JPH0428624A - Removal of powder or its transportation - Google Patents

Removal of powder or its transportation

Info

Publication number
JPH0428624A
JPH0428624A JP13094190A JP13094190A JPH0428624A JP H0428624 A JPH0428624 A JP H0428624A JP 13094190 A JP13094190 A JP 13094190A JP 13094190 A JP13094190 A JP 13094190A JP H0428624 A JPH0428624 A JP H0428624A
Authority
JP
Japan
Prior art keywords
powder
wind speed
acceleration
ventilation
lower limit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13094190A
Other languages
Japanese (ja)
Other versions
JP2770833B2 (en
Inventor
Hiroaki Masuda
弘昭 増田
Hiroshi Murata
博 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisshin Seifun Group Inc
Original Assignee
Nisshin Seifun Group Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Seifun Group Inc filed Critical Nisshin Seifun Group Inc
Priority to JP13094190A priority Critical patent/JP2770833B2/en
Publication of JPH0428624A publication Critical patent/JPH0428624A/en
Application granted granted Critical
Publication of JP2770833B2 publication Critical patent/JP2770833B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve efficiency by gaining a wind speed lower limit value to refly attached powder against wind speed acceleration for removal and transportation of powder attached to the wall of a powder equipment and by making ventilation, which changes its speed at set acceleration in the neighbourhood of higher or lower than its lower limit, work on the surface of a solid body. CONSTITUTION:Relativity between each acceleration of ventilation at which wind speed rises at a specific rate and the lower limit of the wind speed at which attached powder reflies by this ventilation are preliminarily gained. Thereafter, the wind speed lower limit against the set acceleration is gained in accordance with this relativity. Then, the attached powder is reflown by making the ventilation at the speed, which is changed at the set acceleration over the neightbourhood higher or lower than this wind speed lower limit, work on the surface of the solid body. In this constitution, it is possible to save energy.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、粉体機器の機器等の固体表面に付着した粉体
を除去する方法、または粉体な搬送する方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for removing powder adhering to a solid surface of a powder device or the like, or a method for transporting powder.

(発明の背景及び従来の技術) 一般に、粉体機器等の機器に付着した粉体を除去するた
めに高速気流を作用させることが知られ、また機器等に
粉体を付着させないためにも同じく高速気流を用いるこ
とが知られており、これらは粉体粒子間あるいは粉体と
機器間に働く付着力よりも、高速気流の作用で発生する
分離力を大きくすることによって、付着の防止あるいは
付着粉体の分離を行わせることを原理としている。
(Background of the invention and prior art) It is generally known that high-speed airflow is applied to remove powder adhering to equipment such as powder handling equipment, and also to prevent powder from adhering to equipment etc. It is known that high-speed airflow is used, and these methods prevent or prevent adhesion by increasing the separation force generated by the action of high-speed airflow than the adhesion force between powder particles or between powder and equipment. The principle is to separate the powder.

しかし、従来において、高速気流の作用で上記の付着粉
体の除去等が行われる詳細は必ずしも明らかとされてい
たものではな(、経験的にあるいは実験、的に、付着か
に打ち勝つ分離力を生じさせる高速気流を作用させるよ
うにしている場合が多い。
However, in the past, the details of how the above-mentioned adhering powder is removed by the action of high-speed airflow have not necessarily been clarified. In many cases, high-speed airflow is applied.

これは、粉体の機器等の表面への付着力は、その粉体の
粒径、組成、含水分、湿度、固体表面の形状等々によっ
て大きく相違し、様々な粉体の全てに渡って一律的に決
めることができないからである。
This is because the adhesion force of powder to the surface of equipment, etc. varies greatly depending on the particle size, composition, moisture content, humidity, shape of the solid surface, etc. of the powder, and is uniform across all types of powder. This is because it cannot be determined.

(発明が解決しようとする課題) ところで、本発明者等は、付着粉体の除去を高速気流の
作用によって行う場合の省エネルギー化を目的として検
討を重ねたところ、固体表面に付着した粉体に高速気流
を作用させてこれから分離させる際に必要な風速の下限
値(以下本明細書においてはこれを「再飛散風速」とい
う)は、気流速度の絶対値に関係することは勿論である
が、これだけでなく、従来考えられていなかった、気流
のもつ加速度(α)に大きな関係をもつことを知見した
(Problems to be Solved by the Invention) By the way, the inventors of the present invention have conducted repeated studies with the aim of saving energy when removing adhering powder by the action of high-speed airflow, and found that The lower limit of the wind speed necessary to apply a high-speed airflow to separate the particles (hereinafter referred to as "re-entrainment wind speed" in this specification) is of course related to the absolute value of the airflow speed, but In addition to this, we discovered that there is a significant relationship with the acceleration (α) of airflow, which was previously not considered.

