JP2021165669A - Cavity thickness estimation method and device thereof - Google Patents

Cavity thickness estimation method and device thereof Download PDF

Info

Publication number
JP2021165669A
JP2021165669A JP2020068990A JP2020068990A JP2021165669A JP 2021165669 A JP2021165669 A JP 2021165669A JP 2020068990 A JP2020068990 A JP 2020068990A JP 2020068990 A JP2020068990 A JP 2020068990A JP 2021165669 A JP2021165669 A JP 2021165669A
Authority
JP
Japan
Prior art keywords
cavity
chart
reflected wave
relative permittivity
road
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020068990A
Other languages
Japanese (ja)
Other versions
JP6734612B1 (en
Inventor
正晴 稲垣
Masaharu Inagaki
弘治 新
Hiroharu Shin
勇樹 高山
Yuki Takayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WALL NATSUTO KK
Walnut Ltd
Original Assignee
WALL NATSUTO KK
Walnut Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WALL NATSUTO KK, Walnut Ltd filed Critical WALL NATSUTO KK
Priority to JP2020068990A priority Critical patent/JP6734612B1/en
Application granted granted Critical
Publication of JP6734612B1 publication Critical patent/JP6734612B1/en
Publication of JP2021165669A publication Critical patent/JP2021165669A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a cavity thickness estimation method and a method thereof that can easily and accurately evaluate cavity thickness under a road in a nondestructive manner without traffic regulation.SOLUTION: While a vehicle 20 is running on a road 11, a plurality of transmission units 23 of a radar device 21 mounted on the vehicle 20 radiate electromagnetic waves toward the road 11 and a plurality of reception units 24 of the radar device 21 receive reflected waves. Reflected wave traces received by the respective reception units 24 are superposed by a common reflection point superposition method to generate a chart arranged in order of relative permittivity or velocity. Points where the reflected waves are emphasized by superposition are extracted at positions of the relative permittivity or reflected wave velocity between a medium on a starting end PS side of a cavity 12 under the road 11 in the chart and air in the cavity 12, and based on those positions, cavity thickness T under the road 11 is estimated.SELECTED DRAWING: Figure 1

Description

本発明は、道路下の空洞厚を推定する空洞厚推定方法及びその装置に関する。 The present invention relates to a cavity thickness estimation method for estimating a cavity thickness under a road and an apparatus thereof.

従来、道路下の埋設管の老朽化などにより空洞が発生し、道路陥没の原因となっている。近年では、ゲリラ豪雨などの異常気象により空洞の発生件数が増加している。 Conventionally, cavities have been created due to aging of buried pipes under the road, causing the road to collapse. In recent years, the number of cavities has increased due to abnormal weather such as guerrilla rainstorms.

このような空洞の発生件数の増加により、その補修の優先順を付加する必要が生じている。空洞の補修の優先順を決定するための重要情報として、空洞の厚さ、すなわち空洞厚が挙げられる。 Due to the increase in the number of such cavities, it is necessary to add the priority of repair. The important information for determining the priority order for repairing cavities is the thickness of the cavities, that is, the thickness of the cavities.

電磁波式の地中レーダ装置の場合、道路下の空洞のような、局所的に存在する空洞に対しては、平面的な広がりを測定できるに過ぎず、その厚さを評価することは、地中レーダ装置の移動距離に対する情報量が少ないため容易でない。したがって、一般的には、地中レーダ装置によって検出した空洞予想位置において対象物をボーリングすることにより、空洞の内部の様子を目視確認する方法が用いられている(例えば、特許文献1参照。)。 In the case of an electromagnetic wave type ground penetrating radar device, it is only possible to measure the planar spread of a locally existing cavity such as a cavity under a road, and evaluating its thickness is the ground. It is not easy because the amount of information for the moving distance of the medium radar device is small. Therefore, generally, a method of visually confirming the inside of the cavity by boring the object at the predicted cavity position detected by the ground penetrating radar device is used (see, for example, Patent Document 1). ..

しかしながら、上述のような方法の場合には、検査対象となる道路の交通規制を伴い、また、道路の検査後の埋め戻しなどの作業が必要となる。 However, in the case of the above-mentioned method, traffic regulation of the road to be inspected is involved, and work such as backfilling after the inspection of the road is required.

また、道路上に電磁波を送受信するアンテナを設置し、空洞の始端および終端からの反射波を解析することで空洞厚を推定する方向も知られている(例えば、特許文献2参照。)。しかしながら、この場合でも、検査対象となる道路の交通規制が必要となる。 It is also known that an antenna for transmitting and receiving electromagnetic waves is installed on the road and the cavity thickness is estimated by analyzing the reflected waves from the start and end of the cavity (see, for example, Patent Document 2). However, even in this case, traffic regulation of the road to be inspected is required.

特開平5−87945号公報Japanese Unexamined Patent Publication No. 5-87945 特許第5062921号公報Japanese Patent No. 5062921

本発明は、このような点に鑑みなされたもので、交通規制を伴うことなく、道路下の空洞厚を非破壊で容易にかつ、精度よく評価できる空洞厚推定方法及びその装置を提供することを目的とする。 The present invention has been made in view of these points, and provides a cavity thickness estimation method and an apparatus thereof that can evaluate the cavity thickness under a road in a non-destructive manner easily and accurately without being accompanied by traffic regulation. With the goal.

請求項1記載の空洞厚推定方法は、車両により道路を走行しつつ、この車両に搭載したレーダ装置の複数の送信部から前記道路に向かって電磁波を放射するとともに前記レーダ装置の複数の受信部で反射波を受信するステップと、前記各受信部で受信した反射波トレースを共通反射点重合法により重合して比誘電率順または速度順に並べたチャートを生成するステップと、前記チャートにおける前記道路下の空洞の始端側の媒質と前記空洞内の空気とのそれぞれの比誘電率または反射波速度の位置で前記重合により反射波が強調された点を抽出し、それらの位置に基づき前記道路下の空洞厚を推定するステップと、を備えるものである。 The cavity thickness estimation method according to claim 1 radiates electromagnetic waves from a plurality of transmitting units of a radar device mounted on the vehicle toward the road while traveling on a road by a vehicle, and a plurality of receiving units of the radar device. A step of receiving the reflected wave at The points where the reflected wave is emphasized by the polymerization are extracted at the positions of the relative permittivity or the reflected wave velocity of the medium on the starting end side of the lower cavity and the air in the cavity, and based on those positions, under the road. It comprises a step of estimating the cavity thickness of.

