JPH04286375A - Optical integrated device - Google Patents

Optical integrated device

Info

Publication number
JPH04286375A
JPH04286375A JP3074362A JP7436291A JPH04286375A JP H04286375 A JPH04286375 A JP H04286375A JP 3074362 A JP3074362 A JP 3074362A JP 7436291 A JP7436291 A JP 7436291A JP H04286375 A JPH04286375 A JP H04286375A
Authority
JP
Japan
Prior art keywords
light emitting
optical integrated
integrated device
optical
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3074362A
Other languages
Japanese (ja)
Other versions
JP2834592B2 (en
Inventor
Yoshinori Nakano
中野 好典
Goji Kawakami
剛司 川上
Tokuro Omachi
大町 督郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP7436291A priority Critical patent/JP2834592B2/en
Publication of JPH04286375A publication Critical patent/JPH04286375A/en
Application granted granted Critical
Publication of JP2834592B2 publication Critical patent/JP2834592B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Abstract

PURPOSE:To provide an optical integrated device which is adapted to the transmission of data of large capacity through a short distance, easily aligned, high in operation speed, hardly affected by electrical noises, and high reliability. CONSTITUTION:Light emitting devices l and photodetective devices 2 including at least light emitting device 1 are arranged on a first primary surface out of a first and a second primary surface of a semiconductor substrate 3 opposed to each other, and light reflecting planes 4 processed into slopes are provided to the second primary surface.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、近距離、大容量のデー
タ伝送に利用する光集積装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical integrated device used for short-distance, large-capacity data transmission.

【0002】0002

【従来の技術】光を媒体とした近距離、大容量のデータ
伝送する方法は、省電力、耐雑音性の利点から研究が進
められ、最も適用可能な領域としては、LSI回路のチ
ップ間の情報伝送がある。従来の方法としては、図4に
示すように、ガラス平板12を用いて、その片面にマイ
クロキャビティレーザ13および受光素子14を、また
他の面に複数の回折形反射鏡15を配置し、それらの間
を光で接続する方法が示されている(オプチカルコンピ
ューテングコンファレンス、神戸、1990年、10B
4) 。図4において、16はスペーサ、17は光部品
形成基板、18は電子回路集積基板である。ここで、マ
イクロキャビティレーザ13からの光は、ガラス平板1
2の中を伝搬し、反対側の回折形反射鏡15に入射し、
この反射鏡からの反射光は、再度、ガラス平板12の中
を伝搬して、マイクロキャビティレーザ13と同一平面
上に配置された受光素子14で検出される。このように
、ガラス平板12を介することで、複数の光デバイスの
光接続が実現できる。ここで、高効率な光結合を実現す
るためには、複数の光学部品の間での位置合わせが必須
であり、高度の位置合わせ技術を必要とするだけでなく
、複数の部品からなるハイブリッド構成では、組立固定
が必須であり、接着部の経年変化による信頼性の低下が
危惧される。また、横方向に結合できるデバイス間隔は
中継用素子として用いている複数の回折形反射鏡のビー
ムの広がりで決定されるので、光接続する素子の間隔が
大きくなると、複数の回折形反射鏡からの反射光がビー
ムの広がりの大きな自然放出光であっても、中継用素子
の数が増加する欠点がある。さらに、自然放出光の指向
性の悪さは、特定デバイス間を対象に、精度のよい光結
合を実施することは困難であった。
[Prior Art] Research is progressing on methods for short-distance, large-capacity data transmission using light as a medium due to its advantages of power saving and noise resistance. There is information transmission. As shown in FIG. 4, the conventional method uses a glass flat plate 12, and arranges a microcavity laser 13 and a light receiving element 14 on one side of the plate, and a plurality of diffractive reflecting mirrors 15 on the other side. (Optical Computing Conference, Kobe, 1990, 10B)
4). In FIG. 4, 16 is a spacer, 17 is an optical component forming substrate, and 18 is an electronic circuit integrated substrate. Here, the light from the microcavity laser 13 is transmitted to the glass flat plate 1.
2, and enters the diffractive reflector 15 on the opposite side,
The reflected light from this reflecting mirror propagates through the glass flat plate 12 again and is detected by the light receiving element 14 arranged on the same plane as the microcavity laser 13 . In this way, optical connections between a plurality of optical devices can be realized via the glass flat plate 12. In order to achieve highly efficient optical coupling, it is essential to align multiple optical components, which not only requires advanced alignment technology but also requires a hybrid configuration consisting of multiple components. In this case, assembly and fixation are essential, and there is a concern that reliability may deteriorate due to aging of the bonded parts. In addition, the spacing between devices that can be coupled in the lateral direction is determined by the spread of the beams of the multiple diffractive reflectors used as relay elements. Even if the reflected light is spontaneously emitted light with a large beam spread, there is a drawback that the number of relay elements increases. Furthermore, the poor directivity of spontaneously emitted light makes it difficult to perform precise optical coupling between specific devices.