すなわち、実質的に加速度成分を含まない一定速度の風
速を作用させた場合に比べて、正の加速度を有する風速
を付着粉体に作用させた場合には、上記再飛散風速の下
限値が急速に低下し、他方この加速度がある程度の大き
さを越えると、それ以上加速度を太き(しても、再飛散
風速の下限値は殆ど減少しなくなる現象を見い出した。
In other words, when a wind speed with a positive acceleration is applied to the adhered powder, the lower limit of the re-entrainment wind speed becomes more rapid than when a constant wind speed that does not substantially include an acceleration component is applied. On the other hand, we have found that when this acceleration exceeds a certain level, the lower limit value of the re-entrainment wind speed hardly decreases even if the acceleration is increased further.

このような知見に基づき、本発明者は、所定の加速度を
有する風速を作用させることで小さな値の風速で付着粉
体を固体表面から除去9分離できる、省エネルギー化し
た粉体の除去方法、あるいは粉体搬送管の内壁等に付着
を生じ難い粉体の搬送方法を開発するに至ったものであ
る。
Based on such knowledge, the present inventor has developed an energy-saving powder removal method that can remove adhered powder from a solid surface with a small wind speed by applying a wind speed with a predetermined acceleration, or The present invention has led to the development of a method for transporting powder that is less likely to adhere to the inner walls of powder transport pipes.

すなわち、本発明の目的は、固体表面に付着した粉体を
効率よく分離、除去することができる粉体の除去方法を
提供するところにある。
That is, an object of the present invention is to provide a powder removal method that can efficiently separate and remove powder adhering to a solid surface.

また本発明の別の目的は、固体表面への付着をできるだ
け軽減して粉体を搬送することができる粉体の搬送方法
を提供するところにある。
Another object of the present invention is to provide a method for transporting powder that can transport powder while reducing adhesion to solid surfaces as much as possible.

(課題を解決するための手段及び作用)上記した目的を
実現するための本発明方法の特徴は、風速が上昇変化す
る通風の作用で固体表面の付着粉体を脱離飛散(再飛散
)させる方法であって、風速が一定率で上昇する通風の
各加速度α。とこの通風で上記付着粉体が再飛散される
際の風速下限値ucとの相対関係につき予め求めた特性
線を基準に、ある加速度α。、tを設定した時の風速下
限値U。5tを求め、この下限値の上下近傍に渡り上記
設定加速度αeatで風速が変化する通風を上記固体表
面に作用させるようにしたところにある。
(Means and operations for solving the problem) The feature of the method of the present invention for realizing the above-mentioned object is that the adhering powder on the solid surface is detached and scattered (re-splattered) by the action of ventilation in which the wind speed increases and changes. A method in which each acceleration α of the draft is such that the wind speed increases at a constant rate. A certain acceleration α is determined based on a characteristic line determined in advance regarding the relative relationship between the adhering powder and the lower limit value uc of the wind speed when the adhering powder is re-dispersed by this ventilation. , the wind speed lower limit value U when setting t. 5t is determined, and ventilation whose wind speed changes at the set acceleration αeat above and below this lower limit value is applied to the solid surface.

また本発明方法のもう一つの特徴は、風速が変動する通
風により、粉体搬送管内で粉体を搬送する通風方法であ
って、風速が上昇変化する通風の作用で該粉体搬送管の
内壁に付着した粉体が再飛散する場合に、風速が一定率
で上昇する通風の各加速度α。とこの通風で上記付着粉
体が再飛散される際の風速下限値ucとの相対関係につ
き予め求めた特性線を基準に、ある加速度α。、tを設
定した時の風速下限値u c m tを求め、この下限
値の上下近傍に渡り変動する通風に上記設定加速度α。
Another feature of the method of the present invention is a ventilation method in which powder is transported within a powder transport pipe by ventilation whose wind speed changes, and the action of the ventilation whose wind speed increases and changes causes the powder to flow through the inner wall of the powder transport pipe. Each acceleration α of the ventilation that causes the wind speed to increase at a constant rate when the powder adhering to the air is re-dispersed. A certain acceleration α is determined based on a characteristic line determined in advance regarding the relative relationship between the adhering powder and the lower limit value uc of the wind speed when the adhering powder is re-dispersed by this ventilation. , t is set, and the set acceleration α is applied to the ventilation that fluctuates above and below this lower limit value.

、、を間欠的に与えて、この通風により粉体を搬送する
ことにある。
, , is applied intermittently, and the powder is transported by this ventilation.

上記方法において、加速度α6を有する通風を作用させ
た時の風速下限値ucを加速度ゼロα。の通風を作用さ
せた時の風速下限値u0で除した(u、/u、)(加速
度α。で(u o/u o) =1)と、加速度α。ど
の関係は、以下詳細に説明するように多(の粉体におい
て近似的な傾向を示し、加速度が0〜0.15m/s”
程度の範囲で上記(u c/u o)は急激に低下し、
他方、加速度が0、5m/s”を越える辺りからは、 
(u c/u a)の低下が極めて緩慢となる。
In the above method, the lower limit value uc of wind speed when applying ventilation having an acceleration α6 is set to zero acceleration α. Divided by the lower limit value u0 of the wind speed when applying ventilation of (u, /u,) (acceleration α. (u o / u o) = 1), the acceleration α. As will be explained in detail below, this relationship shows an approximate tendency in the case of powders with an acceleration of 0 to 0.15 m/s.
The above (u c / u o) decreases rapidly within a range of
On the other hand, when the acceleration exceeds 0.5 m/s,
(u c/u a) decreases extremely slowly.

