JPH04285830A - Measuring/controlling apparatus for deviation amount of optical frequency of semiconductor laser - Google Patents

Measuring/controlling apparatus for deviation amount of optical frequency of semiconductor laser

Info

Publication number
JPH04285830A
JPH04285830A JP3049712A JP4971291A JPH04285830A JP H04285830 A JPH04285830 A JP H04285830A JP 3049712 A JP3049712 A JP 3049712A JP 4971291 A JP4971291 A JP 4971291A JP H04285830 A JPH04285830 A JP H04285830A
Authority
JP
Japan
Prior art keywords
optical
optical frequency
semiconductor laser
operating point
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3049712A
Other languages
Japanese (ja)
Other versions
JP3207211B2 (en
Inventor
Hideyuki Miyata
英之 宮田
Hiroshi Onaka
寛 尾中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP04971291A priority Critical patent/JP3207211B2/en
Priority to CA002060943A priority patent/CA2060943C/en
Priority to US07/763,513 priority patent/US5200967A/en
Priority to DE69120369T priority patent/DE69120369T2/en
Priority to EP91116045A priority patent/EP0481242B1/en
Priority to CA 2063016 priority patent/CA2063016A1/en
Publication of JPH04285830A publication Critical patent/JPH04285830A/en
Application granted granted Critical
Publication of JP3207211B2 publication Critical patent/JP3207211B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Semiconductor Lasers (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

PURPOSE:To obtain a compact and inexpensive measuring/controlling apparatus in a simple structure which measures/controls the amount of deviation of an optical frequency of a semiconductor laser which is frequency-modulated or phase-modulated based on an input modulating signal. CONSTITUTION:An operating point controlling circuit 42 stabilizes an operating point at the central value of the discriminating characteristics of the optical frequency of an interference device 20. At this time, the operating point is changed by a low frequency signal S from a low frequency oscillator 51. When the subtracting signals of electric signals EL1, EL2 from photodetectors 31, 36 are synchronously detected by the low frequency signal S in a synchronous detecting circuit 52, the deviation of the synchronously-detected output from zero represents the amount of deviation f of the optical frequency. Therefore, it becomes possible to measure the amount of deviation f of the optical frequency. A stabilizing circuit 53 can consequently control the amount of deviation f of the optical frequency.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、レーザの光周波数変調
を用いる通信、計測等において、入力した変調信号に基
づいて周波数もしくは位相変調されたレーザ光の光周波
数偏移量の測定、制御を行う半導体レーザの光周波数偏
移量測定、制御装置に関する。
[Industrial Application Field] The present invention is useful for measuring and controlling the amount of optical frequency deviation of a laser beam that is frequency- or phase-modulated based on an input modulation signal in communication, measurement, etc. that uses optical frequency modulation of a laser. This invention relates to a device for measuring and controlling the amount of optical frequency deviation of a semiconductor laser.

【0002】近年、半導体レーザに対し直接光周波数変
調を用いることによって通信、計測等が行われるように
なってきた。例えば通信においてはレーザ光に直接光周
波数変調を加えることにより、伝送路へ送出する光デー
タとするという光通信システムが実用化されつつある。 その一方式として、コヒーレント光を用いたFSK(F
requency Shift Keying) 方式
によるコヒーレント光通信システムが挙げられる。この
FSK方式では、送信すべきデータの2論理値(“1”
,“0”)に対応して、半導体レーザからの出力光の周
波数を第1光周波数f1 、第2光周波数f2 に変化
させるようなデータ変調(FM変調)を行う。
In recent years, communication, measurement, etc. have come to be performed by using direct optical frequency modulation for semiconductor lasers. For example, in communications, optical communication systems are being put into practical use that directly apply optical frequency modulation to laser light to generate optical data to be sent to a transmission path. One method is FSK (FSK) using coherent light.
An example of this is a coherent optical communication system based on a frequency shift keying method. In this FSK method, the data to be transmitted has two logical values (“1”
, "0"), data modulation (FM modulation) is performed to change the frequency of the output light from the semiconductor laser to a first optical frequency f1 and a second optical frequency f2.

【0003】この場合、半導体レーザ自身のバイアス経
年変化あるいはこれを含んだ光モジュールの経年劣化等
により、FM変調効率(半導体レーザの単位電流あたり
の光周波数可変量)が変化する。そうすると、半導体レ
ーザを同一駆動電流で変調したとしても、変調指数、す
なわち中心周波数F0 に対する第1及び第2光周波数
f1 ,f2 の周波数偏移量が初期に設定した一定値
からずれてくる。このズレは光通信システムのおける受
信系において、その受信感度を著しく劣化させてしまう
ことになる。
In this case, the FM modulation efficiency (the amount of optical frequency variation per unit current of the semiconductor laser) changes due to aging of the bias of the semiconductor laser itself or aging of the optical module including the semiconductor laser. Then, even if the semiconductor laser is modulated with the same drive current, the modulation index, that is, the amount of frequency deviation of the first and second optical frequencies f1 and f2 with respect to the center frequency F0 will deviate from the initially set constant value. This deviation significantly deteriorates the receiving sensitivity in the receiving system of the optical communication system.

【0004】本発明は上記のズレを生じさせない、半導
体レーザの光周波数偏移量の測定、制御装置について述
べるものである。なお、本発明はコヒーレント光を用い
た光計測システム等にも応用できるものである。
The present invention describes an apparatus for measuring and controlling the amount of optical frequency deviation of a semiconductor laser, which does not cause the above-mentioned deviation. Note that the present invention can also be applied to optical measurement systems using coherent light.

【0005】[0005]

【従来の技術】半導体レーザに対し直接光周波数変調を
行うという技術はきわめて最近現れたものであり、光周
波数偏移量の測定、制御の概念ななく、従来技術として
確立したものは未だ知られていない。
[Prior Art] The technology of directly performing optical frequency modulation on a semiconductor laser has appeared very recently, and there is no concept of measuring or controlling the amount of optical frequency deviation, and no established conventional technology is known yet. Not yet.

【0006】[0006]

【発明が解決しようとする課題】本発明は簡単な構成で
小型化できしかも安価に実現できる半導体レーザの光周
波数偏移量の測定、制御装置を提供することを目的とす
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a device for measuring and controlling the amount of optical frequency deviation of a semiconductor laser, which has a simple structure, can be miniaturized, and can be realized at low cost.

【0007】[0007]

【課題を解決するための手段】第1図は、本発明の原理
構成を示すブロック図である。同図において、10は半
導体レーザであり、高速の変調信号の“1”,“0”に
対応して光周波数を第1周波数f1 、第2周波数f2
 に変化させられた(FSK変調のかけられた)出力光
H0 を出力する。
[Means for Solving the Problems] FIG. 1 is a block diagram showing the basic configuration of the present invention. In the figure, 10 is a semiconductor laser, which changes the optical frequency to a first frequency f1 and a second frequency f2 in response to "1" and "0" of a high-speed modulation signal.
It outputs output light H0 changed to (FSK modulated).

【0008】本発明に係る半導体レーザの光周波数偏移
量の測定,制御装置は、半導体レーザ10からFSK変
調のかかった出力光H0 を受けて動作するもので、図
示するとおり、光干渉器20と、受光器30と、動作点
設定手段40と、光周波数偏移量検出手段50とからな
る。
The device for measuring and controlling the amount of optical frequency deviation of a semiconductor laser according to the present invention operates upon receiving FSK-modulated output light H0 from the semiconductor laser 10, and as shown in the figure, an optical interferometer 20 , a light receiver 30 , an operating point setting means 40 , and an optical frequency deviation detection means 50 .

【0009】光干渉器20は、半導体レーザ10からの
出力光H0 を受け、光周波数弁別特性に従った干渉光
Hi を出力する。受光器30は、干渉光Hi を受け
てその光強度を電気信号ELに変換する。
Optical interferometer 20 receives output light H0 from semiconductor laser 10 and outputs interference light Hi in accordance with optical frequency discrimination characteristics. The light receiver 30 receives the interference light Hi and converts the light intensity into an electric signal EL.