請求項2記載の空洞厚推定方法は、請求項1記載の空洞厚推定方法において、チャートを生成するステップは、各受信部で受信した反射波トレースのうち、空洞の始端及び終端に応じた共通反射点を共有するものを送信部と前記受信部との距離順に並べた補助チャートを生成するステップと、前記補助チャートを所定の複数の比誘電率毎または速度毎に走時補正したものをそれぞれ重合し走時補正に用いた前記比誘電率順または前記速度順に並べてチャートを生成するステップと、を含むものである。 The cavity thickness estimation method according to claim 2 is the cavity thickness estimation method according to claim 1. In the cavity thickness estimation method according to claim 1, the step of generating a chart is common to the reflected wave traces received by each receiving unit according to the start and end of the cavity. A step of generating an auxiliary chart in which those sharing a reflection point are arranged in the order of distance between the transmitting unit and the receiving unit, and a running correction of the auxiliary chart for each predetermined plurality of relative permittivity or for each speed are performed. It includes a step of generating a chart by arranging the layers in the order of the relative permittivity or the order of the speeds used for the run-time correction.

請求項3記載の空洞厚推定装置は、電磁波を放射する複数の送信部及び反射波を受信する複数の受信部を有し、車両に搭載されるレーダ装置と、前記各受信部で受信した反射波トレースを共通反射点重合法により重合して比誘電率順または速度順に並べたチャートを生成するチャート生成手段と、このチャート生成手段により生成されたチャートにおける道路下の空洞の始端側の媒質と前記空洞内の空気とのそれぞれの比誘電率または反射波速度の位置で前記重合により反射波が強調された位置を抽出し、それらの位置に基づき前記道路下の空洞厚を推定する推定手段と、を備えるものである。 The cavity thickness estimation device according to claim 3 has a plurality of transmitters that emit electromagnetic waves and a plurality of receivers that receive reflected waves, a radar device mounted on a vehicle, and reflections received by each of the receivers. A chart generation means for generating a chart in which wave traces are polymerized by a common reflection point polymerization method and arranged in order of relative permittivity or velocity, and a medium on the starting end side of a cavity under the road in the chart generated by this chart generation means. With an estimation means that extracts the position where the reflected wave is emphasized by the polymerization at the position of each relative permittivity or reflected wave velocity with the air in the cavity, and estimates the cavity thickness under the road based on those positions. , Is provided.

請求項4記載の空洞厚推定装置は、請求項3記載の空洞厚推定装置において、チャート生成手段は、各受信部で受信した反射波トレースのうち、空洞の始端及び終端に応じた共通反射点を共有するものを送信部と前記受信部との距離順に並べた補助チャートを生成し、この補助チャートを所定の複数の比誘電率毎または速度毎に走時補正したものをそれぞれ重合し走時補正に用いた前記比誘電率順または前記速度順に並べてチャートを生成するものである。 The cavity thickness estimation device according to claim 4 is the cavity thickness estimation device according to claim 3, wherein the chart generating means is a common reflection point according to the start end and the end of the cavity among the reflected wave traces received by each receiving unit. Auxiliary charts are generated in which the shared ones are arranged in order of distance between the transmitting unit and the receiving unit, and the auxiliary charts corrected for running time for each of a plurality of predetermined relative permittivity or speeds are superimposed and run. The chart is generated by arranging them in the order of the relative permittivity or the speed used for the correction.

請求項1記載の空洞厚推定方法によれば、電磁波の送信及び反射波の受信を車両により道路を走行しながら実施するため、交通規制が不要であるとともに、各受信部で受信した反射波トレースを共通反射点重合法により重合することでノイズを抑制したチャートに基づき既知の媒質の比誘電率または反射波速度を用いて道路下の空洞厚を推定するので、道路下の空洞厚を非破壊で容易にかつ、精度よく評価できる。 According to the cavity thickness estimation method according to claim 1, since the electromagnetic wave is transmitted and the reflected wave is received while the vehicle is traveling on the road, traffic regulation is not required and the reflected wave trace received by each receiving unit is not required. Since the cavity thickness under the road is estimated using the relative dielectric constant or reflected wave velocity of the known medium based on the chart in which noise is suppressed by polymerizing by the common reflection point polymerization method, the cavity thickness under the road is not destroyed. Can be evaluated easily and accurately.

請求項2記載の空洞厚推定方法によれば、請求項1記載の空洞厚推定方法の効果に加えて、生成されたチャートにおいてノイズを効果的に抑制でき、チャートから反射波が強調された位置を抽出しやすくなるので、それらの位置に基づく空洞厚の推定精度を向上できる。 According to the cavity thickness estimation method according to claim 2, in addition to the effect of the cavity thickness estimation method according to claim 1, noise can be effectively suppressed in the generated chart, and the position where the reflected wave is emphasized from the chart. Can be easily extracted, so that the accuracy of estimating the cavity thickness based on their positions can be improved.

請求項3記載の空洞厚推定装置によれば、レーダ装置からの電磁波の送信及び反射波の受信を車両により道路を走行しながら実施するため、交通規制が不要であるとともに、各受信部で受信した反射波トレースを共通反射点重合法により重合することでノイズを抑制したチャートに基づき既知の媒質の比誘電率または反射波の速度を用いて道路下の空洞厚を推定手段により推定するので、道路下の空洞厚を非破壊で容易にかつ、精度よく評価できる。 According to the cavity thickness estimation device according to claim 3, since the electromagnetic wave is transmitted from the radar device and the reflected wave is received while the vehicle is traveling on the road, traffic regulation is not required and each receiving unit receives the electromagnetic wave. Since the cavity thickness under the road is estimated by the estimation means using the relative dielectric constant of the known medium or the velocity of the reflected wave based on the chart in which the noise is suppressed by superimposing the reflected wave trace by the common reflection point polymerization method. The thickness of the cavity under the road can be evaluated easily and accurately without destruction.

請求項4記載の空洞厚推定装置によれば、請求項3記載の空洞厚推定装置の効果に加えて、生成されたチャートにおいてノイズを効果的に抑制でき、チャートから反射波が強調された位置を推定手段により抽出しやすくなるので、それらの位置に基づく空洞厚の推定精度を向上できる。 According to the cavity thickness estimation device according to claim 4, in addition to the effect of the cavity thickness estimation device according to claim 3, noise can be effectively suppressed in the generated chart, and the position where the reflected wave is emphasized from the chart. Can be easily extracted by the estimation means, so that the accuracy of estimating the cavity thickness based on their positions can be improved.

(a)は本発明の一実施の形態の空洞厚推定装置を示す外観図、(b)は空洞厚推定装置の一部を示す斜視図、(c)は空洞厚推定装置のレーダ装置を模式的に示す断面図である。(A) is an external view showing a cavity thickness estimation device according to an embodiment of the present invention, (b) is a perspective view showing a part of the cavity thickness estimation device, and (c) is a model of a radar device of the cavity thickness estimation device. It is a cross-sectional view which shows. 同上空洞厚推定方法により生成される補助チャートの一例を示す説明図である。It is explanatory drawing which shows an example of the auxiliary chart generated by the cavity thickness estimation method of the same as above. 同上空洞厚推定方法により図2に示す補助チャートを比誘電率毎に走時補正したものをそれぞれ示す説明図である。It is explanatory drawing which shows the travel-time correction of the auxiliary chart shown in FIG. 2 for each relative permittivity by the same cavity thickness estimation method. 同上空洞厚推定方法により生成されるチャートの一例を示す説明図である。It is explanatory drawing which shows an example of the chart generated by the cavity thickness estimation method of the same as above. 同上空洞厚推定方法により図4に示すチャートを階調表示に変換した例を示す説明図である。It is explanatory drawing which shows the example which converted the chart shown in FIG. 4 into a gradation display by the same cavity thickness estimation method. 同上空洞厚推定方法によりチャートからの空洞の始端及び終端の位置に対応する反射波の抽出方法の説明図である。It is explanatory drawing of the extraction method of the reflected wave corresponding to the position of the start end and the end end of the cavity from the chart by the cavity thickness estimation method of the same as above. 同上空洞厚推定方法による推定空洞厚と実空洞厚との相関を示すグラフである。It is a graph which shows the correlation between the estimated cavity thickness by the cavity thickness estimation method and the actual cavity thickness.