したがって、付着粉体の除去等の上記目的を実現する場
合に、あまり大きな加速度による風速の変化を与えるこ
とは省エネルギー化を図る上ではむしろ適当でなく、例
えば加速度α。を0.5 m/s”変化させた場合に 
(u e/u o)の変化が0.15程度以下となる範
囲の加速度をもつ通風を選択することが適当である場合
が多い。より具体的には、通風の加速度α。を0.17
〜2m/s”、好ましくは0.5〜1.25m/s’、
最適には0.7〜1.0m/s”の範囲ないで設定する
ことが望ましい場合が多い。
Therefore, when achieving the above-mentioned purpose such as removing adhering powder, it is rather inappropriate to change the wind speed due to too large an acceleration in order to save energy. When changing 0.5 m/s”
In many cases, it is appropriate to select ventilation having an acceleration within a range where the change in (u e/u o) is about 0.15 or less. More specifically, the acceleration α of the ventilation. 0.17
~2 m/s", preferably 0.5-1.25 m/s',
Optimally, it is often desirable to set the speed within the range of 0.7 to 1.0 m/s.

本発明方法の対象となる粉体は、組成1粒子形状等特に
限定されるものではないが、−射的には100μ以下、
好ましくは30μI以下、程度のものが対象とされる。
The powder to be subjected to the method of the present invention is not particularly limited in terms of composition, particle shape, etc.;
Preferably, the target is about 30 μI or less.

上記のような通風に加速度を与えるためには、特に限定
されるものではないが、例えば高圧気体をバルブを介し
て一定時間噴出させる、又は空気源となるファン、ブロ
ワ−の回転数を一定時間内に上昇させる方法などがある
In order to give acceleration to the ventilation as described above, there are no particular limitations, but for example, high-pressure gas may be jetted out through a valve for a certain period of time, or the rotation speed of a fan or blower serving as an air source may be increased for a certain period of time. There are ways to raise it internally.

また、上記方法において、粉体が再飛散するさいの下限
値の上下近傍に渡り風速を変化させる場合、風速下限値
の下側から行わせる必要は必ずしもないが、該下限値を
越える風速については、粉体の再飛散に必要十分な範囲
に渡って行うことが必要である。
In addition, in the above method, when changing the wind speed near the upper and lower limits of the lower limit when powder is re-dispersed, it is not necessarily necessary to change the wind speed from below the lower limit of the wind speed, but for wind speeds exceeding the lower limit, , it is necessary to carry out the process over a necessary and sufficient range for re-scattering of the powder.

本発明の加速度を有する通風により、効率的な付着粉体
の除去等が得られる理由は、次の様に考えられる。
The reason why the accelerated ventilation of the present invention allows efficient removal of adhering powder, etc. is considered to be as follows.

すなわち、加速度をもつ通風によって付着粉体の再飛散
風速が変化する現象を、気流剪断力の変化による影響、
気流の乱れによる影響、凝集粒子に作用する力の加速に
よる影響に分けて考察すると、まず、気流剪断力の変化
は、気流加速度の変化に伴う圧力変動を各加速度で風速
が上昇する気流の10m/s、20m/s、30m/s
風速時点での圧力差ΔPを計測し、剪断応力twを算出
したところ、その結果を示した第8図から分かるように
、再飛散風速ucが急速に低下するO〜0.2 m/s
”の加速度範囲では、剪断応力の変化は極めて小さく、
したがって気流剪断力による影響は実質的に無視できる
In other words, the phenomenon in which the re-dispersion wind speed of adhering powder changes due to accelerated ventilation can be explained by the effect of changes in airflow shear force,
Considering the effect of airflow turbulence and the effect of acceleration of the force acting on aggregated particles separately, first, changes in airflow shear force are caused by changes in pressure due to changes in airflow acceleration. /s, 20m/s, 30m/s
The pressure difference ΔP at the wind speed was measured and the shear stress tw was calculated. As can be seen from FIG.
In the acceleration range of ”, the change in shear stress is extremely small;
Therefore, the influence of airflow shear force can be virtually ignored.

次に、気流の乱れによる影響については、加速気流では
粒体の乱れはむしろ小さくなる傾向のあることが知られ
ているので、これにより付着粉体の再飛散風速が低下す
ることはないと考えられる。
Next, regarding the influence of airflow turbulence, it is known that the turbulence of particles tends to become smaller in accelerated airflow, so we do not think that this will reduce the re-dispersion wind speed of adhering powder. It will be done.

更に、凝集粒子に作用する力の加速による影響について
考えると、粒体中の粒子の一般的な運動方程式は次式で
与えられる。
Furthermore, considering the influence of acceleration of the force acting on the aggregated particles, the general equation of motion of the particles in the granules is given by the following equation.