【0010】動作点設定手段40は、電気信号ELを受
信し、光干渉器20の動作点が、前記光周波数弁別特性
の最大値と最小値の中央値に対応する光周波数に一致す
るように動作点を設定する。
The operating point setting means 40 receives the electric signal EL and sets the operating point of the optical interferometer 20 to match the optical frequency corresponding to the median value between the maximum value and the minimum value of the optical frequency discrimination characteristic. Set the operating point.

【0011】光周波数偏移量検出手段50は、前記動作
点のもとで予め低周波変調された前記干渉光Hi の平
均光出力強度の低周波信号成分を前記電気信号ELから
同期検波により抽出し、光周波数偏移量を検出する。
The optical frequency deviation detecting means 50 extracts a low frequency signal component of the average optical output intensity of the interference light Hi which has been low frequency modulated in advance at the operating point from the electrical signal EL by synchronous detection. and detect the amount of optical frequency deviation.

【0012】0012

【作用】本発明に係る半導体レーザの光周波数偏移量の
測定,制御装置の動作原理は、i)光干渉器20におけ
る光周波数弁別特性の中央値に対応する光周波数に、該
光干渉器20の動作点を安定化させること、ii)その
安定化された動作点のもとで、予め低周波変調されて光
干渉器20から出力される干渉光Hi の平均光出力強
度の低周波信号成分を受光器30より出力される電気信
号から低周波信号で同期検波することにより抽出し、得
られた同期検波出力信号から光周波数偏移量を検出する
こと、の2点に大別される。
[Operation] The operating principle of the device for measuring and controlling the amount of optical frequency deviation of a semiconductor laser according to the present invention is as follows: i) The optical frequency corresponding to the median value of the optical frequency discrimination characteristic in the optical interferometer 20 is ii) Under the stabilized operating point, a low frequency signal of the average optical output intensity of the interference light Hi which has been low frequency modulated in advance and is output from the optical interferometer 20; The process can be roughly divided into two parts: extracting the component from the electrical signal output from the optical receiver 30 by synchronously detecting it with a low frequency signal, and detecting the amount of optical frequency deviation from the obtained synchronously detected output signal. .

【0013】上記i)およびii)の各操作は主として
動作点設定手段40および光周波数偏移量検出手段50
が各々行う。これについてさらに詳しく述べる。初めに
、動作点の設定について説明する。
Each of the above operations i) and ii) is performed mainly by the operating point setting means 40 and the optical frequency deviation detection means 50.
perform each. I will discuss this in more detail below. First, setting of the operating point will be explained.

【0014】図2(a) は、光干渉器20の光周波数
弁別特性を示すグラフである。本グラフの横軸は光周波
数すなわち光干渉器の動作周波数を示し、縦軸は光干渉
器20からの干渉光Hi の光強度Pを示す。なお、干
渉光Hi は2つあり光干渉器20からの相補的な関係
にある干渉光Hi1,Hi2である。図2(a) にお
いて実線が干渉光Hi1の、また鎖線が相補的な干渉光
Hi2の光周波数弁別特性曲線である。光干渉器20と
しては、ファブリ・ペロー干渉器、マイケルソンあるい
はマッハツェンダー干渉器等が良く知られているが、本
発明ではいずれの干渉器を用いても良い。本グラフはマ
ッハツェンダー干渉器を用いたときの例を示すが、この
ような形の光周波数弁別特性が観測される。
FIG. 2(a) is a graph showing the optical frequency discrimination characteristics of the optical interferometer 20. The horizontal axis of this graph indicates the optical frequency, that is, the operating frequency of the optical interferometer, and the vertical axis indicates the optical intensity P of the interference light Hi from the optical interferometer 20. It should be noted that there are two interference beams Hi, which are complementary interference beams Hi1 and Hi2 from the optical interferometer 20. In FIG. 2(a), the solid line is the optical frequency discrimination characteristic curve of the interference light Hi1, and the chain line is the optical frequency discrimination characteristic curve of the complementary interference light Hi2. As the optical interferometer 20, a Fabry-Perot interferometer, a Michelson interferometer, a Mach-Zehnder interferometer, etc. are well known, but any interferometer may be used in the present invention. This graph shows an example when a Mach-Zehnder interferometer is used, and this type of optical frequency discrimination characteristic is observed.

【0015】一般に、マッハツェンダー干渉器を用いた
場合光周波数弁別特性は光周波数の変化に対し正弦波状
に変化する光強度を示すが、そのうちの一部を取り出し
たのが本グラフである。図示するとおり、光強度は極大
値MAXと極小値MINをとる。極大値MAXを生じさ
せる光周波数はfmax 、極小値MINを生じさせる
光周波数はfmin である。本発明では動作点(第1
光周波数f1 と第2光周波数f2 の中間の光周波数
f0 )がこれらの極値間の中央値MED(周波数fm
ed)と常に一致するようにする。
Generally, when a Mach-Zehnder interferometer is used, the optical frequency discrimination characteristic shows a light intensity that changes in a sinusoidal manner with respect to a change in optical frequency, and this graph shows a part of this. As shown in the figure, the light intensity takes a local maximum value MAX and a local minimum value MIN. The optical frequency that causes the maximum value MAX is fmax, and the optical frequency that causes the minimum value MIN is fmin. In the present invention, the operating point (first
The optical frequency f0 (intermediate between the optical frequency f1 and the second optical frequency f2) is the median value MED (frequency fm) between these extreme values.
ed).

【0016】上記の2つの干渉光Hi1及びHi2は互
いに相補的な干渉光であるから、これらを各々受光しそ
の出力を加算すると図2(a) の一点鎖線の如く平坦
な出力となる。この平坦な出力値は半導体レーザ10の
光出力に比例する。また、上記2つの相補的な干渉光H
i1及びHi2を各々受光しその出力を減算すると、振
幅が2倍となりしかも中央値MEDすなわち動作点のと
ころで零点とクロスする。従って、この減算された信号
が常に零になるように、半導体レーザ10あるいは光干
渉器20のバイアスあるいは温度を制御すれば、動作点
を光周波数弁別特性の中央値MEDに一致させることが
できる。
Since the above two interference lights Hi1 and Hi2 are interference lights complementary to each other, when they are received respectively and their outputs are added, a flat output is obtained as shown by the dashed-dotted line in FIG. 2(a). This flat output value is proportional to the optical output of the semiconductor laser 10. In addition, the above two complementary interference lights H
When i1 and Hi2 are respectively received and their outputs are subtracted, the amplitude doubles and crosses the zero point at the median value MED, that is, the operating point. Therefore, by controlling the bias or temperature of the semiconductor laser 10 or the optical interferometer 20 so that the subtracted signal is always zero, the operating point can be made to coincide with the median value MED of the optical frequency discrimination characteristic.

【0017】次に、光周波数偏移量の検出について説明
する。ここでは、説明を簡単にするために、半導体レー
ザ10からの出力光H0 にはマーク率1/2 の理想
的なFSK変調がかけられているものとする。マーク率
とは、変調信号の“1”と“0”の発生する比率のこと
であり、“1”と“0”とが等確率で発生すればマーク
率は1/2 、“1”と“0”の比が1:3であればマ
ーク率は1/4 である。理想的なFSK変調とは、光
周波数のf1 とf2 の間の遷移時間が無限に小さい
ということである。
Next, detection of the amount of optical frequency shift will be explained. Here, in order to simplify the explanation, it is assumed that the output light H0 from the semiconductor laser 10 is subjected to ideal FSK modulation with a mark rate of 1/2. The mark rate is the ratio of occurrences of "1" and "0" in a modulated signal, and if "1" and "0" occur with equal probability, the mark rate will be 1/2 and "1". If the ratio of "0" is 1:3, the mark ratio is 1/4. Ideal FSK modulation means that the transition time between optical frequencies f1 and f2 is infinitely small.

