JPH04285462A - Stator for superconducting rotary electric machine - Google Patents

Stator for superconducting rotary electric machine

Info

Publication number
JPH04285462A
JPH04285462A JP4795591A JP4795591A JPH04285462A JP H04285462 A JPH04285462 A JP H04285462A JP 4795591 A JP4795591 A JP 4795591A JP 4795591 A JP4795591 A JP 4795591A JP H04285462 A JPH04285462 A JP H04285462A
Authority
JP
Japan
Prior art keywords
stator
armature winding
teeth
electric machine
winding body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4795591A
Other languages
Japanese (ja)
Other versions
JP2743122B2 (en
Inventor
Shinji Arakawa
臣司 荒川
Miyoshi Takahashi
身佳 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Original Assignee
Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai filed Critical Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Priority to JP3047955A priority Critical patent/JP2743122B2/en
Publication of JPH04285462A publication Critical patent/JPH04285462A/en
Application granted granted Critical
Publication of JP2743122B2 publication Critical patent/JP2743122B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To reduce a strong electromagnetic force operating at an armature winding, to suppress the vibration of an armature winding body due to the force and to increase the rigidity of the body itself. CONSTITUTION:In a stator of a superconducting rotary electric machine having a dovetail part in which an air gap armature winding type stator 1 made of a nonmagnetic material and a rotor having a superconducting field winding are opposed through a predetermined air gap, a vibration absorbing material made of a nonmagnetic material is buried in boundaries between the vicinity of the bottom of the armature winding of the stator and an insulating material 1 around the armature winding and dovetails 3, 4.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、超電導回転電機の固定
子に係り、特に空隙巻線方式を採用した超電導回転電機
の固定子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stator for a superconducting rotating electric machine, and more particularly to a stator for a superconducting rotating electric machine employing an air gap winding method.

【0002】0002

【従来の技術】超電導回転電機に設けられた空隙巻線方
式の固定子は、一般に例えば特開昭58−154358
号公報に記載されているように、鉄心スロット方式にお
ける固定子ティース部が、すべて非磁性材から構成され
ている。すなわち、空隙巻線方式の固定子においては、
電機子巻線底面の外周側にしか、磁気シールドする磁性
材が存在しない。このため、回転子から発生する磁束は
電機子巻線内部をも通過し、電磁力を発生する原因とな
っていた。特に、界磁巻線が超電導材などからなる場合
は、強磁場により強大な電磁力が電機子巻線に働くこと
になる。
[Prior Art] A stator of an air-gap winding type installed in a superconducting rotating electrical machine is generally disclosed in Japanese Patent Application Laid-Open No. 58-154358, for example.
As described in the publication, all stator teeth in the iron core slot system are made of non-magnetic material. In other words, in the air gap winding stator,
There is magnetic material for magnetic shielding only on the outer circumferential side of the bottom of the armature winding. Therefore, the magnetic flux generated from the rotor also passes through the armature windings, causing electromagnetic force to be generated. In particular, when the field winding is made of a superconducting material, a strong magnetic field causes a strong electromagnetic force to act on the armature winding.

【0003】0003

【発明が解決しようとする課題】上述したように空隙電
機子巻線方式を採用した固定子では、超電導界磁巻線か
ら高磁束密度の交流磁界が直接電機子巻線に加わる。こ
のため、電機子巻線には強大な電磁力が働く上、この電
磁力に基づく振動も加わる。従ってこの巻線方式による
と、電機子巻線胴部内の各構成部材に高い機械的強度が
要求されるという問題があった。
As described above, in a stator employing the air-gap armature winding system, an alternating magnetic field with a high magnetic flux density is applied directly to the armature winding from the superconducting field winding. Therefore, a strong electromagnetic force acts on the armature winding, and vibrations based on this electromagnetic force are also applied. Therefore, according to this winding method, there is a problem in that high mechanical strength is required of each component in the armature winding body.