ここで、左辺は粒子を加速するのに必要な力、右辺第一
項は粘性抗力、第二項は加速により粒子にかかる力、第
三項は速度の変動によって粒子に働(反力、第四項は流
体流れの変化の履歴に関する力、Fは外力である。
Here, the left side is the force necessary to accelerate the particle, the first term on the right side is the viscous drag force, the second term is the force applied to the particle due to acceleration, and the third term is the force (reaction force, The fourth term is a force related to the history of changes in fluid flow, and F is an external force.

そして、本発明方法が対象とするような凝集粒子径が小
さい場合には、上記第二項及び第三項は無視でき、Fは
粒子間付着カであるから、粒子に分離力として働くのは
上記第一項と第二項となる。
When the agglomerated particle size is small, as is the case with the method of the present invention, the second and third terms can be ignored, and F is the interparticle adhesion force, so the separation force that acts on the particles is The first and second paragraphs above apply.

ここで更に付着粉体の凝集粒子の飛散モデルを第9図の
ように考え、凝集粒子2oが粉体層21の表面に一部埋
まった状態とすると、壁面近傍では気流の速度勾配は図
示の如(一定と考えて差し支えないから、この凝集粒子
に作用する上記第一項と第二項による分離力は曲げ応力
が支配的であり、第一項の粘性抗力による曲げ応力は であり、第二項の粒体流れの履歴による曲げ応力は で与えられる。
Further, considering the scattering model of the aggregated particles of the adhered powder as shown in Fig. 9, and assuming that the aggregated particles 2o are partially buried in the surface of the powder layer 21, the velocity gradient of the airflow near the wall surface will be as shown in the figure. (Since it can be considered to be constant, the bending stress is dominant in the separation force due to the first term and the second term above that acts on the aggregated particles, and the bending stress due to the viscous drag force in the first term is . The bending stress due to the binomial particle flow history is given by:

粒子間付着力は、気流に関係なく一定であることから、
加速流の飛散限界曲げ応力と、定常流の場合の飛散限界
曲げ応力が等しくなることから、 τ、ti4−4−1.257D −g (ρα/πu 
) I / 2 u e@ / 4=U、、。7/4 が導かれる。
Since the adhesion force between particles is constant regardless of airflow,
Since the scattering limit bending stress of accelerated flow is equal to the scattering limit bending stress of steady flow, τ, ti4-4-1.257D -g (ρα/πu
) I/2 u e@/4=U,,. 7/4 is led.

そしてこのD 111を最小二乗法により求めると、実
際の凝集粒子径Dagよりかなり大きな値となるので、
実験定数kを導入し、実験結果に適用して図に表すと、
実験結果に略対応する。
When this D 111 is calculated by the least squares method, it becomes a value considerably larger than the actual aggregate particle diameter Dag, so
Introducing the experimental constant k and applying it to the experimental results, we get the following diagram:
Approximately corresponds to the experimental results.

これにより、粉体の固体表面への付着状態や粉体種に違
いがあっても、第9図の飛散モデルで説明できることが
分かる。
This shows that even if there are differences in the state of adhesion of the powder to the solid surface or the type of powder, it can be explained using the scattering model shown in FIG. 9.

(実 施 例) 以下本発明方法を実施例に基づいて説明する。(Example) The method of the present invention will be explained below based on examples.

実施例1 本発明の方法を第2図〜第4図で示した装置を用いて、
風速が一定率で上昇する通風の各加速度と、この通風で
上記付着粉体が再飛散する風速下限値との相対関係を示
す特性線を求めた。
Example 1 The method of the present invention was carried out using the apparatus shown in FIGS. 2 to 4.
A characteristic line showing the relative relationship between each acceleration of ventilation at which the wind speed increases at a constant rate and the lower limit of the wind speed at which the adhered powder is re-dispersed by this ventilation was determined.

第2図において、1は第3図で拡大して示した粉体を充
填する凹部な壁面に有する断面矩形の長尺筒状のテスト
管であり、その一端側には、コントローラ3によりモー
タ4を介して開路状態制御で流量を調整できる流量調整
弁5が途中に設けられている空気流供給管2が接続され
、更にこの供給管2の上流は、緩衝容器6を経てコンプ
レッサ7に接続されている。また緩衝容器6下流の供給
管2の空気流の状態は、マスフローメータ8で検出され
て記録計9に送られるようになっている。
In FIG. 2, reference numeral 1 designates a long cylindrical test tube with a rectangular cross section in a concave wall filled with powder shown enlarged in FIG. An air flow supply pipe 2 having a flow rate regulating valve 5 which can adjust the flow rate by open circuit state control is connected through the air supply pipe 2, and the upstream side of this supply pipe 2 is connected to a compressor 7 via a buffer container 6. ing. Further, the state of air flow in the supply pipe 2 downstream of the buffer container 6 is detected by a mass flow meter 8 and sent to a recorder 9.

上記流量調整弁は、マスフローメータ(テレタイン へ
イスティング−レイディス% HFC−203C)のバ
ルブ開度をDCモータ(オリエンタルモータ製2GN1
00に、 2GN10XK)を利用t、テ可変するよう
に設けた。
The above flow rate adjustment valve uses a DC motor (Oriental Motor Co., Ltd. 2GN1
00, 2GN10XK) was installed so that it could be used and changed.