【0018】上記のように、動作点を光周波数弁別特性
の中央値MEDに安定させる。この状態を図3(a) 
に示す。便宜上、光周波数偏移量ΔfをΔf=FSR/
2とした。FSRとはフリースペクトラルレンジで光周
波数弁別特性の隣り合う極大値(極小値)間の光周波数
差である。動作点を中央値MEDに安定させておいて、
低周波周波信号Sで変動させる。図3(b) に示すよ
うに、動作点が右方へ移動すれば、光周波数f1 ,f
2 各々も右方へ移動し、光周波数f1 での光出力P
1 は上昇し、光周波数f2 での光出力P2 は下降
する。また図3(c) に示すように、動作点が左方へ
移動すれば光周波数f1 ,f2 各々も左方へ移動し
、光周波数f1 での光出力P1 は上昇し、光周波数
f2 での光出力P2 は下降する。この光出力P1 
,P2 の変動は、光干渉器20からの平均光出力強度
の変動として観測される。このように、2つの光周波数
f1 ,f2 の差(f1 −f2 )である光周波数
偏移量Δfの大きさにより、光干渉器20からの平均光
出力の強度の変動の位相、振幅に変化が起こる。以下、
詳述する。
As described above, the operating point is stabilized at the median value MED of the optical frequency discrimination characteristic. This state is shown in Figure 3(a).
Shown below. For convenience, the amount of optical frequency deviation Δf is expressed as Δf=FSR/
It was set as 2. FSR is the optical frequency difference between adjacent maximum values (minimum values) of optical frequency discrimination characteristics in the free spectral range. Keep the operating point stable at the median value MED,
It is varied by a low frequency signal S. As shown in Fig. 3(b), if the operating point moves to the right, the optical frequencies f1 and f
2 Each also moves to the right, and the optical output P at optical frequency f1
1 increases, and the optical output P2 at the optical frequency f2 decreases. Furthermore, as shown in Fig. 3(c), if the operating point moves to the left, the optical frequencies f1 and f2 also move to the left, the optical output P1 at the optical frequency f1 increases, and the optical output P1 at the optical frequency f2 increases. The optical output P2 decreases. This optical output P1
, P2 is observed as a variation in the average optical output intensity from the optical interferometer 20. In this way, the phase and amplitude of the fluctuation in the intensity of the average optical output from the optical interferometer 20 change depending on the magnitude of the optical frequency deviation amount Δf, which is the difference (f1 − f2) between the two optical frequencies f1 and f2. happens. below,
Explain in detail.

【0019】図4(a) は、光周波数偏移量Δfの値
が光干渉器20のFSR/2よりも小さい場合である。 同図において、動作点を低周波信号Sで変動させると、
動作点が右方へ移動するに従い光周波数f1 ,f2 
が右方へ移動し、その右方移動に応じて光出力は各々上
昇し、動作点が左方へ移動するに従い光周波数f1 ,
f2 が左方へ移動し、その左方移動に応じて光出力は
各々下降する。従って、平均光出力強度の変動は図の右
方に示す通りである。
FIG. 4A shows a case where the value of the optical frequency shift amount Δf is smaller than FSR/2 of the optical interferometer 20. In the figure, when the operating point is varied by the low frequency signal S,
As the operating point moves to the right, the optical frequencies f1 and f2 increase.
moves to the right, and as the operating point moves to the left, the optical output increases, and as the operating point moves to the left, the optical frequencies f1,
f2 moves to the left, and the light output decreases in accordance with the leftward movement. Therefore, the variation in the average light output intensity is as shown on the right side of the figure.

【0020】図4(b) は、光周波数偏移量Δfの値
が光干渉器20のFSR/2と一致する、すなわちΔf
=FSR/2の場合である。このとき、図2(b) に
も示したように光出力が集中している光周波数f1 ,
f2 が互いに相補的な動きをするため、移動に応じて
出力される光出力の増加分と減少分は等しいから、動作
点を低周波信号Sで変動させるにもかかわらず、図4(
b) の右に示す通り平均光出力強度の変動は無い。
FIG. 4(b) shows that the value of the optical frequency shift amount Δf matches the FSR/2 of the optical interferometer 20, that is, Δf
=FSR/2. At this time, as shown in Fig. 2(b), the optical frequency f1, where the optical output is concentrated, is
Since f2 moves in a complementary manner to each other, the increase and decrease in the optical output output in response to the movement are equal, so even though the operating point is varied by the low frequency signal S,
As shown on the right side of b), there is no variation in the average light output intensity.

【0021】図4(c) は、光周波数偏移量Δfの値
が光干渉器20のFSR/2よりも大きい場合である。 同図において、動作点を低周波信号Sで変動させると、
動作点が右方へ移動するに従い光周波数f1 ,f2 
が右方へ移動し、その移動に応じて出力される光出力は
各々下降する。動作点が左方へ移動するに従い光周波数
f1 ,f2 が左方へ移動し、その移動に応じて出力
される光出力は各々上昇する。従って、平均光出力強度
の変動は図の右に示す通りである。この図4(c) に
示したΔf>FSR/2の場合は、図4(a) に示し
たΔf<FSR/2の場合に対し位相が反転している。
FIG. 4(c) shows the case where the value of the optical frequency shift amount Δf is larger than the FSR/2 of the optical interferometer 20. In the figure, when the operating point is varied by the low frequency signal S,
As the operating point moves to the right, the optical frequencies f1 and f2 increase.
moves to the right, and the output light output decreases in accordance with the movement. As the operating point moves to the left, the optical frequencies f1 and f2 move to the left, and the output optical power increases accordingly. Therefore, the variation in the average light output intensity is as shown on the right side of the figure. In the case of Δf>FSR/2 shown in FIG. 4(c), the phase is reversed from the case of Δf<FSR/2 shown in FIG. 4(a).

【0022】このように、光周波数偏移量Δfの大きさ
に応じて、平均光出力強度の変動の位相、振幅に変化が
生じる。従って、光干渉器20からの平均光出力強度を
受光器30で電気信号に変換し、この電気信号を低周波
信号Sで同期検波すれば光周波数偏移量Δfの大きさが
求められる。
[0022] In this way, the phase and amplitude of fluctuations in the average optical output intensity change depending on the magnitude of the optical frequency shift amount Δf. Therefore, if the average optical output intensity from the optical interferometer 20 is converted into an electrical signal by the optical receiver 30, and this electrical signal is synchronously detected using the low frequency signal S, the magnitude of the optical frequency shift amount Δf can be determined.

【0023】光周波数偏移量Δfに対してこの平均光出
力強度の同期検波出力信号は一般的に図5に示すように
なる。動作点が光周波数弁別特性曲線の正負どちらかの
傾きに設定されているか同期検波の参照信号の位相によ
って、実線,鎖線のどちらかの信号が出力される。ここ
で、同期検波出力信号の零からのズレは光周波数偏移量
ΔfのFSR/2からのズレを表わし、光周波数偏移量
ΔfがFSR/2と一致する場合は同期検波出力信号は
零となる。これにより、同期検波出力信号を測定すれば
、光周波数偏移量Δfの値が測定される。よって、光周
波数偏移量Δfの値は測定され、また、光周波数偏移量
(変調指数)の制御も可能となる。
The synchronous detection output signal of this average optical output intensity with respect to the optical frequency deviation amount Δf is generally as shown in FIG. Depending on whether the operating point is set to a positive or negative slope of the optical frequency discrimination characteristic curve or the phase of the reference signal of synchronous detection, either a solid line or a chain line signal is output. Here, the deviation of the synchronous detection output signal from zero represents the deviation of the optical frequency deviation amount Δf from FSR/2, and when the optical frequency deviation amount Δf matches FSR/2, the synchronous detection output signal is zero. becomes. Thereby, by measuring the synchronous detection output signal, the value of the optical frequency deviation amount Δf can be measured. Therefore, the value of the optical frequency deviation amount Δf can be measured, and the optical frequency deviation amount (modulation index) can also be controlled.

【0024】かくして、図1の動作点設定手段40は図
2のグラフに着目して設けられ、図1の偏移量検出手段
50は図5のグラフに着目して設けられたものである。 本発明による特徴は、干渉光Hi1の光強度を制御変数
として用いしかも光強度の低周波成分のみを扱うことで
ある。従って、本発明に係る半導体レーザの光周波数偏
移量の測定、制御装置構成が簡単で極めて低い周波数で
動作する装置でよいということになる。
Thus, the operating point setting means 40 of FIG. 1 is provided with attention to the graph of FIG. 2, and the deviation amount detection means 50 of FIG. 1 is provided with attention paid to the graph of FIG. 5. A feature of the present invention is that the light intensity of the interference light Hi1 is used as a control variable, and only low frequency components of the light intensity are handled. Therefore, the device for measuring and controlling the amount of optical frequency deviation of the semiconductor laser according to the present invention is simple in structure and can be operated at an extremely low frequency.