以下、本発明の一実施の形態について、図面を参照して説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1(a)、図1(b)、及び、図1(c)において、10は空洞厚推定装置を示す。空洞厚推定装置10は、検査対象物である道路11の下部に生じた空洞12の厚み、すなわち空洞厚Tを推定するものである。道路11は、アスファルトやコンクリートなどの舗装部15と、その下部に位置する路盤部16と、からなる舗装道路である。以下、舗装部15は、基本的に平坦な表面を有するものとして説明する。また、空洞12は、舗装部15と路盤部16との間に生じているものとして説明するが、舗装部15中に形成されているものでもよい。 In FIGS. 1 (a), 1 (b), and 1 (c), 10 shows a cavity thickness estimation device. The cavity thickness estimation device 10 estimates the thickness of the cavity 12 generated in the lower part of the road 11 which is the inspection target, that is, the cavity thickness T. The road 11 is a paved road composed of a paved portion 15 such as asphalt or concrete and a roadbed portion 16 located below the paved portion 15. Hereinafter, the pavement portion 15 will be described as having a basically flat surface. Further, although the cavity 12 is described as being formed between the pavement portion 15 and the roadbed portion 16, it may be formed in the pavement portion 15.

空洞厚推定装置10は、車両20を備える。車両20には、レーダ装置21が配置されている。レーダ装置21は、例えば車両20の後部に搭載されている。レーダ装置21は、車両20の車幅方向に長手状に配置され、道路11の表面に対し、所定の間隙、例えば約8cm程度上方に離れて平行に位置するように車両20に設置され、障害物などの状況に応じて上下する。 The cavity thickness estimation device 10 includes a vehicle 20. A radar device 21 is arranged on the vehicle 20. The radar device 21 is mounted on the rear of the vehicle 20, for example. The radar device 21 is arranged longitudinally in the vehicle width direction of the vehicle 20, and is installed in the vehicle 20 so as to be parallel to a predetermined gap, for example, about 8 cm above the surface of the road 11, and is an obstacle. It goes up and down depending on the situation such as things.

レーダ装置21は、複数の送信部23及び受信部24を有する、マルチチャネルのレーダ装置である。送信部23及び受信部24は、レーダ装置21の長手方向に配置される。つまり、送信部23及び受信部24は、車幅方向、すなわち道路11の横断方向に順次配置される。また、送信部23と受信部24とは、例えばレーダ装置21の長手方向に等間隔で交互に配置されている。送信部23と受信部24とは、対をなして配置されている。すなわち、送信部23と受信部24とは同数ずつ配置されている。 The radar device 21 is a multi-channel radar device having a plurality of transmitting units 23 and receiving units 24. The transmitting unit 23 and the receiving unit 24 are arranged in the longitudinal direction of the radar device 21. That is, the transmitting unit 23 and the receiving unit 24 are sequentially arranged in the vehicle width direction, that is, in the crossing direction of the road 11. Further, the transmitting unit 23 and the receiving unit 24 are alternately arranged at equal intervals in the longitudinal direction of the radar device 21, for example. The transmitting unit 23 and the receiving unit 24 are arranged in a pair. That is, the same number of transmission units 23 and reception units 24 are arranged.

本実施の形態において、レーダ装置21は、ステップ周波数方式により信号を生成する。すなわち、送信部23からの送信波をステップ状に変化させながら、各周波数における送信波と反射物により反射されて受信部24により受信された受信波との振幅の比および位相差を測定することで、反射物との距離を測定する。レーダ装置21によりステップ周波数方式で生成された信号は、コンピュータ26に送信される。コンピュータ26には、作業者が入力するためのキーボードやマウスなどの入力手段27と、後述するチャートなどを表示する表示手段であるモニタ28と、が接続されている。コンピュータ26は、CPUなどの演算装置を備え、ステップ周波数方式から送信された信号を受信し、それに基づいて各種チャートを生成するチャート生成手段の機能を有する。また、コンピュータ26は、データを記憶する記憶手段などを備えていてもよい。コンピュータ26、入力手段27、及び、モニタ28は、車両20に搭載され、車両20に搭乗した作業者により操作されてもよいし、車両20とは離れた遠隔地に設置され、ステップ周波数方式により生成された信号をインターネットなどのネットワークを介して受信するようにしてもよい。 In the present embodiment, the radar device 21 generates a signal by the step frequency method. That is, while changing the transmitted wave from the transmitting unit 23 in a stepwise manner, the amplitude ratio and the phase difference between the transmitted wave at each frequency and the received wave reflected by the reflector and received by the receiving unit 24 are measured. Then measure the distance to the reflector. The signal generated by the radar device 21 in the step frequency system is transmitted to the computer 26. The computer 26 is connected to an input means 27 such as a keyboard and a mouse for an operator to input, and a monitor 28 which is a display means for displaying a chart and the like described later. The computer 26 includes an arithmetic unit such as a CPU, and has a function of a chart generation means that receives signals transmitted from the step frequency system and generates various charts based on the signals. Further, the computer 26 may include a storage means for storing data and the like. The computer 26, the input means 27, and the monitor 28 may be mounted on the vehicle 20 and operated by an operator on the vehicle 20, or may be installed in a remote location away from the vehicle 20 by a step frequency method. The generated signal may be received via a network such as the Internet.

次に、上記の空洞厚推定装置10による空洞厚推定方法について説明する。 Next, a method for estimating the cavity thickness by the above-mentioned cavity thickness estimation device 10 will be described.

まず、車両20により検査対象となる道路11を所定速度で走行しつつ、レーダ装置21によって道路11に向かって送信部23から電磁波を放射し、その反射波を受信部24で受信する。このとき、車両20は、一定速度で走行することが好ましい。走行速度としては、一般道の場合、例えば60km/h、高速道路の場合、例えば80km/hなど、交通への影響が少ない、または交通への影響がない速度としてよい。 First, while the vehicle 20 travels on the road 11 to be inspected at a predetermined speed, the radar device 21 radiates an electromagnetic wave from the transmitting unit 23 toward the road 11 and receives the reflected wave by the receiving unit 24. At this time, it is preferable that the vehicle 20 travels at a constant speed. The traveling speed may be a speed having little influence on traffic or no influence on traffic, such as 60 km / h in the case of a general road and 80 km / h in the case of an expressway.