10は上記テスト管1の内部状態を観察するために設け
た実態顕微鏡(オリンパス製 ModelSH2)であ
る。
Reference numeral 10 denotes a microscope (Model SH2 manufactured by Olympus) provided to observe the internal state of the test tube 1.

テスト管1の下流には、電気遮蔽箱12に入れられた粉
体検出装置11が配置されていて、該テスト管1から粉
体が飛散導出されたことを電流計13で電気的に検出し
、上記記録計9に信号を送るようになっている。この粉
体検出装置11の詳細は第4図に示されており、これに
ついては後述する。
A powder detection device 11 placed in an electrically shielding box 12 is disposed downstream of the test tube 1, and an ammeter 13 electrically detects the scattering of powder from the test tube 1. , to send a signal to the recorder 9. The details of this powder detection device 11 are shown in FIG. 4, and will be described later.

粉体検出装置11を通った粉体はフィルター14、緩衝
容器15、ポンプ16を通して外部に排気するようにし
た。
The powder that has passed through the powder detection device 11 is exhausted to the outside through a filter 14, a buffer container 15, and a pump 16.

テスト管1の詳細は第3図に示され、縦3mm×幅10
mmの断面矩形の通路を有する長さ400mmの管10
1に、下流端部から略75+++mの位置を中心として
長尺方向に、深さ1mm、長さ20mmの凹部103を
有する充填用セル102を管内壁と面一となるように組
み付けて構成されている。
The details of the test tube 1 are shown in Figure 3, and are 3mm long x 10mm wide.
A tube 10 with a length of 400 mm and a passage with a rectangular cross section of mm
1, a filling cell 102 having a recess 103 with a depth of 1 mm and a length of 20 mm in the longitudinal direction centered at a position approximately 75+++ m from the downstream end is assembled so as to be flush with the inner wall of the pipe. There is.

次に粉体検出装置について説明すると、これは第4図に
詳細に示されている。
Next, a description will be given of the powder detection device, which is shown in detail in FIG.

この図に示された粉体検出装置は、テスト管101から
の下流側接続管I7に、銅製のコイル管30(内径2.
6mm 、長さ約70mm)が接続されていて、飛散排
出された粉体粒子がこの内壁に接触することで接触帯電
によりパルス状の電流を発生するように設けられている
。この時の発生電流は、飛散量と略比例関係にあること
は実験的に確認されており、したがってこの発生電流を
検出することで飛散粉体量を算出することができる。
The powder detection device shown in this figure has a copper coiled tube 30 (with an inner diameter of 2.5 mm) connected to the downstream connecting tube I7 from the test tube 101.
6 mm in length and approximately 70 mm in length), and the powder particles scattered and discharged are provided so as to generate a pulsed current by contact charging when they come into contact with this inner wall. It has been experimentally confirmed that the current generated at this time is approximately proportional to the amount of scattered powder, and therefore, the amount of scattered powder can be calculated by detecting this generated current.

なおこの図の装置では、コイル管内部に粉体が付着しな
いように、下流側から約60m/sで吸引した。また3
2.33はコイル管を支持する絶縁体である。
In the device shown in this figure, suction was performed from the downstream side at approximately 60 m/s to prevent powder from adhering to the inside of the coiled tube. Also 3
2.33 is an insulator that supports the coiled tube.

1生立五五上11 以上の第2図〜第4図の装置を用いて以下の試験を行っ
た。
The following tests were conducted using the apparatus shown in Figures 2 to 4 above.

粉体として、球形のフライアッシュ10種を110℃で
12時間乾燥させたものを、上記充填セルに標準ふるい
(フライアッシュ用150メツシユ)を用いて自然落下
させ、遠心場で粉体の充填率を調整した後、薄刃のステ
ンレスナイフにより粉体層表面が流路壁面と同一になる
ように粉体をカットし、更に110℃で12時間乾燥さ
せた。
As a powder, 10 types of spherical fly ash dried at 110°C for 12 hours were allowed to fall naturally into the above-mentioned filling cell using a standard sieve (150 mesh for fly ash), and the filling rate of the powder was determined in a centrifugal field. After adjusting the temperature, the powder was cut using a thin-bladed stainless steel knife so that the powder layer surface was flush with the channel wall surface, and further dried at 110° C. for 12 hours.

次にこの充填セルをテスト管内に組込み、空気流の平均
U=Oの状態から一定の加速度αで上昇させた。その後
、空気流によって飛散した粒子を、粉体検出装置で電気
的に検出し、その結果を記録計に記録した。
Next, this filled cell was installed in a test tube, and the air flow was raised from the state of average U=O at a constant acceleration α. Thereafter, particles scattered by the air flow were electrically detected using a powder detection device, and the results were recorded on a recorder.

以上の試験を、空気流加速度を変化させて行った。但し
、加速度α=0に相当する試験として、流速を約5分ご
とに1 m/sづつ上昇させることで定常状態での飛散
の有無を確認した。なお流速を上昇させる時の加速度は
約0.02m/s”とし、気流の変化が飛散に及ぼす影
響を少なくした。
The above tests were conducted while changing the air flow acceleration. However, as a test corresponding to acceleration α=0, the presence or absence of scattering in a steady state was confirmed by increasing the flow velocity by 1 m/s every 5 minutes. The acceleration when increasing the flow velocity was set to approximately 0.02 m/s'' to reduce the influence of changes in air flow on scattering.