【0003】0003

【発明が解決しようとする課題】以上のように、従来の
光集積装置では、位置合わせおよび特定デバイス間での
高精度の光接続が困難であり、デバイス間隔が大きくな
るほど中継用光デバイスの数が増加する等の課題に対し
て、本発明の目的はこれらの問題点を解決して、高速性
に優れ、信頼性の高い光集積装置を実現することにある
[Problems to be Solved by the Invention] As described above, in conventional optical integrated devices, it is difficult to perform alignment and high-precision optical connections between specific devices, and as the distance between devices increases, the number of relay optical devices increases. An object of the present invention is to solve these problems and realize an optical integrated device with excellent high speed and high reliability.

【0004】0004

【課題を解決するための手段】本発明では、面型発光デ
バイスを含む複数の光デバイスを半導体積層体の側に形
成させるとともに、面型発光デバイスには反射率の高い
半導体多層膜を配置して、出力光の指向性を向上させる
。半導体基板側に出射されたビーム広がりの小さい光は
、基板側に設けた基板面から45度の傾斜の反射面で反
射され、垂直方向から水平方向へ進路変更され、受光デ
バイスの中心軸まで伝搬した時点で、そこに設けた別の
45度傾斜の反射面で再度反射され、受光素子に垂直入
射する。
[Means for Solving the Problems] According to the present invention, a plurality of optical devices including a surface light emitting device are formed on the side of a semiconductor laminate, and a semiconductor multilayer film with high reflectivity is disposed on the surface light emitting device. This improves the directivity of the output light. The light with a small beam spread emitted to the semiconductor substrate side is reflected by a reflection surface tilted at 45 degrees from the substrate surface provided on the substrate side, changes its course from the vertical direction to the horizontal direction, and propagates to the central axis of the light receiving device. At that point, the light is reflected again by another reflective surface tilted at 45 degrees and is perpendicularly incident on the light receiving element.

【0005】[0005]