【0025】[0025]

【実施例】図6は、本発明に基づく一実施例を示すブロ
ック図である。なお、全図を通じて同様の構成要素には
同一の参照番号または記号を付して示す。
Embodiment FIG. 6 is a block diagram showing an embodiment based on the present invention. Note that similar components are designated with the same reference numbers or symbols throughout the drawings.

【0026】同図において、半導体レーザ10の例えば
その前方光(前方光から制御用の信号をとる場合もある
)は光データDh として図示しない伝送路に入射され
る。この光データDh は送信すべきデータDinの“
1”,“0”に応じて光変調(f1 ,f2 )あるい
は位相変調されたものである。この送信すべきデータD
inによる変調は変調回路11により行われる。また、
図示しないがこの光変調が最適な駆動条件で行われるよ
うに半導体レーザ10に周知のバイアス部が設けられる
In the figure, for example, the forward light of the semiconductor laser 10 (a control signal may be taken from the forward light) is input to a transmission line (not shown) as optical data Dh. This optical data Dh is the data Din to be transmitted.
This data is optically modulated (f1, f2) or phase modulated according to the data D
Modulation by in is performed by the modulation circuit 11. Also,
Although not shown, the semiconductor laser 10 is provided with a well-known bias section so that this optical modulation is performed under optimal driving conditions.

【0027】本発明に係る装置は、半導体レーザ10か
らの例えば後方光からなるFSK変調のかけられた出力
光H0 を受けて動作する。光干渉器20は、半導体レ
ーザ10からの出力光H0 を受けて、光周波数弁別特
性に従った互いに相補的な2つの干渉光Hi1,Hi2
を出力する。
The device according to the present invention operates upon receiving FSK-modulated output light H0, which is, for example, backward light from the semiconductor laser 10. The optical interferometer 20 receives the output light H0 from the semiconductor laser 10 and generates two mutually complementary interference lights Hi1 and Hi2 according to optical frequency discrimination characteristics.
Output.

【0028】図7に、2つの相補的な干渉光を出力する
光干渉器の例を示す。同図において、(a)はマッハツ
ェンダー干渉器を示す図であり、Mはハーフミラー、M
′はミラーであって、2つの光路の光路長間に所定の差
をもたせて干渉させ相補的な2つの干渉光Hi1及びH
i2を発生させる。これら相補的な2つの干渉光Hi1
及びHi2の光周波数弁別特性は図2(a) に示した
とおりである。
FIG. 7 shows an example of an optical interferometer that outputs two complementary interference lights. In the figure, (a) is a diagram showing a Mach-Zehnder interferometer, M is a half mirror, and M is a diagram showing a Mach-Zehnder interferometer.
' is a mirror that causes two optical paths to interfere with each other with a predetermined difference in optical path length, and generates two complementary interference beams Hi1 and H.
Generate i2. These two complementary interference lights Hi1
The optical frequency discrimination characteristics of Hi2 and Hi2 are shown in Fig. 2(a).

【0029】図7において、(b) はファブリ・ペロ
ー干渉器を示す図であり、一方の干渉光Hi1は通常の
透過光であるのに対し、他方の干渉光Hi2は反射光で
ある。ファブリ・ペロー干渉器FPが出力光H0 の光
軸に対し傾斜しているのは、反射光Hi2を半導体レー
ザ10側に戻さないようにするためである。同図(c)
 は、(b) における2つの干渉光の光周波数弁別特
性を示す図である。2つの相補的な干渉光を得る方法は
他にもあるが、ここでは示さない。
In FIG. 7, (b) is a diagram showing a Fabry-Perot interferometer, in which one interference light Hi1 is normal transmitted light, while the other interference light Hi2 is reflected light. The reason why the Fabry-Perot interferometer FP is inclined with respect to the optical axis of the output light H0 is to prevent the reflected light Hi2 from returning to the semiconductor laser 10 side. Same figure (c)
FIG. 3B is a diagram showing the optical frequency discrimination characteristics of two interference lights in FIG. There are other ways to obtain two complementary interference lights, but they are not shown here.

【0030】図6に戻り、これら2つの干渉光Hi1,
Hi2を受けるためフォトダイオード等を用いて2つの
受光器31,36が設けられ、干渉光Hi1,Hi2の
光強度は各々電気信号EL1 ,EL2 に変換される
。また、後述の減算器41、加算器43にて電気信号E
L1 ,EL2 の各々に対応する電圧信号を減算、加
算するので電圧検出抵抗32,37、これらと各々対を
なす計装アンプ33,38が設けられる。
Returning to FIG. 6, these two interference lights Hi1,
Two light receivers 31 and 36 are provided using photodiodes or the like to receive Hi2, and the optical intensities of the interference lights Hi1 and Hi2 are converted into electric signals EL1 and EL2, respectively. In addition, the electric signal E
Since voltage signals corresponding to L1 and EL2 are subtracted and added, voltage detection resistors 32 and 37 and instrumentation amplifiers 33 and 38 paired with these resistors, respectively, are provided.

【0031】減算器41は、2つの受光器31,36か
らの各電気信号EL1 ,EL2 の差成分を出力する
。加算器43は、2つの受光器31,36からの各電気
信号EL1 ,EL2 の加算成分を出力する。
The subtracter 41 outputs the difference component between the electric signals EL1 and EL2 from the two light receivers 31 and 36. The adder 43 outputs the added components of the electric signals EL1 and EL2 from the two light receivers 31 and 36.

【0032】本実施例では動作点設定手段40は、動作
点制御回路42とAPC制御回路44とからなる。動作
点制御回路42は、減算器41から各電気信号EL1 
,EL2 の差成分を受信してその差成分を動作点検出
信号として用い、動作点を光周波数弁別特性の中央値M
EDに常に一致させる。この動作点のシフトは、制御線
L1 を介して半導体レーザ10のバイアスあるいは温
度に帰還し半導体レーザ10の発振周波数を制御して行
う方法と、これとは別に制御線L1 を介して光干渉器
20のバイアスあるいは温度に帰還し光干渉器20の干
渉特性を制御して行う方法がある。また、これらの両方
法が用いられても良い。なお、温度に帰還して制御を行
う場合には周知のペルチェ素子が用いられる。上記の2
つの干渉光Hi1,Hi2は各々相補的な干渉光である
から、これらの差をとると図2(b) に示すように中
央値MEDのところで零点とクロスする。つまり、前記
の電気信号EL1 及びEL2 を減算器41で減算し
た出力は中央値MEDで零点とクロスするから、電気信
号EL1 とEL2 の差信号を動作点検出信号として
用い、この差信号が常に零になるように半導体レーザ1
0のバイアスあるいは温度、または光干渉器20のバイ
アスあるいは温度に帰還をかければ差信号が零となる光
周波数に動作点が安定化する。このとき、半導体レーザ
10のバイアスあるいは温度に帰還する場合には、動作
点の周波数の制御がそのまま半導体レーザ10の出力H
0 の発振周波数も制御することになるから、動作点の
安定化と同時に半導体レーザ10の自動周波数制御(A
FC)も行うことができる。
In this embodiment, the operating point setting means 40 includes an operating point control circuit 42 and an APC control circuit 44. The operating point control circuit 42 receives each electrical signal EL1 from the subtracter 41.
, EL2, and use the difference component as an operating point detection signal, and set the operating point to the median value M of the optical frequency discrimination characteristic.
Always match the ED. This shift of the operating point can be carried out by controlling the oscillation frequency of the semiconductor laser 10 by feeding back to the bias or temperature of the semiconductor laser 10 via the control line L1, or by using an optical interferometer via the control line L1. There is a method of controlling the interference characteristics of the optical interferometer 20 by feeding back to the bias or temperature of 20. Also, both of these methods may be used. Note that a well-known Peltier element is used when controlling the temperature by returning it. 2 above
Since the two interference beams Hi1 and Hi2 are complementary interference beams, the difference between them crosses the zero point at the median value MED, as shown in FIG. 2(b). In other words, since the output obtained by subtracting the electrical signals EL1 and EL2 by the subtracter 41 crosses the zero point at the median value MED, the difference signal between the electrical signals EL1 and EL2 is used as the operating point detection signal, and this difference signal is always zero. Semiconductor laser 1 so that
By applying feedback to the bias or temperature of 0 or the bias or temperature of the optical interferometer 20, the operating point is stabilized at the optical frequency at which the difference signal is zero. At this time, when feedback is applied to the bias or temperature of the semiconductor laser 10, the control of the frequency of the operating point remains unchanged.
Since the oscillation frequency of the semiconductor laser 10 is also controlled, the operating point is stabilized and the automatic frequency control (A
FC) can also be performed.