次いで、受信部24で受信された反射波の時間変化すなわち反射波トレースを共通反射点重合法(CMP重合法)により重合して比誘電率または速度順に並べたチャートをコンピュータ26により生成する。 Next, the computer 26 generates a chart in which the time change of the reflected wave received by the receiving unit 24, that is, the reflected wave trace is polymerized by the common reflection point polymerization method (CMP polymerization method) and arranged in order of relative permittivity or velocity.

このチャートを生成する際には、まず、各受信部24で受信した反射波トレースのうち、空洞12の始端PS及び終端PEに応じた共通反射点CPS,CPEを共有するものを送信部23とその送信部23から放射された電磁波の共通反射点CPS,CPEでの反射波を受信した受信部24との距離順、または、共通反射点CPS,CPEからの距離順に並べた補助チャートをコンピュータ26により生成する。つまり、共通反射点CPS,CPEは、それぞれ空洞12の始端PS及び終端PEにおける送信部23とその送信部23から放射された電磁波の共通反射点CPS,CPEでの反射波を受信した受信部24との中点である。 When generating this chart, first, among the reflected wave traces received by each receiving unit 24, the one sharing the common reflection point CPS and CPE corresponding to the start PS and the end PE of the cavity 12 is shared with the transmitter 23. Auxiliary charts arranged in order of distance from the receiving unit 24 that received the reflected wave at the common reflection point CPS and CPE of the electromagnetic wave radiated from the transmitting unit 23, or in order of distance from the common reflection point CPS and CPE are arranged on the computer 26. Generated by. That is, the common reflection points CPS and CPE are the transmission unit 23 at the start PS and the end PE of the cavity 12, and the reception unit 24 that receives the reflected waves at the common reflection points CPS and CPE of the electromagnetic waves radiated from the transmission unit 23, respectively. It is the middle point of.

補助チャートは、CMPアンサンブルとも呼ばれる。図1(c)に示す例のように、受信部24が5つある場合、補助チャートは、これら5つの受信部24により受信された反射波トレースを並べたものである。図2に補助チャートC1の一例を示す。図2に示す例では、一方の軸(横軸)が送信部23とその送信部23から放射された電磁波の共通反射点CPS,CPEでの反射波を受信した受信部24と(図1(c))の距離、一方の軸と交差する他方の軸(縦軸)が時間である。隣接する反射波トレース間は、例えばこれらの平均値などに基づき適宜補完する。 Auxiliary charts are also called CMP ensembles. As in the example shown in FIG. 1 (c), when there are five receiving units 24, the auxiliary chart is an arrangement of the reflected wave traces received by these five receiving units 24. FIG. 2 shows an example of the auxiliary chart C1. In the example shown in FIG. 2, one axis (horizontal axis) is the transmitting unit 23 and the receiving unit 24 that receives the reflected waves at the common reflection points CPS and CPE of the electromagnetic waves radiated from the transmitting unit 23 (FIG. 1 (FIG. 1 (FIG. 1)). c)) distance, the other axis (vertical axis) that intersects one axis is time. The adjacent reflected wave traces are appropriately complemented based on, for example, their average values.

図2において、L1が空洞12の始端PS(図1(c))での反射波走時、L2が空洞12の終端PE(図1(c))での反射波走時を示す。反射波走時には、図1(c)に示す送信部23と受信部24との距離に応じて遅れが生じるため、反射波走時は近似的に双曲線となる。なお、補助チャートは、モニタ28に表示されてもよいし、モニタ28に表示することなくコンピュータ26の内部でデータとして生成されてもよい。 In FIG. 2, L1 shows the reflected wave traveling at the starting end PS (FIG. 1 (c)) of the cavity 12, and L2 shows the reflected wave traveling at the ending PE (FIG. 1 (c)) of the cavity 12. Since a delay occurs depending on the distance between the transmitting unit 23 and the receiving unit 24 shown in FIG. 1C during the reflected wave traveling, the reflection wave travels approximately as a hyperbola. The auxiliary chart may be displayed on the monitor 28, or may be generated as data inside the computer 26 without being displayed on the monitor 28.

次いで、各受信部24で受信された反射波トレースのノイズを低減し、S/N比を向上するために、補助チャートを所定の複数の比誘電率毎または速度毎に走時補正したものをそれぞれ重合し比誘電率順または速度順に並べたチャートをコンピュータ26により生成する。 Next, in order to reduce the noise of the reflected wave trace received by each receiving unit 24 and improve the S / N ratio, the auxiliary chart is corrected for running time for each of a plurality of predetermined relative permittivity or for each speed. The computer 26 generates a chart obtained by polymerizing each of them and arranging them in order of relative permittivity or speed.

まず、補助チャートにおける反射波走時の遅れを所定の複数の比誘電率毎またはその比誘電率に応じた速度毎に補正する(NMO補正)。比誘電率に応じた速度とは、真空中の光速度をc、媒質の比誘電率をεとしたとき、v=c/√εで算出される速度である。つまり、比誘電率とその比誘電率に応じた速度とは互いに反比例の関係にある。比誘電率または速度は、少なくとも空気の比誘電率または反射波速度、及び、舗装部15(図1(c))を構成する媒質の比誘電率または反射波速度を含む所定範囲において、所定の一定間隔毎に設定される。 First, the delay during reflected wave running in the auxiliary chart is corrected for each of a plurality of predetermined relative permittivity or for each speed according to the relative permittivity (NMO correction). The velocity according to the relative permittivity is a velocity calculated by v = c / √ε r, where c is the light velocity in vacuum and ε r is the relative permittivity of the medium. That is, the relative permittivity and the speed according to the relative permittivity are inversely proportional to each other. The relative permittivity or velocity is predetermined within a predetermined range including at least the relative permittivity or reflected wave velocity of air and the relative permittivity or reflected wave velocity of the medium constituting the pavement portion 15 (FIG. 1 (c)). It is set at regular intervals.

図2に示す補助チャートC1を各比誘電率または各速度で補正した補助チャートC11〜C124の一例を図3に示す。図3においては、左側から右側へと、比誘電率が順次小さくなる順に並べられている。図3に示す例では、一方の軸(横軸)が比誘電率、一方の軸と交差する他方の軸(縦軸)が時間であるが、一方の軸は速度でもよい。一方の軸が速度の場合、比誘電率とは大小が逆になる。なお、補正された補助チャートは、モニタ28に表示されてもよいし、図1(b)に示すモニタ28に表示することなくコンピュータ26の内部でデータとして生成されてもよい。 FIG. 3 shows an example of auxiliary charts C1 1 to C1 24 in which the auxiliary charts C1 shown in FIG. 2 are corrected at each relative permittivity or each speed. In FIG. 3, they are arranged in ascending order of relative permittivity from the left side to the right side. In the example shown in FIG. 3, one axis (horizontal axis) is the relative permittivity and the other axis (vertical axis) intersecting one axis is time, but one axis may be velocity. When one axis is velocity, the magnitude is opposite to the relative permittivity. The corrected auxiliary chart may be displayed on the monitor 28, or may be generated as data inside the computer 26 without being displayed on the monitor 28 shown in FIG. 1 (b).