【実施例】以下、図面により本発明の実施例を詳細に説
明する。図1は本発明の第1の実施例の光集積装置の構
造を示す断面図であって、1は面型発光デバイス、2は
受光素子、3はGaAs基板、4は45度反射面、5は
電極、6,7はLSI回路チップ、8は電極を示す。こ
の実施例は、2個のLSI回路チップ6,7間でのデー
タ伝送を目的とした光集積装置であり、発受光デバイス
が1対1に結合した場合を示す。LSI回路チップ6の
出力端子は、面型発光デバイス1のアノード端子に接続
され、LSI回路チップ7の入力端子には、受光素子2
の出力端子がそれぞれ接続されている構造である。面型
発光デバイス1としてはマイクロキャビティレーザ、受
光素子2としてはPINホトダイオードを用いた。マイ
クロキャビティレーザは、活性層としてInGaAsの
超格子を用いた共振器長が波長λに等しい構造のレーザ
である。発振波長は0.98μm であり、レーザ光は
GaAs基板3でほとんど吸収されない。基板厚は30
0 μm 、レーザとホトダイオードの間隔は100 
μm である。マイクロキャビティレーザ1の基板側の
反射鏡は、屈折率の異なるλ/4厚の半導体層を多層積
層した半導体多層膜による反射鏡であり、AlAs/G
aAs を20層堆積して作製した。反射率は約95%
であった。半導体積層体の表面側の反射面は、AlAs
/GaAs を28層堆積しており、反射率は約99%
であった。直径20μm の構造で、閾電流は1mAで
あった。3mA通電時で基板を通して測定した光出力は
0.8mW であり、この時の遠視野像の半値全角は、
約2度であった。PINダイオードを作製するための結
晶は、レーザ作製用結晶を成長した後、選択エッチング
で、基板に達するまでエッチングした後、2度目の結晶
成長することで作製した。ヘテロエピ成長技術を駆使し
て、InGaAs層を吸収層としたPIN形ホトダイオ
ードを形成した。受光領域の直径は30μm であり、
静電容量は0.5pF であった。0.98μm の光
に対する量子効率は70%であった。基板面上への45
度の斜面加工は、RIEドライエッチングで行った。回
転ステージを傾斜させ、エッチングを2回実施すること
で、互いに補角となる二つの斜面(45度反射面4)を
形成した。エッチング深さは10μm であった。基板
側の電極5は、反射面を形成した後、AuGeNi/A
u を全面蒸着して形成した。マイクロキャビティレー
ザからの光出力を入力として、基板側の反射面で2回反
射させた後、PINダイオードで測定した周波数特性で
、3dBダウンの小信号の遮断周波数は1.5GHzで
あった。LSI回路チップを接続したデータ伝送実験で
は、400Mbit/s を確認できている。図2は本
発明の第2の実施例の構成図であって、4個のLSI回
路チップ9(A〜D)の間の接続状態を示す。この実施
例は、本発明の光集積装置10を2個用いており、図1
と同一の符号は同一のものを示す。 A,CからBに、BからDへ、DからAにデータが伝送
される。図3は本発明の第3の実施例を示す図であって
、1対4に分岐した光結合用の光集積装置の透視図であ
る。面型発光デバイス1の下に位置する多角錐反射面1
1は、半導体基板面から±45度に傾斜しした斜面を側
面とする4角錐形状となっている。面型発光デバイス1
からの出射光は、中心軸上の頂点を有する4角錐によっ
て4等分され、それぞれの側面で反射された後、4方向
に伝搬し、各受光素子2の下の反射面4で再度反射され
、受光面に垂直入射する形で、高効率に受光される。こ
のように、結合できる素子数は、基本的には、反射面の
側面の数に比例して増加させることができる。前記実施
例では、面型発光デバイスがマイクロキャビティレーザ
の場合について示したが、LEDでも同様の効果、作用
を期待することができる。また、マイクロキャビティレ
ーザをLEDモードで動作させた場合でも、全く問題は
ない。前記実施例では、受光素子の形成について、モノ
リシック集積過の場合について示したが、受光素子は受
光面積が比較的大きいので、他の基板を用いて作製され
たチップを融着するハイブリッド集積の形式も充分に実
用的である。前記実施例では、発光波長が0.98μm
 の場合について示したが、本発明は、動作原理的に光
の波長に無関係であり、光が半導体基板に対して透明で
あれば、発光デバイスの光出力レベルを低くでき、省電
力の点で有利である。長波長帯結晶、シリコン基板上に
成長したヘテロエピ結晶等を用いた場合でも何等問題は
ない。
Embodiments Hereinafter, embodiments of the present invention will be explained in detail with reference to the drawings. FIG. 1 is a cross-sectional view showing the structure of an optical integrated device according to a first embodiment of the present invention, in which 1 is a surface light emitting device, 2 is a light receiving element, 3 is a GaAs substrate, 4 is a 45-degree reflective surface, and 5 6 and 7 indicate an electrode, 6 and 7 indicate an LSI circuit chip, and 8 indicates an electrode. This embodiment is an optical integrated device for the purpose of data transmission between two LSI circuit chips 6 and 7, and shows a case where light emitting and receiving devices are coupled one-to-one. The output terminal of the LSI circuit chip 6 is connected to the anode terminal of the surface light emitting device 1, and the input terminal of the LSI circuit chip 7 is connected to the light receiving element 2.
The structure is such that the output terminals of the two are connected to each other. A microcavity laser was used as the surface light emitting device 1, and a PIN photodiode was used as the light receiving element 2. A microcavity laser is a laser that uses an InGaAs superlattice as an active layer and has a cavity length equal to the wavelength λ. The oscillation wavelength is 0.98 μm, and the laser light is hardly absorbed by the GaAs substrate 3. The board thickness is 30
0 μm, the distance between the laser and photodiode is 100 μm.
It is μm. The reflector on the substrate side of the micro-cavity laser 1 is a reflector made of a semiconductor multilayer film made by laminating multiple λ/4 thick semiconductor layers with different refractive indexes, and is made of AlAs/G.
It was fabricated by depositing 20 layers of aAs. Reflectance is approximately 95%
Met. The reflective surface on the front side of the semiconductor stack is made of AlAs