【0033】APC制御回路44は、加算器43からの
各電気信号EL1 ,EL2 の加算成分を光出力検出
信号として用い、例えば比較部からなり、その第1入力
には上記光出力検出信号を受信し、その第2の入力には
予め定めた設定電圧V1 を受信し、この設定電圧V1
 に対しての光出力検出信号の変動分を検出し、これら
の間の誤差分が常に零になるように制御線L2 を介し
て半導体レーザ10のバイアスに帰還する。上記の2つ
の干渉光Hi1及びHi2は互いに相対的な干渉光であ
るから、これらを加え合わせると、図2(a) の一点
鎖線の如く平坦な出力となる。この平坦な出力は半導体
レーザ10の光出力に比例する。つまり、前期の電気信
号EL1 及び電気信号EL2 を加算器43で加算し
た出力は平坦な信号となり、この平坦な信号に対応させ
て電圧V1 を設定し、平坦な信号のレベルが常に一定
のレベルになるように半導体レーザ10に帰還をかけれ
ば自動光出力制御(APC)が実現される。
The APC control circuit 44 uses the added components of the electric signals EL1 and EL2 from the adder 43 as an optical output detection signal, and includes, for example, a comparator, whose first input receives the optical output detection signal. receives a predetermined set voltage V1 at its second input, and this set voltage V1
The variation of the optical output detection signal relative to the output signal is detected and fed back to the bias of the semiconductor laser 10 via the control line L2 so that the error between these signals is always zero. Since the above two interference lights Hi1 and Hi2 are mutually relative interference lights, when they are added together, a flat output is obtained as shown by the dashed-dotted line in FIG. 2(a). This flat output is proportional to the optical output of the semiconductor laser 10. In other words, the output obtained by adding the electric signal EL1 and the electric signal EL2 in the previous period by the adder 43 becomes a flat signal, and the voltage V1 is set in correspondence with this flat signal, so that the level of the flat signal is always at a constant level. Automatic optical output control (APC) can be realized by applying feedback to the semiconductor laser 10 so as to achieve the following.

【0034】光周波数変移量検出手段50は、低周波発
振器51、同期検波回路52、光周波数偏移量安定化回
路53及び、アンプ54からなる。低周波発振器51は
、光周波数弁別特性における動作点の発振周波数を変化
させるため、制御線L3 を介して半導体レーザ10の
発動周波数あるいは光干渉器20の干渉特性を低周波で
変化させる。低周波とはデータの伝送速度の周波数に対
して低周波という意味で、例えば 100Hzであり、
動作点設定手段40の回路の応答速度よりも早い速度の
低周波信号Sで動作点を変動させる。低周波信号Sは後
述の同期検波回路52で同期検波用信号として用いられ
るのもので、この同期検波用信号を、半導体レーザ10
のバイアスであるいは温度に重畳することにより、また
は光干渉器20のバイアスあるいは温度に重畳すること
により、動作点の発振周波数を変化させる。
The optical frequency shift detection means 50 includes a low frequency oscillator 51, a synchronous detection circuit 52, an optical frequency shift stabilization circuit 53, and an amplifier 54. The low frequency oscillator 51 changes the oscillation frequency of the semiconductor laser 10 or the interference characteristic of the optical interferometer 20 at a low frequency via the control line L3 in order to change the oscillation frequency at the operating point in the optical frequency discrimination characteristic. Low frequency means a frequency lower than the frequency of data transmission speed, for example, 100Hz.
The operating point is varied by a low frequency signal S faster than the response speed of the circuit of the operating point setting means 40. The low frequency signal S is used as a synchronous detection signal in a synchronous detection circuit 52, which will be described later.
The oscillation frequency at the operating point is changed by superimposing the bias or temperature of the optical interferometer 20 or by superimposing the bias or temperature of the optical interferometer 20.

【0035】図8は、低周波発振器51による動作を説
明するための波形図である。ただし低周波発振器51の
発振出力を半導体レーザ10の駆動電流に重畳した場合
を例にとり説明する。駆動電流を2値に変化させること
により、半導体レーザ10の出力光H0 が有する光周
波数は、中心周波数f0 を中心として第1光周波数f
1 及び第2光周波数f2 のように変化する。この状
態で、低周波発振器51の発振出力を重畳すると、この
発振出力の周波数fs をもって図示するごとく波状に
うねりを伴う。このようにして低周波成分を含ませた電
気信号ELは、同期検波回路52にて低周波発振出力に
より同期検波される。
FIG. 8 is a waveform diagram for explaining the operation of the low frequency oscillator 51. However, an example will be explained in which the oscillation output of the low frequency oscillator 51 is superimposed on the drive current of the semiconductor laser 10. By changing the drive current into two values, the optical frequency of the output light H0 of the semiconductor laser 10 is changed to the first optical frequency f around the center frequency f0.
1 and the second optical frequency f2. In this state, when the oscillation output of the low frequency oscillator 51 is superimposed, the oscillation output has a frequency fs and undulates in a wave-like manner as shown in the figure. The electrical signal EL containing the low frequency component in this manner is synchronously detected by the synchronous detection circuit 52 using a low frequency oscillation output.

【0036】また、光干渉器20のバイアスを変化させ
ることは容易であり、基本的には光干渉器20の共振器
長や遅延時間差を変化させれば良い。具体的には、■ 
 光弾圧性効果を利用して変化させる、■  電気光学
的効果を利用して変化させる、■  機械的外力を加え
て変化させる、■  熱光学効果を利用して変化させる
、等の方法が良く知られている。
Furthermore, it is easy to change the bias of the optical interferometer 20, and basically it is sufficient to change the resonator length and delay time difference of the optical interferometer 20. Specifically, ■
The following methods are well known: ■ Change using photoelastic effect, ■ Change using electro-optic effect, ■ Change using external mechanical force, ■ Change using thermo-optic effect. It is being

【0037】図6に戻り、同期検波回路52は、減算器
41からの各電気信号EL1 ,EL2 の差成分信号
と低周波発振器51からの同期検波用変調信号とを入力
として、該差成分信号に対し同期検波を行い該同期検波
用変調信号に同期した信号成分を抽出する。この同期検
波により抽出された信号成分が光周波数偏移量検出信号
であり、光周波数偏移量測定が行われる。以下、同期検
波回路52での光周波数偏移量Δfの測定について説明
する。
Returning to FIG. 6, the synchronous detection circuit 52 inputs the difference component signal of each electric signal EL1, EL2 from the subtracter 41 and the modulation signal for synchronous detection from the low frequency oscillator 51, and generates the difference component signal. synchronous detection is performed on the synchronous detection modulation signal to extract a signal component synchronized with the synchronous detection modulation signal. The signal component extracted by this synchronous detection is an optical frequency deviation amount detection signal, and optical frequency deviation amount measurement is performed. The measurement of the optical frequency deviation amount Δf in the synchronous detection circuit 52 will be explained below.