次いで、それら補正された補助チャートをそれぞれ重合する(足し合わせる)。このとき、反射波トレースにおける反射波速度と等しいまたは略等しい速度、あるいはその速度に応じた比誘電率で補正された補助チャートにおいては、各送信部23と各受信部24との距離に応じて生じる時間の遅れがちょうど相殺され、すべての受信部24で受信された反射波トレースが、各送信部23と各受信部24との距離が同一(例えば0)となるように補正されるため、反射波走時が略直線状に変換される。図3に示す例では、反射波走時L1が補助チャートC110で、反射波走時L2が補助チャートC114で、それぞれ略直線状に変換されている。つまり、反射波走時L1の反射波速度またはその反射波速度に応じた比誘電率は、補助チャートC110の変換に用いられた速度または比誘電率と略等しく、反射波走時L2の反射波速度またはその反射波速度に応じた比誘電率は、補助チャートC114の変換に用いられた速度または比誘電率と略等しい。そのため、補助チャートC110,C114の重合により、それぞれの補助チャートC110,C114の補正に用いられた速度またはそれに応じた比誘電率を有する媒質での反射波が強調されることとなる。 Then, each of these corrected auxiliary charts is polymerized (added). At this time, in the auxiliary chart corrected by a speed equal to or substantially equal to the reflected wave speed in the reflected wave trace, or a specific dielectric constant corresponding to the speed, the distance between each transmitting unit 23 and each receiving unit 24 is increased. The resulting time delay is just offset and the reflected wave traces received by all receivers 24 are corrected so that the distance between each transmitter 23 and each receiver 24 is the same (eg 0). The time of reflected wave running is converted to a substantially linear shape. In the example shown in FIG. 3, the reflected wave traveling time L1 is converted to the auxiliary chart C1 10 and the reflected wave traveling time L2 is converted to the auxiliary chart C1 14 in a substantially linear shape. That is, the reflected wave velocity of L1 during reflected wave traveling or the specific dielectric constant according to the reflected wave velocity is substantially equal to the velocity or specific dielectric constant used for the conversion of the auxiliary chart C1 10, and the reflection of L2 during reflected wave traveling is approximately equal. The relative dielectric constant according to the wave velocity or its reflected wave velocity is approximately equal to the velocity or specific dielectric constant used for the conversion of auxiliary chart C1 14. Therefore, by polymerization of the auxiliary chart C1 10, C1 14, so that the reflected wave of a medium having a respective auxiliary chart C1 10, C1 14 dielectric constant corresponding speed or it is used to correct is highlighted ..

そして、これら補助チャートをそれぞれ重合したものを、それぞれの変換に用いた比誘電率順または速度順に並べたチャートをコンピュータ26により生成する。図4にチャートCの一例を示す。図4に示す例では、一方の軸(横軸)が比誘電率、一方の軸と交差する他方の軸(縦軸)が時間であるが、一方の軸は速度でもよい。一方の軸が速度の場合、比誘電率とは大小が逆となる。このチャートCでは、反射波の強度が左右方向の振幅として示されている。補助チャート間のトレースは、例えばこれらの平均値などに基づき適宜補完してもよい。 Then, the computer 26 generates a chart obtained by arranging each of these auxiliary charts in the order of relative permittivity or velocity used for each conversion. FIG. 4 shows an example of Chart C. In the example shown in FIG. 4, one axis (horizontal axis) is the relative permittivity and the other axis (vertical axis) intersecting one axis is time, but one axis may be velocity. When one axis is velocity, the magnitude is opposite to the relative permittivity. In this chart C, the intensity of the reflected wave is shown as the amplitude in the left-right direction. The traces between the auxiliary charts may be appropriately complemented based on, for example, these average values.

さらに、本実施の形態では、図1(b)に示すコンピュータ26により、チャートの振幅の大小を濃淡(コントラスト)に変換する。図5に変換したチャートCの一例を示す。図5に示す例では、図4と同様に、一方の軸(横軸)が比誘電率、一方の軸と交差する他方の軸(縦軸)が時間であるが、一方の軸は速度でもよい。一方の軸が速度の場合、比誘電率とは大小が逆となる。図5に示すチャートCでは、振幅が正方向または負方向に大きいほど黒く示され、振幅が負方向または正方向に大きいほど白く示される。これに限らず、チャートは、反射波の強度に応じて、色彩・彩度、明暗、輝度など、濃淡とは別の要素によって表現してもよい。 Further, in the present embodiment, the magnitude of the amplitude of the chart is converted into light and shade (contrast) by the computer 26 shown in FIG. 1 (b). An example of the chart C converted into FIG. 5 is shown. In the example shown in FIG. 5, as in FIG. 4, one axis (horizontal axis) is the relative permittivity, and the other axis (vertical axis) that intersects one axis is time, but one axis is also velocity. good. When one axis is velocity, the magnitude is opposite to the relative permittivity. In the chart C shown in FIG. 5, the larger the amplitude is in the positive or negative direction, the blacker it is, and the larger the amplitude is in the negative or positive direction, the whiter it is. Not limited to this, the chart may be represented by elements other than shading, such as color / saturation, light / darkness, and brightness, depending on the intensity of the reflected wave.

そして、このチャートから、道路11下の空洞12の始端PS側の媒質と空洞12内の空気との比誘電率または反射波速度の位置で重合により反射波が強調された位置を抽出する。空洞12の始端PS側の媒質は、道路11の舗装部15を構成する媒質であり、一般的に、比誘電率が8〜12程度である。また、空洞12内の空気は、比誘電率が約1である。つまり、舗装部15の媒質及び空洞12中の空気についてはそれぞれ既知であるから、これらの媒質に応じた比誘電率または反射波速度も既知である。本実施の形態では、これら既知の値を利用して、チャートから、重合により反射波が強調された箇所、つまり空洞12の始端PSの位置で反射されたと推測される反射波、及び、空洞12の終端PEの位置で反射されたと推測される反射波を抽出する。 Then, from this chart, the position where the reflected wave is emphasized by the polymerization is extracted at the position of the relative permittivity or the reflected wave velocity between the medium on the PS side at the start end of the cavity 12 under the road 11 and the air in the cavity 12. The medium on the PS side at the starting end of the cavity 12 is a medium constituting the pavement portion 15 of the road 11, and generally has a relative permittivity of about 8 to 12. Further, the air in the cavity 12 has a relative permittivity of about 1. That is, since the medium of the pavement 15 and the air in the cavity 12 are known, the relative permittivity or the reflected wave velocity corresponding to these media is also known. In the present embodiment, using these known values, the reflected wave estimated to be reflected at the position where the reflected wave is emphasized by the polymerization, that is, the position of the starting point PS of the cavity 12, and the cavity 12 are used. The reflected wave that is presumed to be reflected at the position of the terminal PE of is extracted.

具体的に、チャートに対し、既知の始端PS側の媒質の比誘電率または反射波速度の線と、空洞12内の空気の比誘電率または反射波速度の線とを重ね、これらの線と直交または略直交する方向に延びる反射波の強調箇所を、それぞれ求める位置であると推定する。これは、上記の走時補正において、反射波トレースにおける反射波と等しいまたは略等しい速度、あるいはその速度に応じた比誘電率で補正した場合に、反射波走時が略直線状に変換されるため、比誘電率または反射波速度の線と直交または略直交する方向に直線状に延びている位置が、反射波が生じた位置、すなわち空洞12の始端PSの位置及び終端PEの位置に対応する位置と推定されるからである。 Specifically, on the chart, the lines of the known relative permittivity or reflected wave velocity of the medium on the starting PS side and the lines of the relative permittivity or reflected wave velocity of the air in the cavity 12 are overlapped with these lines. It is estimated that the emphasized points of the reflected waves extending in the orthogonal or substantially orthogonal directions are the desired positions. This is because, in the above-mentioned running time correction, when the speed is equal to or substantially equal to the reflected wave in the reflected wave trace, or the relative dielectric constant is corrected according to the speed, the reflected wave running time is converted into a substantially linear shape. Therefore, the position extending linearly in the direction orthogonal to or substantially orthogonal to the line of the specific dielectric constant or the reflected wave velocity corresponds to the position where the reflected wave is generated, that is, the position of the start PS and the position of the end PE of the cavity 12. This is because it is presumed to be the position to be used.

本実施の形態に示す例の場合、図3に示す補助チャートC110の変換に用いた比誘電率または速度が、始端PSでの反射波を生じさせる舗装部15の媒質の比誘電率またはこの媒質による反射波速度の位置であり、補助チャートC114の変換に用いた比誘電率または速度が、終端PEでの反射波を生じさせる空洞12内の空気の比誘電率または空気による反射波速度の位置であると推定される。 In the case of the example shown in this embodiment, the relative permittivity or velocity used for the conversion of the auxiliary chart C1 10 shown in FIG. 3 is the relative permittivity or the relative permittivity of the medium of the pavement portion 15 that generates the reflected wave at the starting point PS. The position of the reflected wave velocity by the medium, the relative permittivity or velocity used for the conversion of auxiliary chart C1 14 is the relative permittivity of the air in the cavity 12 that produces the reflected wave at the terminal PE or the reflected wave velocity by the air. Is presumed to be the position of.

図5に示すチャートCの一例に対し、空洞12内の空気の比誘電率を示す線E1と、空洞12の始端PS側の媒質、つまり舗装部15の媒質の比誘電率を示す線E2とを重ねたものを図6に示す。図6に示す例では、図4及び図5と同様に、一方の軸(横軸)が比誘電率、一方の軸と交差する他方の軸(縦軸)が時間であるが、一方の軸は速度でもよい。一方の軸が速度の場合、比誘電率とは大小が逆となる。図6に示すチャートCの例において、反射波を示す黒線または白線のうち、一方の軸と平行または略平行に表れる線と線E1とが交差する位置P1が、空洞12の終端PEでの反射波であると推定される。同様に、反射波を示す黒線または白線のうち、一方の軸と平行または略平行に表れる線と線E2とが交差する位置P2が、空洞12の始端PSでの反射波であると推定される。これに限らず、図4に示すチャートCを用いて、同様に位置P1,P2を抽出してもよい。 For an example of chart C shown in FIG. 5, a line E1 showing the relative permittivity of air in the cavity 12 and a line E2 showing the relative permittivity of the medium on the starting end PS side of the cavity 12, that is, the medium of the pavement portion 15. Is shown in FIG. In the example shown in FIG. 6, as in FIGS. 4 and 5, one axis (horizontal axis) is the relative permittivity, and the other axis (vertical axis) that intersects one axis is time, but one axis. May be speed. When one axis is velocity, the magnitude is opposite to the relative permittivity. In the example of Chart C shown in FIG. 6, the position P1 at which the line E1 intersects with the black line or white line indicating the reflected wave that appears parallel to or substantially parallel to one axis is at the terminal PE of the cavity 12. It is presumed to be a reflected wave. Similarly, of the black or white lines indicating the reflected wave, the position P2 where the line appearing parallel to or substantially parallel to one axis and the line E2 intersect is presumed to be the reflected wave at the starting point PS of the cavity 12. NS. Not limited to this, positions P1 and P2 may be extracted in the same manner using the chart C shown in FIG.

そして、チャートCから抽出された空洞12の始端PSでの反射波及び終端PEでの反射波に基づき、道路11下の空洞厚Tを推定する。つまり、空洞厚Tは、チャートCから抽出した位置P1,P2間の時間差Δtから、媒質中の光速度をvとして、T=v・Δt/2で算出される。上記した通り、真空中の光速度をc、媒質の比誘電率をεとしたとき、その媒質からの反射波の速度vは、v=c/√εで算出され、空洞12内の媒質である空気の比誘電率は約1であるから、実質的にT=c・Δt/2である。 Then, the cavity thickness T under the road 11 is estimated based on the reflected wave at the start PS and the reflected wave at the end PE of the cavity 12 extracted from the chart C. That is, the cavity thickness T is calculated by T = v · Δt / 2, where v is the speed of light in the medium, from the time difference Δt between the positions P1 and P2 extracted from the chart C. As described above, when the light velocity in vacuum is c and the relative permittivity of the medium is ε r , the velocity v of the reflected wave from the medium is calculated by v = c / √ε r , and the velocity v in the cavity 12 is calculated. Since the relative permittivity of air as a medium is about 1, T = c · Δt / 2 substantially.

このような推定は、表示された画像に基づき解析作業者が行ってもよいが、チャートを画像処理することによっても実施可能であるため、AIなどを用いてコンピュータ26にて直接行ってもよいし、解析作業者とコンピュータ26とで協働して行ってもよい。つまり、コンピュータ26は、推定手段の機能を有していてよい。コンピュータ26により推定された場合には、その推定結果を出力することが好ましい。 Such an estimation may be performed by an analysis worker based on the displayed image, but can also be performed by image processing the chart, and therefore may be performed directly on the computer 26 using AI or the like. However, the analysis worker and the computer 26 may collaborate with each other. That is, the computer 26 may have the function of an estimation means. When it is estimated by the computer 26, it is preferable to output the estimation result.

このようにして、道路11の横断方向における空洞厚Tが推定され、それを道路11の縦断方向に沿って並べることで、空洞12の形状や広がりなどの三次元形状を推定することができる。 In this way, the cavity thickness T in the transverse direction of the road 11 is estimated, and by arranging it along the longitudinal direction of the road 11, the three-dimensional shape such as the shape and the spread of the cavity 12 can be estimated.

図7に、空洞12の実測厚と、上記の推定方法により推定された推定厚と、の相関を示す。図7に示すように、本実施の形態の空洞厚推定方法により、空洞厚Tを精度よく推定できることが分かる。 FIG. 7 shows the correlation between the measured thickness of the cavity 12 and the estimated thickness estimated by the above estimation method. As shown in FIG. 7, it can be seen that the cavity thickness T can be estimated accurately by the cavity thickness estimation method of the present embodiment.

このように、一実施の形態によれば、電磁波の送信及び反射波の受信を車両20により道路11を走行しながら実施するため、交通規制が不要であるとともに、各受信部24で受信した反射波トレースを共通反射点重合法により重合することでノイズを抑制したチャートに基づき既知の媒質の比誘電率または反射波速度を用いて道路11下の空洞厚Tを推定するので、道路11下の空洞厚Tを非破壊で容易にかつ、精度よく評価できる。 As described above, according to one embodiment, since the electromagnetic wave is transmitted and the reflected wave is received while the vehicle 20 is traveling on the road 11, traffic regulation is not required and the reflection received by each receiving unit 24 is not required. Since the cavity thickness T under the road 11 is estimated using the relative dielectric constant or the reflected wave velocity of the known medium based on the chart in which the noise is suppressed by polymerizing the wave trace by the common reflection point polymerization method, the cavity thickness T under the road 11 is estimated. The cavity thickness T can be evaluated easily and accurately in a non-destructive manner.

また、各受信部24で受信した反射波トレースのうち、空洞12の始端PS及び終端PEに応じた共通反射点CPS,CPEを共有するものを送信部23と受信部24との距離順に並べた補助チャートを生成し、その補助チャートを所定の複数の比誘電率毎または速度毎に走時補正したものをそれぞれ重合し走時補正に用いた比誘電率順または速度順に並べてチャートを生成することで、生成されたチャートにおいてノイズを効果的に抑制でき、チャートから反射波が強調された位置を抽出しやすくなるので、それらの位置に基づく空洞厚Tの推定精度を向上できる。 Also, among the reflected wave traces received by each receiving unit 24, those sharing the common reflection points CPS and CPE according to the start PS and end PE of the cavity 12 are arranged in order of the distance between the transmitting unit 23 and the receiving unit 24. Auxiliary charts are generated, and the auxiliary charts are superimposed for each of a plurality of predetermined relative permittivity or each speed, and arranged in order of relative permittivity or speed used for the running correction to generate a chart. Therefore, noise can be effectively suppressed in the generated chart, and the positions where the reflected wave is emphasized can be easily extracted from the chart, so that the estimation accuracy of the cavity thickness T based on those positions can be improved.

そして、空洞厚Tを精度よく推定できるため、推定した空洞厚Tに基づき、例えば空洞12の空洞厚Tが大きいものから順に補修するなど、空洞12の補修の優先順を決定することができる。 Then, since the cavity thickness T can be estimated accurately, it is possible to determine the priority order of repair of the cavity 12 based on the estimated cavity thickness T, for example, repairing the cavity 12 in order from the one having the largest cavity thickness T.

なお、上記の一実施の形態において、空洞厚推定装置10は、専用の車両20を含むものとしたが、これに限られず、レーダ装置21などを汎用の車両に搭載して使用するものでもよい。 In the above embodiment, the cavity thickness estimation device 10 includes a dedicated vehicle 20, but the present invention is not limited to this, and a radar device 21 or the like may be mounted on a general-purpose vehicle for use. ..

10 空洞厚推定装置
11 道路
12 空洞
20 車両
21 レーダ装置
23 送信部
24 受信部
26 チャート生成手段及び推定手段の機能を有するコンピュータ
C チャート
C1 補助チャート
CPE,CPS 共通反射点
PE 終端
PS 始端
T 空洞厚
10 Cavity thickness estimation device
11 road
12 cavities
20 vehicles
21 Radar device
23 Transmitter
24 Receiver
26 Computer C chart having the functions of chart generation means and estimation means
C1 auxiliary chart
CPE, CPS common reflection point
PE termination
PS Start T Cavity thickness

Claims (4)

車両により道路を走行しつつ、この車両に搭載したレーダ装置の複数の送信部から前記道路に向かって電磁波を放射するとともに前記レーダ装置の複数の受信部で反射波を受信するステップと、
前記各受信部で受信した反射波トレースを共通反射点重合法により重合して比誘電率順または速度順に並べたチャートを生成するステップと、
前記チャートにおける前記道路下の空洞の始端側の媒質と前記空洞内の空気とのそれぞれの比誘電率または反射波速度の位置で前記重合により反射波が強調された点を抽出し、それらの位置に基づき前記道路下の空洞厚を推定するステップと、
を備えることを特徴とする空洞厚推定方法。
While traveling on a road by a vehicle, a step of radiating electromagnetic waves from a plurality of transmitting units of a radar device mounted on the vehicle toward the road and receiving reflected waves by a plurality of receiving units of the radar device.
A step of polymerizing the reflected wave traces received by each of the receiving units by a common reflection point polymerization method to generate a chart arranged in order of relative permittivity or velocity.
The points where the reflected wave was emphasized by the polymerization were extracted at the positions of the relative permittivity or the reflected wave velocity of the medium on the starting end side of the cavity under the road and the air in the cavity in the chart, and those positions were extracted. The step of estimating the cavity thickness under the road based on
A cavity thickness estimation method comprising.
チャートを生成するステップは、
各受信部で受信した反射波トレースのうち、空洞の始端及び終端に応じた共通反射点を共有するものを送信部と前記受信部との距離順に並べた補助チャートを生成するステップと、
前記補助チャートを所定の複数の比誘電率毎または速度毎に走時補正したものをそれぞれ重合し走時補正に用いた前記比誘電率順または前記速度順に並べてチャートを生成するステップと、を含む
ことを特徴とする請求項1記載の空洞厚推定方法。
The steps to generate a chart are
A step of generating an auxiliary chart in which among the reflected wave traces received by each receiving unit, those sharing a common reflection point according to the start and end of the cavity are arranged in the order of distance between the transmitting unit and the receiving unit, and
A step of superimposing the auxiliary charts corrected for each predetermined relative permittivity or for each speed and arranging them in the order of the relative permittivity or the speed used for the running correction to generate a chart. The cavity thickness estimation method according to claim 1, wherein the cavity thickness is estimated.
電磁波を放射する複数の送信部及び反射波を受信する複数の受信部を有し、車両に搭載されるレーダ装置と、
前記各受信部で受信した反射波トレースを共通反射点重合法により重合して比誘電率順または速度順に並べたチャートを生成するチャート生成手段と、
このチャート生成手段により生成されたチャートにおける道路下の空洞の始端側の媒質と前記空洞内の空気とのそれぞれの比誘電率または反射波速度の位置で前記重合により反射波が強調された点を抽出し、それらの位置に基づき前記道路下の空洞厚を推定する推定手段と、
を備えることを特徴とする空洞厚推定装置。
A radar device that has a plurality of transmitters that radiate electromagnetic waves and a plurality of receivers that receive reflected waves and is mounted on a vehicle.
A chart generation means for generating a chart in which the reflected wave traces received by each of the receiving units are polymerized by a common reflection point polymerization method and arranged in order of relative permittivity or velocity.
The point at which the reflected wave was emphasized by the polymerization at the position of the relative permittivity or the reflected wave velocity of the medium on the starting end side of the cavity under the road and the air in the cavity in the chart generated by this chart generating means. An estimation means for extracting and estimating the cavity thickness under the road based on their positions, and
A cavity thickness estimation device comprising.
チャート生成手段は、各受信部で受信した反射波トレースのうち、空洞の始端及び終端に応じた共通反射点を共有するものを送信部と前記受信部との距離順に並べた補助チャートを生成し、この補助チャートを所定の複数の比誘電率毎または速度毎に走時補正したものをそれぞれ重合し走時補正に用いた前記比誘電率順または前記速度順に並べてチャートを生成する
ことを特徴とする請求項3記載の空洞厚推定装置。
The chart generation means generates an auxiliary chart in which among the reflected wave traces received by each receiving unit, those sharing a common reflection point according to the start and end of the cavity are arranged in order of the distance between the transmitting unit and the receiving unit. , This auxiliary chart is overlaid with a plurality of predetermined relative permittivity corrections or run time corrections for each speed, and the charts are generated by arranging them in the order of the relative permittivity or the speed used for the run time correction. The cavity thickness estimation device according to claim 3.
JP2020068990A 2020-04-07 2020-04-07 Cavity thickness estimation method and device Active JP6734612B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020068990A JP6734612B1 (en) 2020-04-07 2020-04-07 Cavity thickness estimation method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020068990A JP6734612B1 (en) 2020-04-07 2020-04-07 Cavity thickness estimation method and device