/GaAs is deposited in 28 layers, and the reflectance is approximately 99%.
Met. The structure had a diameter of 20 μm, and the threshold current was 1 mA. The optical output measured through the board when 3 mA current is applied is 0.8 mW, and the full width at half maximum of the far field pattern at this time is:
It was about 2 degrees. A crystal for producing a PIN diode was produced by growing a crystal for laser production, selectively etching it until it reached the substrate, and then growing the crystal a second time. By making full use of heteroepitaxial growth technology, a PIN type photodiode with an InGaAs absorption layer was formed. The diameter of the light receiving area is 30μm,
The capacitance was 0.5 pF. The quantum efficiency for light of 0.98 μm was 70%. 45 onto the board surface
The slope processing was performed by RIE dry etching. By tilting the rotation stage and performing etching twice, two slopes (45-degree reflective surfaces 4) having complementary angles to each other were formed. The etching depth was 10 μm. After forming the reflective surface, the electrode 5 on the substrate side is made of AuGeNi/A
It was formed by vapor depositing u on the entire surface. The cutoff frequency of a small signal down 3 dB was 1.5 GHz in the frequency characteristics measured with a PIN diode after the optical output from the microcavity laser was input and reflected twice on the reflective surface on the substrate side. In data transmission experiments using LSI circuit chips, we were able to confirm a speed of 400 Mbit/s. FIG. 2 is a block diagram of a second embodiment of the present invention, showing the connection state between four LSI circuit chips 9 (A to D). In this embodiment, two optical integrated devices 10 of the present invention are used, and FIG.
The same reference numeral indicates the same thing. Data is transmitted from A and C to B, from B to D, and from D to A. FIG. 3 is a diagram showing a third embodiment of the present invention, and is a perspective view of an optical integration device for optical coupling that branches into 1:4. Polygonal pyramidal reflective surface 1 located under the surface light emitting device 1
1 has a four-sided pyramidal shape with side surfaces having slopes inclined at ±45 degrees from the semiconductor substrate surface. Surface light emitting device 1
The emitted light is divided into four equal parts by a four-sided pyramid having an apex on the central axis, is reflected from each side, propagates in four directions, and is reflected again at the reflective surface 4 below each light-receiving element 2. , the light is received with high efficiency by being incident perpendicularly to the light receiving surface. In this way, the number of elements that can be coupled can basically be increased in proportion to the number of side surfaces of the reflective surface. In the above embodiment, the surface light emitting device is a microcavity laser, but similar effects and actions can be expected with an LED. Further, there is no problem at all even when the microcavity laser is operated in the LED mode. In the above embodiment, a monolithic over-integration case was shown for forming the photodetector, but since the photodetector has a relatively large light-receiving area, a hybrid integration format in which chips fabricated using other substrates are fused is used. is also quite practical. In the above example, the emission wavelength was 0.98 μm.
However, the present invention is not related to the wavelength of light in principle, and as long as the light is transparent to the semiconductor substrate, the light output level of the light emitting device can be lowered, which is advantageous in terms of power saving. It's advantageous. There is no problem even when using a long wavelength band crystal, a heteroepitaxial crystal grown on a silicon substrate, or the like.