【0038】上記のようにFSK変調された光信号の動
作点を干渉器20の光周波数弁別特性の中央MEDに安
定させ、その動作点のもとで、同期検波用変調信号の低
周波信号Sで変動させると、図4に示したように光周波
数偏移量Δfの大きさに応じて平均光出力強度の変動の
位相、振幅に変化が起こる。従って、干渉器20からの
平均光出力強度を受光器30で電気信号に変換し、この
電気信号を低周波信号Sで同期検波すれば光周波数偏移
量Δfの大きさが求められる。
As described above, the operating point of the FSK modulated optical signal is stabilized at the center MED of the optical frequency discrimination characteristic of the interferometer 20, and under that operating point, the low frequency signal S of the modulated signal for coherent detection is When the average optical output intensity is varied, the phase and amplitude of the variation in the average optical output intensity change depending on the magnitude of the optical frequency shift amount Δf, as shown in FIG. Therefore, if the average optical output intensity from the interferometer 20 is converted into an electrical signal by the optical receiver 30, and this electrical signal is synchronously detected with the low frequency signal S, the magnitude of the optical frequency shift amount Δf can be determined.

【0039】光周波数偏移量Δfに対しての平均光出力
強度の同期検波出力信号は図5に示すようになり、同図
において同期検波出力信号の零からのズレは光周波数変
移量ΔfのFSR/2からのズレを表わし、光周波数偏
移量ΔfがFSR/2と一致する場合は同期検波出力信
号は零となる。これにより、同期検波出力信号を測定す
れば光周波数偏移量Δfの値が測定される。
The synchronous detection output signal of the average optical output intensity with respect to the optical frequency deviation amount Δf is as shown in FIG. It represents a deviation from FSR/2, and when the optical frequency deviation amount Δf matches FSR/2, the synchronous detection output signal becomes zero. Thereby, by measuring the synchronous detection output signal, the value of the optical frequency deviation amount Δf can be measured.

【0040】光周波数偏移量安定回路53は、例えば比
較部からなり、その第1入力には同期検波回路52で求
められた光周波数偏移量Δfの検出信号を受信し、その
第2入力には予め定められた設定電圧V2 を受信しこ
れらの間の誤差分が0になるように変調回路11に帰還
し、常に光周波数偏移量Δf(変調指数)を一定に保つ
。設定電圧V2 に対応する光周波数偏移量Δfが一定
値に保持すべき光周波数偏移量Δfということになり、
光周波数偏移量(変調指数)安定化の制御が可能となる
The optical frequency deviation amount stabilizing circuit 53 includes, for example, a comparing section, and receives at its first input the detection signal of the optical frequency deviation amount Δf obtained by the synchronous detection circuit 52, and receives the detection signal of the optical frequency deviation amount Δf obtained by the synchronous detection circuit 52 at its first input. A predetermined setting voltage V2 is received and fed back to the modulation circuit 11 so that the error between them becomes 0, and the optical frequency deviation amount Δf (modulation index) is always kept constant. The optical frequency deviation amount Δf corresponding to the set voltage V2 is the optical frequency deviation amount Δf that should be kept at a constant value.
It becomes possible to control the stabilization of the amount of optical frequency deviation (modulation index).

【0041】同期検波回路52への入力としては、電気
信号EL1 とEL2 の差信号を用いる。この差信号
は、図5の実線のカーブに対し点線のカーブを極性反転
して加えることと等価であり、つまり傾斜の鋭い特性の
信号をもって光周波数偏移量を制御できることになる。 これは光周波数偏移量制御におけるS/N比を著しく増
大させたことになる。
As an input to the synchronous detection circuit 52, a difference signal between the electrical signals EL1 and EL2 is used. This difference signal is equivalent to adding the dotted line curve with polarity inverted to the solid line curve in FIG. 5. In other words, the amount of optical frequency shift can be controlled using a signal with a sharp slope characteristic. This results in a significant increase in the S/N ratio in controlling the amount of optical frequency deviation.

【0042】アンプ54は、同期検波用変調信号を低周
波発振器51から制御線L3 を介して半導体レーザ1
0のバイアスに重畳する場合に、光周波数偏移量検出信
号を光周波数偏移量安定化回路53から同期検波用変調
信号の変調振幅に帰還して、該変調信号による光FM変
調の光周波数偏移量を一定に保ち、半導体レーザ10の
光源部分の変調効率に光周波数偏移量検出手段50が影
響を受けないようにするため設けられている。
The amplifier 54 transmits the modulation signal for synchronous detection from the low frequency oscillator 51 to the semiconductor laser 1 via the control line L3.
When superimposing on a bias of 0, the optical frequency deviation amount detection signal is fed back from the optical frequency deviation amount stabilizing circuit 53 to the modulation amplitude of the modulation signal for synchronous detection, and the optical frequency of the optical FM modulation by the modulation signal is This is provided in order to keep the amount of deviation constant and to prevent the optical frequency deviation amount detection means 50 from being affected by the modulation efficiency of the light source portion of the semiconductor laser 10.

【0043】つまり、半導体レーザ10自身のバイアス
経年変化等により、FM変調効率(バイアス電流の単位
電流あたりの光周波数可変量)が小さくなると、最悪の
場合、低周波信号Sが重畳されなくなることがある。そ
のため動作点が設定したようには変動しなくなり、同期
検波が不可能となることがある。これを解消するため、
FM変調効率が小さくなった場合には、アンプ54で同
期検波用変調信号の振幅を大きくし、FM変調効率が大
きくなりすぎた場合には、アンプ54で同期検波用変調
信号の振幅を小さくなるように、つまり常に低周波信号
Sが同程度の振幅になるようにしている。このFM変調
効率の大小は光周波数偏移量Δfの大小から判断できる
ことである。
In other words, if the FM modulation efficiency (the amount of optical frequency variation per unit of bias current) decreases due to changes in the bias of the semiconductor laser 10 itself over time, in the worst case, the low frequency signal S may no longer be superimposed. be. Therefore, the operating point may no longer vary as set, and synchronous detection may become impossible. To resolve this,
When the FM modulation efficiency becomes small, the amplifier 54 increases the amplitude of the modulation signal for synchronous detection, and when the FM modulation efficiency becomes too large, the amplifier 54 decreases the amplitude of the modulation signal for synchronous detection. In other words, the low frequency signal S is always made to have the same amplitude. The magnitude of this FM modulation efficiency can be determined from the magnitude of the optical frequency deviation amount Δf.

【0044】マーク率モニタ手段60は、例えば変調回
路11内に設けられた積分器からなる。変調回路11に
より半導体レーザ10の出力光H0 の周波数を送信す
べきデータの2論理値“1”,“0”に対応して第1光
周波数f1 または第2光周波数f2 に変化させるよ
うなデータ変調を行う場合の論理値“1”と“0”の発
生する確率をトータル演算し、光周波数偏移量検出手段
50の動作状態を制御する手段である。
The mark rate monitoring means 60 is comprised of an integrator provided within the modulation circuit 11, for example. Data that causes the modulation circuit 11 to change the frequency of the output light H0 of the semiconductor laser 10 to the first optical frequency f1 or the second optical frequency f2 corresponding to the two logical values "1" and "0" of the data to be transmitted. This means calculates the total probability of occurrence of logical values "1" and "0" when performing modulation, and controls the operating state of the optical frequency deviation detection means 50.

【0045】図2に示したグラフは、マーク率が1/2
の場合であったが、マーク率が例えば1/4となった場
合、つまり“1”の発生する割合と“0”の発生する割
合が1:3となった場合には、図3において平均光出力
強度が右上方に移動し、そのため図5に示す光周波数偏
移量Δfに対する同期検波出力信号のグラフが変化し、
同期検波出力信号が零となるΔfの値がマーク率の大小
により変化することになる。そのため、光周波数偏移量
安定化回路53における設定電圧V2 をマーク率に応
じて換える必要がある。マーク率モニタ手段60は変調
回路11による変調信号のマーク率を演算し、その値に
基づき設定電圧V2 を変化させて光周波数偏移量検出
手段50の動作状態を制御する。つまり、入力した変調
信号のマーク率モニタ信号を光周波数偏移量安定化回路
53に帰還し、マーク率変動の影響を与えない。
The graph shown in FIG. 2 shows that the mark rate is 1/2.
However, if the mark rate is, for example, 1/4, that is, if the ratio of "1" occurrences to "0" occurrences is 1:3, the average The optical output intensity moves to the upper right, and therefore the graph of the synchronous detection output signal against the optical frequency deviation amount Δf shown in FIG. 5 changes,
The value of Δf at which the synchronous detection output signal becomes zero changes depending on the mark rate. Therefore, it is necessary to change the set voltage V2 in the optical frequency deviation amount stabilizing circuit 53 according to the mark rate. The mark rate monitor means 60 calculates the mark rate of the modulated signal by the modulation circuit 11, changes the set voltage V2 based on the calculated value, and controls the operating state of the optical frequency deviation amount detecting means 50. That is, the mark rate monitor signal of the input modulated signal is fed back to the optical frequency deviation amount stabilizing circuit 53, so that it is not affected by the mark rate fluctuation.