第5図は以上によって得られた飛散粒子による発生電流
と、流速の経時的変化を示した図であり、図の下半部は
経過時間に対する平均流速iの変化を示し、上半部は発
生電流Iの変化を示している。
Figure 5 is a diagram showing the current generated by the scattered particles obtained above and the change over time in the flow velocity. It shows changes in current I.

この図から、空気流の流速を一定加速度上昇させると、
ある領域から電流が発生し初め、この時の平均流速(再
飛散開始風速)を越えると電流が次第に増加することが
分かる。
From this figure, if the velocity of the airflow is increased by a constant acceleration,
It can be seen that the current begins to be generated from a certain region, and when it exceeds the average flow velocity at this time (the wind speed at which re-scattering starts), the current gradually increases.

また発生電流と粉体層表面から飛散する粒子のフラック
ス(単位時間、単位粉体層表面の飛散量)は略対応する
ことが分かっているため、流速が増加すると飛散フラッ
クスが多(なることが分かる。
In addition, it is known that the generated current and the flux of particles scattered from the powder bed surface (unit time, amount of scattered particles on the surface of the powder bed) approximately correspond, so as the flow rate increases, the scattered flux increases. I understand.

また同図は気流加速度の異なる二つの試験結果(a =
 0.22m/s”、 a = 0.03m/s”)を
示しているが、加速度が大きくなると再飛散開始風速u
cが低下することも分かる。
The figure also shows the results of two tests with different airflow accelerations (a =
0.22 m/s", a = 0.03 m/s"), but as the acceleration increases, the re-scattering start wind speed u
It can also be seen that c decreases.

また第6図は、平均風速iに対する発生電流値工の波形
のピークを示しており、流速が同じでも、気流加速度が
大きい方が飛散フラックスの多くなることが分かる。
Further, FIG. 6 shows the peak of the waveform of the generated current value with respect to the average wind speed i, and it can be seen that even if the flow speed is the same, the larger the airflow acceleration is, the more the scattered flux will be.

以上のことを整理し、各加速度と再飛散開始速度ucの
関係を第1図に示した。
Having summarized the above, the relationship between each acceleration and the re-entrainment start speed uc is shown in FIG.

また、加速度a=Oの時の再飛散風速U。で各加速度α
をもつ風速の再飛散風速uCを除した (u e/u 
a)と各加速度の関係と、上述した飛散モデルによる結
果の関係を第7図に示した。
Also, the re-scattered wind speed U when the acceleration a=O. and each acceleration α
(u e/u
FIG. 7 shows the relationship between a) and each acceleration, and the relationship between the results based on the above-mentioned scattering model.

以上の結果より、固体表面に付着した粉体な除去するに
は、通風の加速度α。を0,17〜2 m/s”、好ま
しくは0.5〜1.25m/s”、最適には0.7〜1
.0+n/s”の゛範囲ないで設定することが望ましい
ことが確認された。
From the above results, in order to remove powder attached to the solid surface, the ventilation acceleration α is required. 0.17-2 m/s", preferably 0.5-1.25 m/s", optimally 0.7-1
.. It has been confirmed that it is desirable to set it within the range of 0+n/s.

実施例2 粉体を、フライアッシュ10種(φ: o、 30)と
した他は実施例1と同様にして、再飛散風速と各加速度
の関係を求め、その結果を第7図にボした。
Example 2 The relationship between the redispersion wind speed and each acceleration was determined in the same manner as in Example 1 except that 10 types of fly ash (φ: o, 30) were used as the powder, and the results are shown in Figure 7. .

実施例3 粉体な、タルク(φ= 0.15)とし、標準ふるい(
タルク用100メツシユ)とした他は、実施例1と同様
にして、再飛散風速と各加速度の関係を求め、その結果
を第7図に示した。
Example 3 Powdered talc (φ = 0.15) was used, and a standard sieve (
The relationship between the re-encrusted wind speed and each acceleration was determined in the same manner as in Example 1, except that the talc mesh was used (100 mesh for talc), and the results are shown in FIG.

実施例4 固体試料片としてステンレス板を準備し、その表面に酸
化チタンを10g付着させたものを準備し、これに加速
度1.0m/s2で、上昇する風速を平均風速15m/
sまで上昇させて吹き当てt後、除去状態を顕微鏡で観
察した。
Example 4 A stainless steel plate with 10 g of titanium oxide adhered to the surface was prepared as a solid sample piece, and an increasing wind speed of 15 m/s was applied to the plate at an acceleration of 1.0 m/s2.
After increasing the temperature to s and spraying, the state of removal was observed using a microscope.

その結果、ステンレス板の表面に付着させた酸化チタン
はほとんど飛散し、除去された。
As a result, most of the titanium oxide deposited on the surface of the stainless steel plate was scattered and removed.