Publications (2)

Publication Number Publication Date
JP6734612B1 JP6734612B1 (en) 2020-08-05
JP2021165669A true JP2021165669A (en) 2021-10-14

Family

ID=71892317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020068990A Active JP6734612B1 (en) 2020-04-07 2020-04-07 Cavity thickness estimation method and device

Country Status (1)

Country Link
JP (1) JP6734612B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113737619B (en) * 2021-07-21 2023-04-25 上海圭目机器人有限公司 Detection mechanism for vehicle-mounted road surface detection

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04286983A (en) * 1991-03-15 1992-10-12 Nippon Telegr & Teleph Corp <Ntt> Underground buried object searcher
US5982706A (en) * 1997-03-04 1999-11-09 Atlantic Richfield Company Method and system for determining normal moveout parameters for long offset seismic survey signals
JP2003057357A (en) * 2001-07-26 2003-02-26 Daeduk Consulting & Construction Co Time-variant optimum offset processing method of earthquake wave data, processing system, processing device and recording medium
JP2003302465A (en) * 2002-04-08 2003-10-24 Kajima Corp Underground radar exploration method, device and program of frequency variable system
JP2013231698A (en) * 2012-05-01 2013-11-14 Wall Natsuto:Kk Cavity thickness estimation method and device
JP2018205155A (en) * 2017-06-06 2018-12-27 日本信号株式会社 Underground radar device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04286983A (en) * 1991-03-15 1992-10-12 Nippon Telegr & Teleph Corp <Ntt> Underground buried object searcher
US5982706A (en) * 1997-03-04 1999-11-09 Atlantic Richfield Company Method and system for determining normal moveout parameters for long offset seismic survey signals
JP2003057357A (en) * 2001-07-26 2003-02-26 Daeduk Consulting & Construction Co Time-variant optimum offset processing method of earthquake wave data, processing system, processing device and recording medium
JP2003302465A (en) * 2002-04-08 2003-10-24 Kajima Corp Underground radar exploration method, device and program of frequency variable system
JP2013231698A (en) * 2012-05-01 2013-11-14 Wall Natsuto:Kk Cavity thickness estimation method and device
JP2018205155A (en) * 2017-06-06 2018-12-27 日本信号株式会社 Underground radar device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HAI LIU ET AL.: ""Measurement of Dielectric Permittivity and Thickness of Snow and Ice on a Brackish Lagoon Using GPR", IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, vol. 7, no. 3, JPN6020022649, March 2014 (2014-03-01), pages 820 - 827, XP011542924, ISSN: 0004297204, DOI: 10.1109/JSTARS.2013.2266792 *
HAI LIU ET AL.: ""Robust estimation of dielectric constant by GPR using an antenna array"", 2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, JPN6020022648, July 2011 (2011-07-01), pages 178 - 181, ISSN: 0004297203 *

Also Published As

Publication number Publication date
JP6734612B1 (en) 2020-08-05

Similar Documents

Publication Publication Date Title
US10578715B2 (en) System for generating virtual radar signatures
US20180088228A1 (en) Obstacle detection method and apparatus for vehicle-mounted radar system
JP5062921B1 (en) Cavity thickness estimation method and apparatus
JP6616257B2 (en) Position estimation device
CN103370634B (en) For the driver assistance system of the object in detection vehicle surrounding environment
JP2009014445A (en) Range finder
CN109631782A (en) System and method for measuring bridge gap
US20160299216A1 (en) Axial misalignment determination apparatus
JP6734612B1 (en) Cavity thickness estimation method and device
US8421622B2 (en) Monitoring system for moving object
JP6478578B2 (en) Exploration equipment
CN117092710B (en) Underground line detection system for construction engineering investigation
CN103901412B (en) A kind of calibrating method and system rebuilding following-up type source scaler for pulse
EP2734868B1 (en) Apparatus and method for non-invasive real-time subsoil inspection
KR102095799B1 (en) Apparatus for mapping buried object and ground cavity through electromagneticwave analysis
JP4691656B2 (en) Object search method in structure, computer program, and recording medium
JP3717835B2 (en) Buried object exploration equipment
JP5436652B1 (en) Vehicle periphery monitoring device and vehicle periphery monitoring method
CN109725640A (en) Three-dimensional road method for reconstructing in a kind of automatic Pilot based on stereoscopic vision and laser grating
Xia et al. High speed ground penetrating radar for road pavement and bridge structural inspection and maintenance
JP2005172590A (en) Forward object detection device and method
JP6478557B2 (en) Exploration method
KR102135013B1 (en) Apparatus for measuring sinkage caused by tractor wheel using 2D LiDAR sensor and, measuring methods using the same
KR101932883B1 (en) Estimation method of cavity volume from GPR data by C-scan contour, reflex response and diffraction response
JPH10105878A (en) Traffic signal controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200407

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200407

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200707

R150 Certificate of patent or registration of utility model

Ref document number: 6734612

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250