【0046】[0046]

【発明の効果】以上詳細に説明したように本発明によれ
ば、従来より課題となっていた光周波数偏移量の測定、
制御が可能となる。さらに広帯域な受光器、電子回路を
含まない簡単な構成であるため、装置が小型化、簡略化
されしかもコストを抑えて構成することができる。また
、光周波数偏移量の測定、制御と同時に光源のAPC,
AFC動作を行うことが可能となる。
[Effects of the Invention] As explained in detail above, according to the present invention, it is possible to measure the amount of optical frequency deviation, which has been a problem in the past.
Control becomes possible. Furthermore, since it has a simple configuration that does not include a broadband photoreceiver or electronic circuit, the device can be made smaller and simpler, and can be constructed at lower cost. In addition, at the same time as measuring and controlling the amount of optical frequency deviation, the APC of the light source,
It becomes possible to perform AFC operation.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の原理構成を示すブロック図である。FIG. 1 is a block diagram showing the principle configuration of the present invention.

【図2】マッハツェンダー光干渉器の光周波数弁別特性
を示す図であり、(a) は2つの干渉光の光周波数弁
別特性を示す図、(b) は(a) の2つの干渉光の
減算結果強度を示す図である。
FIG. 2 is a diagram showing the optical frequency discrimination characteristics of the Mach-Zehnder optical interferometer, (a) is a diagram showing the optical frequency discrimination characteristics of two interference lights, and (b) is a diagram showing the optical frequency discrimination characteristics of two interference lights in (a). It is a figure which shows the subtraction result intensity.

【図3】マッハツェンダー光干渉器の光周波数弁別特性
を示す図であり、(a) は動作点を中央値に安定させ
て場合、(b) は動作点を右に移動させた時の模式図
、(c) は動作点を左に移動させた時の模式図である
[Figure 3] Diagrams showing the optical frequency discrimination characteristics of the Mach-Zehnder optical interferometer; (a) is a schematic diagram when the operating point is stabilized at the median value, and (b) is a schematic diagram when the operating point is moved to the right. Figure 2(c) is a schematic diagram when the operating point is moved to the left.

【図4】動作点を変動させた時の平均光出力強度の変動
を示す模式図であり、(a) はΔf<FSR/2、(
b) はΔf=FSR/2、(c) はΔf>FSR/
2の場合である。
FIG. 4 is a schematic diagram showing the variation in average optical output intensity when the operating point is varied; (a) is Δf<FSR/2, (
b) is Δf=FSR/2, (c) is Δf>FSR/
This is case 2.

【図5】光周波数偏移量に対する同期検波出力信号のグ
ラフである。
FIG. 5 is a graph of a synchronous detection output signal with respect to the amount of optical frequency shift.

【図6】本発明の一実施例の構成を示す図である。FIG. 6 is a diagram showing the configuration of an embodiment of the present invention.

【図7】相補的な2つの干渉光を出力する光干渉器を示
す図であり、(a) はマッハツェンダー干渉器を示す
図、(b) はファブリ・ペロー干渉器を示す図、(c
) は(b) における2つの干渉光の光周波数弁別特
性を示す図である。
FIG. 7 is a diagram showing an optical interferometer that outputs two complementary interference lights; (a) is a diagram showing a Mach-Zehnder interferometer, (b) is a diagram showing a Fabry-Perot interferometer, and (c is a diagram showing a Fabry-Perot interferometer.
) is a diagram showing the optical frequency discrimination characteristics of two interference lights in (b).

【図8】低周波発振器による動作を説明するための波形
図である。
FIG. 8 is a waveform diagram for explaining the operation of a low frequency oscillator.

【符号の説明】[Explanation of symbols]

10                  半導体レー
ザ20                  光干渉器
30,31,36      受光器
10 Semiconductor laser 20 Optical interferometer 30, 31, 36 Light receiver