【発明の効果】以上説明したように、本発明の光集積装
置は、同一平面上で空間的に離れた素子間を対象に、基
板内を通る3次元の光経路で伝送路を実現し、光伝送を
実現することによって、位置合わせが容易で、高速性に
優れ、電気雑音の影響が小さく、信頼性の高い装置が実
現できる。
As explained above, the optical integrated device of the present invention realizes a transmission path between spatially separated elements on the same plane using a three-dimensional optical path passing through the substrate. By realizing optical transmission, it is possible to realize a device that is easy to align, has excellent high speed, is less affected by electrical noise, and is highly reliable.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の第1の実施例の光集積装置の構造を示
す断面図である。
FIG. 1 is a sectional view showing the structure of an optical integrated device according to a first embodiment of the present invention.

【図2】本発明の第2の実施例の光集積装置の構造を示
す透視図である。
FIG. 2 is a perspective view showing the structure of an optical integrated device according to a second embodiment of the present invention.

【図3】本発明の第3の実施例の光集積装置の構造を示
す透視図である。
FIG. 3 is a perspective view showing the structure of an optical integrated device according to a third embodiment of the present invention.

【図4】従来の光集積素子の構造を示す断面図である。FIG. 4 is a cross-sectional view showing the structure of a conventional optical integrated device.

【符号の説明】[Explanation of symbols]

1  面型発光デバイス 2  受光素子 3  GaAs基板 4  45度反射面 5  電極 6  LSI回路チップ 7  LSI回路チップ 8  電極 9  LSI回路チップ 10  光集積装置 11  多角錐反射面 12  ガラス平板 13  マイクロキャビティレーザ 14  受光素子 15  回折形反射鏡 16  スペーサ 17  光部品形成基板 18  電子回路集積基板 1 Surface light emitting device 2 Photo receiving element 3 GaAs substrate 4 45 degree reflective surface 5 Electrode 6 LSI circuit chip 7 LSI circuit chip 8 Electrode 9 LSI circuit chip 10 Optical integrated device 11 Polygonal pyramidal reflective surface 12 Glass flat plate 13 Micro cavity laser 14 Photo receiving element 15 Diffractive reflector 16 Spacer 17 Optical component forming board 18 Electronic circuit integrated board

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】  半導体基板上の相対向する第1、第2
の主面のうち、第1の主面上に、少なくとも一つの面型
発光デバイスを含む複数の発受光デバイスを配置し、第
2の主面上には斜面加工された複数の光反射面が形成さ
れていることを特徴とする光集積装置。
[Claim 1] A first and a second facing each other on a semiconductor substrate.
A plurality of light emitting/receiving devices including at least one surface light emitting device are arranged on the first main surface of the main surface, and a plurality of sloped light reflecting surfaces are arranged on the second main surface. An optical integrated device characterized in that:
【請求項2】  前記第1の主面上に、前記面型発光デ
バイスを含む複数の発光デバイスと電気的に結合した半
導体集積回路チップを配置してなることを特徴とする請
求項1に記載の光集積装置。
2. A semiconductor integrated circuit chip electrically coupled to a plurality of light emitting devices including the surface light emitting device is disposed on the first main surface. optical integrated device.
【請求項3】  前記反射面が半導体基板の第2の主面
に対して、45度に傾斜した斜面で構成されていること
を特徴とする請求項1または請求項2に記載の光集積装
置。
3. The optical integrated device according to claim 1, wherein the reflective surface is constituted by a slope inclined at 45 degrees with respect to the second main surface of the semiconductor substrate. .
【請求項4】  前記反射面が面型発光デバイスの中心
軸上に位置し、半導体基板面から±45度に傾斜した斜
面で構成された多角錐形状となっていることを特徴とす
る請求項1または請求項2に記載の光集積装置。
4. The reflective surface is located on the central axis of the surface light emitting device, and has a polygonal pyramidal shape composed of slopes inclined at ±45 degrees from the semiconductor substrate surface. 3. The optical integrated device according to claim 1 or claim 2.
【請求項5】  前面型発光デバイスが半導体多層膜か
らなる反射面を含んでいることを特徴とする請求項1な
いし4のいずれかに記載の光集積装置。
5. The optical integrated device according to claim 1, wherein the front light emitting device includes a reflective surface made of a semiconductor multilayer film.
JP7436291A 1991-03-15 1991-03-15 Optical integrated device Expired - Lifetime JP2834592B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7436291A JP2834592B2 (en) 1991-03-15 1991-03-15 Optical integrated device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7436291A JP2834592B2 (en) 1991-03-15 1991-03-15 Optical integrated device

Publications (2)

Publication Number Publication Date
JPH04286375A true JPH04286375A (en) 1992-10-12
JP2834592B2 JP2834592B2 (en) 1998-12-09

Family

ID=13544960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7436291A Expired - Lifetime JP2834592B2 (en) 1991-03-15 1991-03-15 Optical integrated device

Country Status (1)

Country Link
JP (1) JP2834592B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010272804A (en) * 2009-05-25 2010-12-02 Sumitomo Electric Ind Ltd Optical transmission module
JP2011248362A (en) * 2010-05-24 2011-12-08 National Central Univ Optical transmission module

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010272804A (en) * 2009-05-25 2010-12-02 Sumitomo Electric Ind Ltd Optical transmission module
JP2011248362A (en) * 2010-05-24 2011-12-08 National Central Univ Optical transmission module
US8666204B2 (en) 2010-05-24 2014-03-04 National Central University Optical transmission module

Also Published As

Publication number Publication date
JP2834592B2 (en) 1998-12-09

Similar Documents

Publication Publication Date Title
CA2091525C (en) Semiconductor optical device having device regions and diffraction gratings
Jokerst et al. The heterogeneous integration of optical interconnections into integrated microsystems
JP5892875B2 (en) Optoelectronic integrated module
US8358892B2 (en) Connection structure of two-dimensional array optical element and optical circuit
JP2000114581A (en) Multilayered photoelectron substrate with electrical intercoupling and optical intercoupling, and manufacture thereof
JPH06347655A (en) Optical interconnection integrated circuit system
JP2000106454A (en) Device for emitting radiation with high efficiency and fabrication thereof
JPH0555703A (en) Plane emission laser device
JP2003014987A (en) Optical path converting body and its packaging structure and optical module
Hornak et al. On the feasibility of through-wafer optical interconnects for hybrid wafer-scale-integrated architectures
JPH1140823A (en) Photodetector module
US20240053558A1 (en) Integration of oe devices with ics
JPH0513749A (en) Optical connection circuit
JP2000223732A (en) Resonance type light detector
JPH1039162A (en) Optical semiconductor device, semiconductor photodetector, and formation of optical fiber
EP0719468B1 (en) Optical amplifying device
JP2834592B2 (en) Optical integrated device
JP2001042171A (en) Active optical wiring device
TWI435132B (en) Light emitting device and optical coupling module
CN114460698B (en) Light emitting module
JP2012098756A (en) Optical path converting body and packaging structure thereof, and optical module with the same
JP2002100829A (en) Semiconductor light-emitting and light-receiving device and manufacturing method thereof
TW201316062A (en) Optical transmission system and manufacturing method of same
JPH04134896A (en) Integrated optical semiconductor device
JP4298134B2 (en) Active optical connector

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081002

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091002

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101002

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111002

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111002

Year of fee payment: 13