比較例1 実施例4と同様の試料片に、加速度0.02m/sで上
昇する風速を、実施例4と同様の平均風選まで上昇させ
て吹き当てたが、付着粉体は除チされなかった。
Comparative Example 1 The same sample piece as in Example 4 was blown with a wind speed increasing at an acceleration of 0.02 m/s to the same average air flow rate as in Example 4, but the adhering powder was not removed. There wasn't.

実施例5 粉体な酸化チタンとし輸送バイブなステンしスとし、こ
の輸送バイブ内を風速12m/sか915m/gの範囲
で、しかも気流加速度が1.o+Il/s”となるよう
に風速を変化させて、酸化チタン晧空気輸送したところ
、バイブ内の付着はほと^となかった。
Example 5 A transportation vibrator made of stainless steel was made of powdered titanium oxide, and the wind speed inside the transportation vibrator was in the range of 12 m/s to 915 m/g, and the airflow acceleration was 1. When the titanium oxide was air-transported by changing the wind speed so that the air velocity was 0+Il/s, there was almost no adhesion inside the vibrator.

比較例2 実施例5と同様で風速を15m/s一定として4気輸送
を行なったところ、バイブ内の付着が即問とともに増大
した。
Comparative Example 2 In the same manner as in Example 5, four air transport was carried out at a constant wind speed of 15 m/s, and the amount of adhesion inside the vibrator increased immediately.

(発明の効果) 本発明の方法によれば、固体表面に付着した粉体を、加
速度を有する比較的低い風速の通風により、効率よ(分
離、除去することができるため、省エネルギーに貢献す
るという効果がある。
(Effects of the Invention) According to the method of the present invention, powder adhering to a solid surface can be efficiently separated and removed by ventilation at a relatively low wind speed with acceleration, which contributes to energy saving. effective.

また、本発明の搬送方法によれば、固体表面への付着が
少ない状態、あるいは仮に付着してもこれを効率よく再
飛散させることができる状態で粉体を搬送でき、粉体搬
送管の詰まり等の問題を軽減できるという効果がある。
Furthermore, according to the conveying method of the present invention, it is possible to convey the powder in a state where there is little adhesion to the solid surface, or even if it does adhere, it can be efficiently re-splattered, thereby preventing clogging of the powder conveying pipe. This has the effect of reducing problems such as.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を適用して得られた実施例1の各気
流加速度と再飛散風速の関係特性線を示した図、第2図
は粉体の各加速度と再飛散風速の関係を求めるために用
いた装置の概要を示す図、第3図(a)、(b)は同テ
スト管部分の拡大図、第4図は粉体検出装置の詳細を示
した図。第5図は粉体検出装置によって検出される電流
と平均風速の関係を示した図、第6図は粉体検出装置に
よって検出される電流と平均風速の関係を示した図であ
る。 第7図は実施例1〜3の (u c/u o)と各加速
度の関係特性を示した図である。 第8図は各気流加速度と気流剪断応力の関係を示した特
性図、第9図は付着粉体に作用する気流による曲げ応力
を解析するためのモデルを示した図である。 他4名
Figure 1 is a diagram showing the relationship characteristic line between each airflow acceleration and re-entrainment wind speed in Example 1 obtained by applying the method of the present invention, and Figure 2 is a diagram showing the relationship between each acceleration of powder and re-entrainment wind speed. 3(a) and 3(b) are enlarged views of the same test tube portion, and FIG. 4 is a diagram showing details of the powder detection device. FIG. 5 is a diagram showing the relationship between the current detected by the powder detection device and the average wind speed, and FIG. 6 is a diagram showing the relationship between the current detected by the powder detection device and the average wind speed. FIG. 7 is a diagram showing the relationship between (u c/u o) and each acceleration in Examples 1 to 3. FIG. 8 is a characteristic diagram showing the relationship between each airflow acceleration and airflow shear stress, and FIG. 9 is a diagram showing a model for analyzing the bending stress due to the airflow acting on the adhered powder. 4 others

Claims (1)

【特許請求の範囲】 1、風速が上昇変化する通風の作用で固体表面の付着粉
体を脱離飛散させる方法であっ て、 風速が一定率で上昇する通風の各加速度と この通風で上記付着粉体が脱離飛散される際の風速下限
値との相対関係につき予め求めた特性線を基準に、ある
加速度を設定した時の上記風速下限値を求め、この下限
値の上下近傍に渡り上記設定加速度で風速が変化する通
風を上記固体表面に作用させることを特徴とする付着粉
体の除去方法。 2、請求項1において、設定加速度による風速の上昇変
化を繰り返し与えることを特徴とする方法。 3、風速が変動する通風により、粉体搬送管内で粉体を
搬送する通風方法であって、 風速が上昇変化する通風の作用で該粉体搬 送管の内壁に付着した粉体が脱離飛散する場合に、風速
が一定率で上昇する通風の各加速度とこの通風で上記付
着粉体が脱離飛散される際の風速下限値との相対関係に
つき予め求めた特性線を基準に、ある加速度を設定した
時の上記風速下限値を求め、この下限値の上下近傍に渡
り変動する通風に上記設定加速度を間欠的に与えて、こ
の通風により粉体を搬送することを特徴とする粉体の搬
送方法。 4、請求項1乃至3のいずれかにおいて、風速を上昇さ
せる設定加速度が0.17〜2m/s^2の範囲である
ことを特徴とする方法。
[Claims] 1. A method for detaching and scattering adhering powder from a solid surface by the action of ventilation in which the wind speed increases and changes, the method comprising: each acceleration of the ventilation in which the wind speed increases at a constant rate; Based on a characteristic line determined in advance for the relative relationship with the lower limit of wind speed when the powder is desorbed and scattered, the lower limit of wind speed when a certain acceleration is set is determined, and the A method for removing adhered powder characterized by applying ventilation whose wind speed changes according to a set acceleration to the solid surface. 2. The method according to claim 1, characterized in that an increasing change in wind speed is repeatedly given according to a set acceleration. 3. A ventilation method in which powder is transported within a powder transport pipe using ventilation whose wind speed fluctuates, and the powder that adheres to the inner wall of the powder transport pipe is detached and scattered due to the action of the ventilation whose wind speed increases and changes. In this case, a certain acceleration is determined based on a characteristic line determined in advance regarding the relative relationship between each acceleration of ventilation in which the wind speed increases at a constant rate and the lower limit of wind speed when the adhered powder is detached and scattered by this ventilation. , the lower limit value of the wind speed is determined, the set acceleration is intermittently applied to the ventilation that fluctuates around the upper and lower limits of the lower limit value, and the powder is transported by the ventilation. Transportation method. 4. The method according to any one of claims 1 to 3, wherein the set acceleration for increasing the wind speed is in the range of 0.17 to 2 m/s^2.
JP13094190A 1990-05-21 1990-05-21 How to remove or transport powder Expired - Lifetime JP2770833B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13094190A JP2770833B2 (en) 1990-05-21 1990-05-21 How to remove or transport powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13094190A JP2770833B2 (en) 1990-05-21 1990-05-21 How to remove or transport powder

Publications (2)

Publication Number Publication Date
JPH0428624A true JPH0428624A (en) 1992-01-31
JP2770833B2 JP2770833B2 (en) 1998-07-02

Family

ID=15046260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13094190A Expired - Lifetime JP2770833B2 (en) 1990-05-21 1990-05-21 How to remove or transport powder

Country Status (1)

Country Link
JP (1) JP2770833B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001004030A1 (en) * 1999-07-08 2001-01-18 Nkk Corporation Method and device for cutting out and transporting powder and granular material
US8373636B2 (en) 2000-02-18 2013-02-12 Hitachi Displays, Ltd. Driving method for display device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7003792B2 (en) 2018-03-28 2022-02-10 セイコーエプソン株式会社 Web forming equipment, web forming method and sheet manufacturing equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001004030A1 (en) * 1999-07-08 2001-01-18 Nkk Corporation Method and device for cutting out and transporting powder and granular material
US8373636B2 (en) 2000-02-18 2013-02-12 Hitachi Displays, Ltd. Driving method for display device

Also Published As

Publication number Publication date
JP2770833B2 (en) 1998-07-02

Similar Documents

Publication Publication Date Title
EP1512508A3 (en) Polymeric foam powder processing techniques and foam powder products
TR200200647T2 (en) Aerosol airflow control system and method
HUT71287A (en) Method and device for inhalation of powdered medicament
JO2222B1 (en) Pulveriser and method of pulverising
WO2003009931A3 (en) Auger fed mixer apparatus and method of using
Julian et al. THE EFFECT OF PLASMA ACTUATOR PLACEMENT ON DRAG COEFFICIENT REDUCTION OF AHMED BODY AS AN AERODYNAMIC MODEL.
JPH0428624A (en) Removal of powder or its transportation
EP1254744A3 (en) Method and apparatus for controlling shot peening device
WO2004031433A3 (en) Tungsten disulfide surface treatment and method and apparatus for accomplishing same
WO2006019242A8 (en) Device and method for measuring fine particle concentration
EP0982379A3 (en) Particle surface-modifying method and particle surface-modifying device
US4783417A (en) System for on-line molten metal analysis
EP0293502B1 (en) Method for analysis of molten metal
Jurcik et al. The modelling of particle resuspension in turbulent flow
WO2000020837A3 (en) Online particle-size measuring device
JPS6268887A (en) Method of improving yield of massive coke to be fed to blast furnace
EP1025926A3 (en) Method and apparatus for reclaiming casting sand
JP2000501368A (en) A method for automatically detecting operation at the stable limit in a device that pneumatically conveys powders at a high concentration
SE9802649D0 (en) Classification device
JP2004191204A (en) Aperture variable suction nozzle
Schofield et al. The generation of dust by materials handling operations
KR20190077781A (en) Particle measurement system
CN1356608A (en) Automatic controller for laser coating and powder feeding system
JPS6370008A (en) Growing fluid medium discharge system
CN207563401U (en) A kind of pulsed smoking machine with tweezers

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080417

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090417

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090417

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100417

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110417

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110417

Year of fee payment: 13