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】  入力した変調信号に基づいて周波数も
しくは位相変調された光を出力するレーザ光源の、光周
波数偏移量を測定、あるいは予め定めた一定値に制御す
る半導体レーザの光周波数偏移量の測定,制御装置にお
いて、前記半導体レーザ(10)からの出力光(H0 
)を受け、光周波数弁別特性に従った干渉光(Hi )
を出力する光干渉器(20)と、前記干渉光(Hi )
を受けてその光強度を電気信号(EL)に変換する受光
器(30)と、前記電気信号(EL)を受信し、前記光
干渉器(20)の動作点が前記光周波数弁別特性の最大
値と最小値の中央値に対応する光周波数に一致するよう
に該動作点を設定する動作点設定手段(40)と、前記
動作点のもとで予め低周波変調された前記干渉光(Hi
 )の平均光出力強度の低周波信号成分を前記電気信号
(EL)から同期検波により抽出し、光周波数偏移量を
検出する光周波数偏移量検出手段(50)と、からなる
ことを特徴とする半導体レーザの光周波数偏移量の測定
,制御装置。
Claim 1: An optical frequency deviation of a semiconductor laser that measures the amount of optical frequency deviation of a laser light source that outputs frequency- or phase-modulated light based on an input modulation signal, or controls it to a predetermined constant value. In the quantity measurement and control device, the output light (H0
), the interference light (Hi) follows the optical frequency discrimination characteristic.
an optical interferometer (20) that outputs the interference light (Hi);
an optical receiver (30) that receives the signal and converts the optical intensity into an electrical signal (EL); operating point setting means (40) for setting the operating point to match the optical frequency corresponding to the median value of the minimum value and the minimum value, and the interference light (Hi
) from the electrical signal (EL) by synchronous detection to detect the amount of optical frequency deviation. A device for measuring and controlling the optical frequency deviation of a semiconductor laser.
【請求項2】  前記動作点設定手段(40)が、光干
渉器(20)から出力される相補的な関係にある2つの
干渉光(Hi1,Hi2)を2つの受光器(31,36
)で受光し、各受光器(31,36)の出力信号の差成
分を動作点検出信号として用い、各受光器(31,36
)の加算成分を半導体レーザ(10)の光出力検出信号
として用いることを特徴とする請求項1記載の半導体レ
ーザの光周波数偏移量の測定,制御装置。
2. The operating point setting means (40) transmits two complementary interference lights (Hi1, Hi2) output from the optical interferometer (20) to two light receivers (31, 36).
), and the difference component of the output signal of each light receiver (31, 36) is used as an operating point detection signal.
2. The apparatus for measuring and controlling the amount of optical frequency deviation of a semiconductor laser according to claim 1, wherein the added component of ) is used as an optical output detection signal of the semiconductor laser (10).
【請求項3】  前記動作点設定手段(40)が、各受
光器(31,36)から出力される出力信号の加算成分
を半導体レーザ(10)の光出力検出信号として用い、
該光出力検出信号と設定値との誤差信号を半導体レーザ
(10)のバイアスあるいは温度に帰還することで同時
に半導体レーザ(10)の光出力の安定化を行うことを
特徴とする請求項1記載の半導体レーザの光周波数偏移
量の測定,制御装置。
3. The operating point setting means (40) uses an added component of the output signals output from each light receiver (31, 36) as an optical output detection signal of the semiconductor laser (10),
2. The optical output of the semiconductor laser (10) is simultaneously stabilized by feeding back an error signal between the optical output detection signal and the set value to the bias or temperature of the semiconductor laser (10). A device for measuring and controlling the amount of optical frequency deviation of semiconductor lasers.
【請求項4】  前記動作点設定手段(40)が、各受
光器(31,36)から出力される出力信号の差成分を
動作点検出信号として用い、該動作点検出信号を半導体
レーザ(10)のバイアスあるいは温度に帰還すること
により、動作点の安定化及び半導体レーザ(10)の発
振周波数の安定化を同時に行うことを特徴とする請求項
2記載の半導体レーザの光周波数偏移量の測定,制御装
置。
4. The operating point setting means (40) uses the difference component of the output signals output from each light receiver (31, 36) as an operating point detection signal, and uses the operating point detection signal to ), the optical frequency deviation amount of the semiconductor laser (10) is stabilized simultaneously by stabilizing the operating point and stabilizing the oscillation frequency of the semiconductor laser (10). Measurement and control equipment.
【請求項5】  前記動作点設定手段(40)が、各受
光器(31,36)から出力される出力信号の差成分を
動作点検出信号として用い、該動作点検出信号を光干渉
器(20)のバイアスあるいは温度に帰還することによ
り動作点の安定化を行うことを特徴とする請求項2記載
の半導体レーザの光周波数偏移量の測定,制御装置。
5. The operating point setting means (40) uses the difference component of the output signals output from each light receiver (31, 36) as an operating point detection signal, and transmits the operating point detection signal to an optical interferometer ( 3. The apparatus for measuring and controlling the optical frequency deviation of a semiconductor laser according to claim 2, wherein the operating point is stabilized by feedback to the bias or temperature of 20).
【請求項6】  前記光周波数偏移量検出手段(50)
が、同期検波のための変調信号を、光干渉器(20)の
バイアスあるいは温度に重畳することを特徴とする請求
項1記載の半導体レーザの光周波数偏移量の測定,制御
装置。
6. The optical frequency deviation detection means (50)
2. The apparatus for measuring and controlling the amount of optical frequency deviation of a semiconductor laser according to claim 1, wherein the modulation signal for synchronous detection is superimposed on the bias or temperature of the optical interferometer (20).
【請求項7】  前記光周波数偏移量検出手段(50)
が、同期検波のための変調信号を、半導体レーザ(10
)のバイアスあるいは温度に重畳することを特徴とする
請求項1記載の半導体レーザの光周波数偏移量の測定,
制御装置。
7. The optical frequency deviation amount detection means (50)
However, the modulation signal for synchronous detection is transmitted using a semiconductor laser (10
) measurement of the amount of optical frequency deviation of a semiconductor laser according to claim 1, characterized in that it is superimposed on the bias or temperature of
Control device.
【請求項8】  前記光周波数偏移量検出手段(50)
が、同期検波のための変調信号を半導体レーザ(10)
のバイアスに重畳するとともに、光周波数偏移量検出信
号を該変調信号の変調振幅に帰還し、該変調信号による
光FM変調の光周波数偏移量を一定に保ち、半導体レー
ザ(10)の光源部分の変動効率に前記光周波数偏移量
検出手段(50)が影響を受けないようにすることを特
徴とする請求項7記載の半導体レーザの光周波数偏移量
の測定,制御装置。
8. The optical frequency deviation detection means (50)
However, the modulation signal for synchronous detection is transmitted by a semiconductor laser (10).
The light source of the semiconductor laser (10) 8. The apparatus for measuring and controlling the amount of optical frequency deviation of a semiconductor laser according to claim 7, wherein said optical frequency deviation amount detection means (50) is not affected by the variation efficiency of the portion.
【請求項9】  入力した変調信号のマーク率変動が上
記光周波数偏移量検出手段(50)に影響を与えないよ
うに、マーク率モニタ信号を該光周波数偏移量検出手段
(50)に帰還するマーク率モニタ手段(60)を有す
ることを特徴とする請求項1記載の半導体レーザの光周
波数偏移量の測定,制御装置。
9. A mark rate monitor signal is transmitted to the optical frequency deviation amount detection means (50) so that the mark rate fluctuation of the input modulation signal does not affect the optical frequency deviation amount detection means (50). 2. The apparatus for measuring and controlling the optical frequency deviation of a semiconductor laser according to claim 1, further comprising feedback mark rate monitoring means (60).
JP04971291A 1990-09-20 1991-03-14 Measurement and control device for optical frequency shift of semiconductor laser Expired - Fee Related JP3207211B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP04971291A JP3207211B2 (en) 1991-03-14 1991-03-14 Measurement and control device for optical frequency shift of semiconductor laser
CA002060943A CA2060943C (en) 1990-09-20 1991-09-20 Optical frequency deviation measure and control device for laser light
US07/763,513 US5200967A (en) 1990-09-20 1991-09-20 Optical frequency deviation measure and control device for laser light
DE69120369T DE69120369T2 (en) 1990-09-20 1991-09-20 Device for controlling and measuring the optical frequency scanning of laser light
EP91116045A EP0481242B1 (en) 1990-09-20 1991-09-20 An optical frequency sweep measure and control device for laser light
CA 2063016 CA2063016A1 (en) 1991-03-14 1992-03-13 Optical frequency deviation measure and control device for laser light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04971291A JP3207211B2 (en) 1991-03-14 1991-03-14 Measurement and control device for optical frequency shift of semiconductor laser

Publications (2)

Publication Number Publication Date
JPH04285830A true JPH04285830A (en) 1992-10-09
JP3207211B2 JP3207211B2 (en) 2001-09-10

Family

ID=12838801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04971291A Expired - Fee Related JP3207211B2 (en) 1990-09-20 1991-03-14 Measurement and control device for optical frequency shift of semiconductor laser

Country Status (1)

Country Link
JP (1) JP3207211B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06338652A (en) * 1993-05-31 1994-12-06 Nec Corp Stabilization of wavelength of laser and semiconductor laser module for wavelength stabilization
JP2009081484A (en) * 2007-09-25 2009-04-16 Nec Corp Fm modulation measurement method
JP2009085727A (en) * 2007-09-28 2009-04-23 Anritsu Corp Instrument for measuring optical chirp characteristics

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06338652A (en) * 1993-05-31 1994-12-06 Nec Corp Stabilization of wavelength of laser and semiconductor laser module for wavelength stabilization
JP2009081484A (en) * 2007-09-25 2009-04-16 Nec Corp Fm modulation measurement method
JP2009085727A (en) * 2007-09-28 2009-04-23 Anritsu Corp Instrument for measuring optical chirp characteristics

Also Published As

Publication number Publication date
JP3207211B2 (en) 2001-09-10

Similar Documents

Publication Publication Date Title
US5073331A (en) Modulation method for use in a semiconductor laser and an apparatus therefor
US5777773A (en) Optical frequency control system and method
US5473457A (en) Method and apparatus for compensating dispersion of polarization
US6271959B1 (en) Method and apparatus for optical frequency demodulation of an optical signal using interferometry
US6594070B2 (en) Optical communication system, optical receiver and wavelength converter
JPS5939934B2 (en) optical frequency modulation system
CN103026289B (en) Compensation method, optical modulation system, and optical demodulation system
US6317249B1 (en) Optical modulator outputting an optical signal with a drive voltage signal dependent upon an input signal
JPH05268162A (en) Operating point stabilizing device for optical interference device
JPH061912B2 (en) Frequency shift keying optical transmitter
JPH10228041A (en) Wavelength converter for binary optical signal
EP0481242B1 (en) An optical frequency sweep measure and control device for laser light
JPH04285830A (en) Measuring/controlling apparatus for deviation amount of optical frequency of semiconductor laser
US20030043862A1 (en) Dispersion compensation using optical wavelength locking for optical fiber links that transmit optical signals generated by short wavelength transmitters
US4979825A (en) Device for measuring optical frequency modulation characteristics
JPH0738615B2 (en) Optical FSK frequency shift stabilization circuit
JP2977919B2 (en) Measuring and controlling device for optical frequency shift of semiconductor laser
JPH05198887A (en) Measurement-control equipment of optical frequency deviation amount of laser
JPH057044A (en) Measurement-control equipment of frequency deviation amount of laser beam
JPS60147716A (en) Optical transmitter of extinction ratio control
JP3065423B2 (en) Drive device for laser diode
JP2839593B2 (en) Optical transmitter
JP4316212B2 (en) Light intensity modulator
JPH0786674A (en) Coherent optical transmitter
JPH0117614B2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010626

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080706

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090706

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees