A waveform analysis device that recognizes the reflected signal from the underground pipe is used to gradually move only the receiving antenna section directly above the recognized buried pipe in the installation direction on the ground surface, and detect the reflected signal from the buried pipe corresponding to the moving distance of the receiving antenna. Determine the dielectric constant of the buried medium from the change in propagation time of the reflected wave,
a calculation unit that calculates the burial depth based on this relative dielectric constant;
It is equipped with an image display device. [Operation] The reflected signal from the buried pipe is converted into the frequency domain and its spectral distribution is calculated. Then, the buried pipe reflection image is recognized based on the spectral peak frequency, DC component ratio, and half-value width. The relative permittivity of the buried medium is determined from the change in the propagation time of the reflected wave corresponding to the moving distance of the receiving antenna section that moves directly above the recognized buried pipe along the installation direction, and based on this relative permittivity. The burial depth is calculated. [Embodiment] As a first means of recognizing the existence of a buried pipe and assuming the laying direction of the present invention, a frequency analysis method, which is the second example of the prior art, is used. The second method for obtaining the burial depth by determining the relative dielectric constant in the electromagnetic wave propagation medium, that is, in the soil, uses the wide-angle method, which is the third example of the prior art. The second means does not require separate devices and can be easily implemented with the same device, unlike the conventional device, which consists of the first means and the second means using separate devices. It's different from what you had. In addition, the most important feature is that it is possible to conduct cross-sectional surveys, which are generally performed on buried pipes, without relying on the hyperbolic shape of the group of reflected waves from buried pipes, without depending on the correlation. The hyperbolic correlation of the reflected wave groups from the buried pipe, which was essential in the first example of the technique, is no longer necessary. Embodiments of the present invention will be described below with reference to the drawings. FIGS. 1(a) and 1(b) are block diagrams showing an embodiment of an underground pipe exploration device according to the present invention,
FIG. 1(a) shows the first means for recognizing the existence of the buried pipe 5 and assuming the laying direction, and FIG. 1(b) shows the first means for identifying the laying direction.
and a second means for determining the dielectric constant of the buried medium between the buried pipe 5 and the ground surface, that is, the soil, and obtaining the buried depth,
These first and second means are the same device. First, the structure and operation of the first means for recognizing the existence of the buried pipe 5 and assuming the installation direction will be explained based on FIG. 1(a). A high-output impulse (monopulse) signal output from the pulse generator 10 is supplied to the transmitting antenna section 1 having broadband frequency characteristics, where the impulse signal is converted into an electromagnetic wave and sent to the underground 4. Then, the reflected waves from the buried pipe 5 existing underground 4 and other miscellaneous reflected waves are received as an observation signal, that is, a reflected signal, by the receiving antenna section 2 having broadband frequency characteristics, and the received observation signal is The sample is sampled by a sampling device 11. Next, the transmitting/receiving antenna parts 1 and 2 connected by the jig 3 and arranged at right angles to the buried pipe 5 are moved in a direction transverse to the buried pipe 5,
Repeat sampling at predetermined intervals. The sampled observation signal is supplied to the waveform analyzer 12, which extracts only the reflected signal from the buried pipe 5, which is the target object, and displays only the reflected signal from the buried pipe 5 on the display device 13. The transmitting/receiving antenna unit 1 connected by these series of operations
, 2 is displayed, and since only the reflected signal of the buried pipe 5 is displayed, its presence can be easily recognized, and the point directly above the buried pipe 5 on the ground surface can be identified. . Next, specifying the installation direction shown in FIG. 1(b),
and the operation of the second means for obtaining the burial depth will be explained. The transmitting/receiving antenna parts 1 and 2 are arranged directly above the buried pipe 5 and parallel to the laying direction, and separated by a jig 3. Next, the operation is similar to that described in the first means, that is, the electromagnetic waves sent out from the transmitting antenna section 1 are received by the receiving antenna section 2 as reflected waves from underground 4 or buried pipes 5, and sampled by the sampling device 11. Next, by the method described later, only the receiving antenna section 2 is moved directly above the buried pipe 5, sampling of reflected waves is repeated at predetermined intervals, and the sampled observation signal is supplied to the waveform analyzer 12, Only the reflected signal from the is extracted and displayed on the display device 13. Next, the calculation unit 14 examines the change in the propagation time of the reflected wave from the buried pipe corresponding to the moving distance of the receiving antenna unit 2, and calculates the relative permittivity of the ground surface and the buried medium between the buried pipe, that is, the soil. , based on which the burial depth is calculated. Next, the operation of the waveform analysis device 12 will be explained. The waveform analysis device 12 first divides the reflected signal sampled and supplied by the sampling device 11 into predetermined time intervals. That is, since the reflected signal from the underground 4 is a mixture of various miscellaneous reflected signals in addition to the reflected signal from the buried pipe 5 at different time positions, these various reflected signals are individually divided. do. This division method includes a constant time division method that divides by a constant time width ΔT, a zero
There is a zero-cross division method in which the signal is divided by a time equivalent to one cycle using a cross method, but in this embodiment, an example in which division is performed by the zero-cross method will be explained. FIG. 2 is an example of waveform division of the reflected signal 21 supplied to the waveform analyzer 12 using the zero-crossing method. The section indicated by the arrow in FIG. 2 is a time interval equivalent to one cycle according to the zero-crossing method, and a waveform number is assigned to each divided waveform. Here, an example in which waveform No. 1 is divided is shown in the upper part of FIG. The divided waveform 21' is processed by the waveform analysis device 12.
In the step, the signal is transformed into the frequency domain by fast Fourier transform processing, and the spectral distribution is determined. That is, the spectrum with the maximum intensity (peak) is detected from the spectral distribution shown in the lower part of FIG. 3, and the spectrum peak frequency fp, the spectrum intensity Ip with respect to the spectrum peak frequency fp,
Read the DC component intensity Idc and the half width W. Further, the DC component ratio Rdc is calculated from the DC component intensity Idc and the spectral intensity Ip using the following equation. Rdc=Idc/Ip・・・・・・・・・・・・・
...(7) Perform the above process for all the divided waveforms of the observed signal, and use the characteristics of Figures 4 and 5 to obtain fp1<fp<fp2, W1<W<W2, Rdc1
Divided waveforms having values other than <Rdc<Rdc2 are removed as unnecessary reflected waves. Here, FIGS. 4 and 5 show fp-R of various divided waveforms derived from observation signals obtained through numerous experiments.
It is a graph showing dc, fp-W distribution. In the figure, black circles indicate the characteristics of reflected waves from the buried pipe 5, and white circles indicate characteristics of unnecessary reflected waves. The reflected wave from the buried pipe 5 clearly falls within a certain range, that is, fp1<f
p<fp2, W1<W<W2, Rdc1<Rdc<Rd
It can be seen that the distribution is concentrated in the c2 range. fp
1, fp2, W1, W2, Rdc1, Rdc2 value 1
Examples are shown in Table 1. [Table 1] Note that there are divided waveforms that satisfy any of the filtering conditions of spectral peak frequency fp, half width W, and DC component ratio Rdc, but as shown in Table 2, There is only one divided waveform (ie, waveform No. 4) in the observed signal that satisfies the three conditions at the same time, and this divided waveform is considered to be the reflected waveform of the buried pipe 5, and only this divided waveform is extracted. Here, Table 2 shows the values of the spectral peak frequency fp, half-width W, and DC component ratio Rdc calculated for each divided waveform shown in FIG. 2. [Table 2] [0020] When the waveform analysis processing described above is applied to the observed signal in FIG. 2, unnecessary reflected signals are removed and only the waveform of the reflected signal from the buried pipe 5 becomes visible, as shown in FIG. can get. Also, since FIG. 6 is a waveform corresponding to A-A in FIG. 7, if these effects are applied to all observation signals sampled at predetermined intervals as the antenna moves, the result will be as shown in FIG. , only the reflected image of the buried pipe based on the amplitude strength of the reflected wave is displayed in the ground cross-sectional diagram constructed in a coordinate system in which the horizontal axis is the antenna movement distance and the vertical axis is the electromagnetic wave propagation time. FIG. 8 shows a perspective view of this embodiment. Figure 8 (a
) are the transmitting/receiving antenna sections 1 of each of the first and second means.
, 2 and the buried pipe 5, FIG. 8(b) shows the respective ground plane images 301, 302 and the buried pipe reflection image 102,
It is 202. In the first means for recognizing the existence of the buried pipe 5 and assuming the installation direction, the transmitting antenna part 1 and the receiving antenna part 2 are connected using the jig 3, and the buried pipe estimated from the road shape etc. transverse to the laying direction,
That is, the transmitting/receiving antenna sections 1 and 2 are moved in the direction from A to C, and the reflected signal from the buried pipe 5 is captured. From the various reflected signals observed, only the reflected signal from the buried pipe 5 is extracted by the waveform analyzer 12, and as shown in FIG. 8(b), A
→ Only the reflected image 102 of the buried pipe 5 is displayed in the ground plane image 301 corresponding to the moving distance of the transmitting/receiving antenna sections 1 and 2 in the C direction. With this operation, the existence of the buried pipe 5 can be easily recognized, and the point directly above it, that is, the point B, can be specified. Next, the antenna scanning line is changed and the above operation is performed again from A' to C' to specify point B'. The two points identified here, namely B → B', are the buried pipe laying direction,
At this stage, it is not known whether the two specified points are the same buried pipe or not, so the installation direction is assumed. Next, in the second means for specifying the installation direction and obtaining the burial depth, the transmitting/receiving antenna parts 1 and 2 are separated by a jig 3, and only the receiving antenna part 2 is placed directly above the buried pipe 5 in the laying direction. It is assumed to be moved in the direction B→B', and the reflected signal from the buried pipe etc. is captured. The various reflected signals observed are the first
Similar to the method described above, only the reflected signal from the buried pipe 5 is extracted by the waveform analyzer 12, and as shown in FIG. 8(b),
Only the buried pipe reflected image 202 is displayed from among the ground plane images 302 corresponding to the moving distance of the receiving antenna section 2 in the direction B→B'. FIG. 9 is a diagram explaining the second means in detail, and FIG. 9(a) is a diagram showing the relationship between the transmitting/receiving antenna sections 1 and 2 and the buried pipe 5, and FIG. 9(b) is a graph (theoretical parabola 401, etc.) for estimating a buried tube reflection image 202 and relative dielectric constant as the receiving antenna section 2 moves. If the two points assumed by the first means, that is, points B and B' are the same buried pipe, the receiving antenna section 2 is moving directly above the buried pipe 5, and as shown in FIG. 9(a), The electromagnetic wave propagation time t1 of the reflected wave from the buried pipe 5 observed by the receiving antenna section 2 at each moving point is t0 = 2 [[, where W is the initial distance between the transmitting antenna section 1 and the receiving antenna section 2. (W/2)2 +D2]・εS
]1/2 /C・・・・・・・(8) t1 = 2
{[[(W+L)/2]2 +D2]・εS }1/
2 /C...(9) From equations (8) and (9), t1 = [(L2 +2WL)・εS +t02・
C2]1/2/C... (10) As shown in Figure 9(b), the electromagnetic wave propagation time t
1 and the moving distance L of the receiving antenna section 2 have a parabolic correlation. That is, if there is continuity in the parabolic correlation, it can be confirmed that the points B→B' are the same buried pipe, and the installation direction of the buried pipe 5 can be identified here. Next, at the stage of determining the relative dielectric constant in the electromagnetic wave propagation medium, that is, in the soil 4, and obtaining the burial depth, as shown in FIG.
), the buried pipe reflection image 202 formed by the group of buried pipe reflection waves 201 observed in a parabolic shape is expressed by the formula (
10), the electromagnetic wave propagation time changes due to the difference in relative dielectric constant, and its slope changes. Therefore, by evaluating this slope, the relative dielectric constant can be found. Therefore, as an example of a method for evaluating this slope and estimating the relative permittivity, in addition to the method of estimating the relative permittivity from the slope of a straight line on the L2 - t2 plane as described above, Possible methods include a method of performing a synthetic aperture on a group of waves, a method of calculating from the time position of a group of reflected waves and a moving distance of the receiving antenna section 2 using the Pythagorean theorem, etc.; The method of superposition of theoretical parabolas will be explained below as the easiest method for estimating from . As shown in FIG. 9(b), the display device 13
Then, the parabolic reflection image 202 obtained by measurement and the theoretical parabola according to equation (10) with the assumed dielectric constant are displayed. In other words, the reflected wave time position T0 when L=0m
The electromagnetic wave propagation time t0 is read by specifying the coordinate of -p using a cursor key or the like, and a theoretical parabola 401 is displayed on the display device 13 according to formula (10) based on the preset general dielectric constant of soil. Next, calculate the dielectric constant εs in equation (10) to the first decimal place using the cursor keys, etc.
The angle of the theoretical parabola 401 is shifted by approximately 0.5 to change the slope of the theoretical parabola 401, and the theoretical parabola is superimposed on the reflected image 202. In this case, the theoretical parabola 402 when they completely overlap
The relative permittivity that forms this is the true relative permittivity. At this time, while changing the dielectric constant, D=C・t0
The burial depth is also displayed by /(2·εs)1/2. Through these operations, the dielectric constant can be determined from the reflected image 202 from the buried pipe 5 obtained in a parabolic shape, and highly accurate buried depth data can be obtained. These are cross-sectional surveys in the A→C direction, and as shown in FIG. In the B→B' direction, the antenna part does not cross the vertical excavation surface and operates within the same burial depth (backfilling material), so parabolic reflection images can be observed efficiently.
Since the parabolic shape is not affected by the diameter of the buried pipe 5, etc., it is possible to obtain a highly accurate dielectric constant, that is, a buried depth. Note that this underground object exploration device can be applied not only to the exploration of underground objects, but also to the exploration of invisible objects such as reinforcing bars in concrete. [0025] As explained above, by using the device of the present invention, the hyperbolic correlation between the moving distance of the transmitting/receiving antenna section and the electromagnetic wave propagation time when a buried pipe is surveyed in the transverse direction can be realized. The existence of buried pipes can be recognized completely regardless of the Also,
At the stage of identifying the installation direction and determining the dielectric constant in the buried medium, the receiving antenna is moved in the direction of the buried pipe installation, so there is no influence from vertical excavation surfaces, and it is not affected by the diameter of the buried pipe. , it is possible to obtain a group of parabolic reflected waves sufficient to estimate the relative dielectric constant, and it is possible to obtain a highly accurate burial depth.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の地中埋設物探査装置の一実施例を示す
ブロック図である。
FIG. 1 is a block diagram showing an embodiment of an underground object exploration device of the present invention.

【図2】波形分析される観測信号の波形図である。FIG. 2 is a waveform diagram of an observation signal whose waveform is analyzed.

【図3】観測信号の分割波形図およびそのスペクトル分
布を示す図である。
FIG. 3 is a diagram showing a divided waveform diagram of an observation signal and its spectral distribution.

【図4】分割波形の直流成分比とスペクトルピーク周波
数との関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the DC component ratio of the divided waveform and the spectral peak frequency.

【図5】分割波形の半値幅とスペクトルピーク周波数と
の関係を示すグラフである。
FIG. 5 is a graph showing the relationship between the half-width of a divided waveform and the spectral peak frequency.

【図6】不要反射信号が除去された反射信号の波形図で
ある。
FIG. 6 is a waveform diagram of a reflected signal from which unnecessary reflected signals have been removed.

【図7】反射信号波形に対応した埋設管の断面図である
FIG. 7 is a cross-sectional view of a buried pipe corresponding to a reflected signal waveform.

【図8】上記実施例装置の斜視図である。FIG. 8 is a perspective view of the apparatus of the embodiment.

【図9】上記実施例装置の探査方法を説明する説明図で
ある。
FIG. 9 is an explanatory diagram illustrating the exploration method of the apparatus of the embodiment.

【図10】従来の地中埋設物の探査方法を説明する説明
図である。
FIG. 10 is an explanatory diagram illustrating a conventional underground object exploration method.

【図11】従来の埋設物探査方法における問題点を説明
する説明図である。
FIG. 11 is an explanatory diagram illustrating problems in the conventional buried object exploration method.

【図12】従来の地中埋設物の探査方法を説明する説明
図である。
FIG. 12 is an explanatory diagram illustrating a conventional underground object exploration method.

【符号の説明】 1    送信アンテナ部 2    受信アンテナ部 3    治具 4    地中 10    パルス発生装置 11    サンプリング装置 12    波形解析装置 13    画像表示装置 14    計算部[Explanation of symbols] 1 Transmission antenna section 2 Receiving antenna section 3 Jig 4 Underground 10 Pulse generator 11 Sampling device 12 Waveform analysis device 13 Image display device 14 Calculation section

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  送信アンテナを配した送信アンテナ部
と、受信アンテナを配した受信アンテナ部と、送信アン
テナにパルス信号を送信するパルス発生装置と、受信ア
ンテナで受信した反射信号をサンプリングするサンプリ
ング装置と、反射信号を周波数領域に変換してスペクト
ル分布を算出しスペクトルピーク周波数,直流成分比お
よび半値幅に基づいて埋設管からの反射信号を認識する
波形解析装置と、地表面上において,認識された埋設管
の直上をその敷設方向に前記受信アンテナ部のみを徐々
に移動させ受信アンテナの移動距離に対応した埋設管か
らの反射波の伝搬時間の変化から埋設媒質の比誘電率を
求め,この比誘電率に基づいて埋設深度を算出する計算
部と、画像表示装置とを備えたことを特徴とする地中埋
設物探査装置。
Claim 1: A transmitting antenna section including a transmitting antenna, a receiving antenna section including a receiving antenna, a pulse generator for transmitting a pulse signal to the transmitting antenna, and a sampling device for sampling a reflected signal received by the receiving antenna. and a waveform analyzer that converts the reflected signal into the frequency domain to calculate the spectral distribution and recognizes the reflected signal from the buried pipe based on the spectral peak frequency, DC component ratio, and half-width. Gradually move only the receiving antenna part directly above the buried pipe in the installation direction, and find the relative dielectric constant of the buried medium from the change in propagation time of the reflected wave from the buried pipe corresponding to the moving distance of the receiving antenna. An underground object exploration device comprising: a calculation unit that calculates a burial depth based on a relative dielectric constant; and an image display device.
JP3074314A 1991-03-15 1991-03-15 Underground buried object searcher Pending JPH04286983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3074314A JPH04286983A (en) 1991-03-15 1991-03-15 Underground buried object searcher

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3074314A JPH04286983A (en) 1991-03-15 1991-03-15 Underground buried object searcher

Publications (1)

Publication Number Publication Date
JPH04286983A true JPH04286983A (en) 1992-10-12

Family

ID=13543539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3074314A Pending JPH04286983A (en) 1991-03-15 1991-03-15 Underground buried object searcher

Country Status (1)

Country Link
JP (1) JPH04286983A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008504542A (en) * 2004-06-30 2008-02-14 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method and apparatus for material strength measurement based on high frequency
JP2016211897A (en) * 2015-04-30 2016-12-15 日本電信電話株式会社 Measurement method and underground rader device
JP2021165669A (en) * 2020-04-07 2021-10-14 株式会社ウオールナット Cavity thickness estimation method and device thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008504542A (en) * 2004-06-30 2008-02-14 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method and apparatus for material strength measurement based on high frequency
JP4709837B2 (en) * 2004-06-30 2011-06-29 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method and apparatus for material thickness measurement based on high frequency
US8531329B2 (en) 2004-06-30 2013-09-10 Robert Bosch Gmbh Method and device for determining the thickness of material using high frequency
JP2016211897A (en) * 2015-04-30 2016-12-15 日本電信電話株式会社 Measurement method and underground rader device
JP2021165669A (en) * 2020-04-07 2021-10-14 株式会社ウオールナット Cavity thickness estimation method and device thereof

Similar Documents

Publication Publication Date Title
US7034740B2 (en) Method and apparatus for identifying buried objects using ground penetrating radar
US4896116A (en) Pulse radar method and apparatus for detecting an object
US6573855B1 (en) Three-dimensional questing method, three-dimensional voxel data displaying method, and device therefor
US6617996B2 (en) Ground penetrating radar with audible output
Prego et al. Efficient GPR data acquisition to detect underground pipes
dos Santos et al. Spectral analysis of ground penetrating radar signals in concrete, metallic and plastic targets
JP2000121746A (en) Surveying method for object in medium
JP4020365B2 (en) Frequency variable underground radar exploration method, apparatus and program
Wang et al. Automatic asphalt layer interface detection and thickness determination from ground-penetrating radar data
JP2528148B2 (en) Method and device for detecting underground buried objects
JPH04286983A (en) Underground buried object searcher
Al-Nuaimy et al. Automatic detection of hyperbolic signatures in ground-penetrating radar data
Junoh et al. Estimation Diameter of Buried Pipe Using Principle of Ground Penetrating Radar and Electromagnetic Locator
KR101932883B1 (en) Estimation method of cavity volume from GPR data by C-scan contour, reflex response and diffraction response
JP2866885B2 (en) Method and apparatus for measuring depth of object in buried medium and relative permittivity of buried medium
Bilik et al. Significant improvement of detection of underground rectilinear objects based on anisotropy measurements
Solla et al. GPR detection of underground pipes
Cui et al. Superimposed imaging of acoustic wave reflections for the detection of underground nonmetallic pipelines
Sagnard Development of data processing tools for the analysis of Radargrams in utility detection using Ground Penetrating Radar
JP2551952B2 (en) Invisible object detection method
Mizutani et al. Fully Automated Millimeter-Order Depth Estimation in Concrete Using Smartphone-Mounted Handheld GPR and Curve Fitting Techniques
RU2158015C2 (en) Subsurface radar
Vishwakarma et al. An Effective Frequency Filtering Approach to Improve GPR Data Resolution under the Concrete Pavements
Pajewski et al. SPOT-GPR Analysis of Ground Penetrating Radar Signals Recorded over the Limestone Region of the IFSTTAR Geophysical Test Site: Preliminary Results
JP2803007B2 (en) Invisible object search method