【0004】本発明は上記の点に鑑みてなされたもので
あり、電機子巻線に働く強大な電磁力を低減し、この電
磁力による電機子巻線胴部の振動を抑制し、電機子巻線
胴部自体の剛性を増大することのできる超電導回転電機
の固定子を提供することを目的とする。
The present invention has been made in view of the above points, and aims to reduce the strong electromagnetic force acting on the armature winding, suppress the vibration of the armature winding body due to this electromagnetic force, and improve the armature winding. An object of the present invention is to provide a stator for a superconducting rotating electric machine that can increase the rigidity of the winding body itself.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
、本発明は、ティース部が非磁性材からなる空隙電機子
巻線方式の固定子と、超電導界磁巻線を有する回転子と
が、所定の空隙を介し対向してなる超電導回転電機の固
定子において、前記固定子の電機子巻線底面付近、及び
電機巻線周囲の絶縁材とティースとの境界部分に、非磁
性材料からなる振動吸収材を埋設したことを特徴として
いる。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a stator of an air-gap armature winding type in which teeth portions are made of a non-magnetic material, and a rotor having a superconducting field winding. , in a stator of a superconducting rotating electric machine that faces each other with a predetermined gap in between, a non-magnetic material is used near the bottom surface of the armature winding of the stator and at the boundary between the insulating material around the electric machine winding and the teeth. It is characterized by embedded vibration absorbing material.

【0006】また、固定子のティースの一部分を磁性材
で構成したことを特徴としている。さらに、電機子巻線
胴部内に埋設されている冷却パイプ内の軸方向断面中央
部近傍に、中間支持板を設けたことを特徴としている。
[0006] Another feature is that a portion of the teeth of the stator are made of a magnetic material. Furthermore, it is characterized in that an intermediate support plate is provided near the center of the axial cross section of the cooling pipe buried in the armature winding body.

【0007】[0007]

【作用】上記構成によると、電機子巻線胴部の底面に埋
設した非磁性材から成る振動吸収材の断面形状、及びテ
ィースを構成する非磁性部分と磁性部分との占積率や配
置などを適当に選択することによって、電機子巻線胴部
付近の磁束分布を変化させることができる。これにより
、電機子巻線に働く電磁力を低減できる上に、この電磁
力に基づく電機子巻線胴部の径方向の振動を抑制できる
[Operation] According to the above configuration, the cross-sectional shape of the vibration absorbing material made of a non-magnetic material buried in the bottom of the armature winding body, and the space factor and arrangement of the non-magnetic part and the magnetic part constituting the teeth, etc. By appropriately selecting , the magnetic flux distribution near the armature winding body can be changed. Thereby, it is possible to reduce the electromagnetic force acting on the armature winding, and also to suppress vibrations in the radial direction of the armature winding body based on this electromagnetic force.

【0008】また、電機子巻線周囲の絶縁材とティース
との境界部分に埋設した振動吸収材により、電機子巻線
胴部の周方向の振動が抑制される。
[0008] Furthermore, vibrations in the circumferential direction of the armature winding body are suppressed by the vibration absorbing material embedded in the boundary between the insulating material around the armature winding and the teeth.

【0009】更に、電機子巻線胴部内の冷却パイプの軸
方向断面中央部付近に設けた中間支持板は、電機子巻線
胴部の径方向の剛性を増大する作用がある。
Furthermore, the intermediate support plate provided near the center of the axial cross section of the cooling pipe in the armature winding body has the effect of increasing the radial rigidity of the armature winding body.

【0010】0010

【実施例】以下、本発明の一実施例を図面を参照して説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0011】図1は本実施例による超電導回転電機の固
定子の、電機子巻線胴部近傍の軸方向部分断面図である
。固定子1は図示しない回転子と所定の空隙を介して対
向配置され、回転子側の絶縁ティース3と底部側の鉄心
ティース4とがタブテールを介して固定されてなってい
る。また鉄心ティース4の底部には磁束が固定子1の外
部に漏れないように、鉄などの強磁性材からなる磁気シ
ールド2が形成されている。また、鉄心ティース4には
周方向に対して所定の間隔で溝6が設けられており、溝
6には電機子巻線胴部5の一部分及び振動吸収材である
底面ダンパ7が埋設されている。
FIG. 1 is a partial axial cross-sectional view of the stator of the superconducting rotating electrical machine according to this embodiment, near the armature winding body. The stator 1 is arranged to face a rotor (not shown) through a predetermined gap, and the insulating teeth 3 on the rotor side and the iron core teeth 4 on the bottom side are fixed via tab tails. Further, a magnetic shield 2 made of a ferromagnetic material such as iron is formed at the bottom of the iron core teeth 4 to prevent magnetic flux from leaking to the outside of the stator 1. Further, grooves 6 are provided in the core teeth 4 at predetermined intervals in the circumferential direction, and a portion of the armature winding body 5 and a bottom damper 7, which is a vibration absorbing material, are buried in the grooves 6. There is.

【0012】絶縁ティース3は、FRP(繊維強化プラ
スチック)などの高い機械的強度を有する非磁性材料か
ら構成されている。また電機子巻線胴部5は、多数の素
線を束ねた小導体9、ステンレス合金などの高い電気抵
抗を有する金属材料から成る冷却パイプ10、マイカな
ど絶縁性の高い非磁性材料から成る対地絶縁材11、お
よびウエッジ12などから構成される。
[0012] The insulating teeth 3 are made of a non-magnetic material having high mechanical strength such as FRP (fiber reinforced plastic). The armature winding body 5 also includes a small conductor 9 made of a large number of wires bundled together, a cooling pipe 10 made of a metal material with high electrical resistance such as stainless steel, and a grounding made of a highly insulating non-magnetic material such as mica. It is composed of an insulating material 11, a wedge 12, and the like.

【0013】底面ダンパ7は特殊シリコンゴムなどの弾
性が小さく、耐熱性、絶縁性に優れた非磁性材で形成さ
れており、電機子巻線胴部5の底面に密着して鉄心ティ
ース4内に埋設されている。また、電機子巻線胴部5と
ティース3,4との境界部には、底面ダンパ7と同様に
特殊シリコンゴムなどの非磁性材からなる振動吸収材で
ある側面ダンパ8が設けられている。
The bottom damper 7 is made of a non-magnetic material such as special silicone rubber that has low elasticity and excellent heat resistance and insulation properties, and is in close contact with the bottom surface of the armature winding body 5 and inside the core teeth 4. It is buried in. Also, at the boundary between the armature winding body 5 and the teeth 3 and 4, a side damper 8, which is a vibration absorbing material made of a non-magnetic material such as special silicone rubber, is provided similarly to the bottom damper 7. .

【0014】次に本実施例の作用を説明する。鉄心ティ
ース4の長さ(径方向長さ)を適度に設定することで、
回転子から固定子1に流入する磁束の流路の最適化を図
ることができる。つまり、鉄心ティース4が固定子1の
内径部まで伸びている場合、すなわち、ティース部がす
べて磁性材で構成される場合には、回転子からの磁束が
すべてティース部に集中しようとする。この結果、ティ
ース先端付近での磁束密度は飽和磁束密度を大幅に越え
、鉄損が増大する。
Next, the operation of this embodiment will be explained. By appropriately setting the length (radial length) of the iron core teeth 4,
The flow path of the magnetic flux flowing from the rotor to the stator 1 can be optimized. In other words, when the core teeth 4 extend to the inner diameter of the stator 1, that is, when all the teeth are made of magnetic material, all the magnetic flux from the rotor tends to concentrate on the teeth. As a result, the magnetic flux density near the tips of the teeth significantly exceeds the saturation magnetic flux density, increasing iron loss.

【0015】逆に、空隙巻線方式と呼ばれる、ティース
部をすべて非磁性材で構成する方式においては、回転子
から固定子1に流入する磁束は、鉄などの強磁性材から
構成される磁気シールド2に至るまでは、共に非磁性材
から成る電機子巻線胴部5及びティース内にほぼ等密度
に分布する。このため、電機子巻線胴部5内部の導体9
に流れる電流の大きさと、この部分の磁束密度との積に
比例した大きさの電磁力が、電機子巻線胴部5に働くた
め、固定子を構成する各部材に対し、高い機械的強度を
有することが要求される。
On the other hand, in a method called an air-gap winding method in which all the teeth are made of non-magnetic material, the magnetic flux flowing from the rotor to the stator 1 is caused by magnetic flux made of ferromagnetic material such as iron. Up to the shield 2, the windings are distributed at approximately equal density within the armature winding body 5 and the teeth, both of which are made of non-magnetic material. Therefore, the conductor 9 inside the armature winding body 5
An electromagnetic force proportional to the product of the magnitude of the current flowing through the armature and the magnetic flux density of this part acts on the armature winding body 5, which provides high mechanical strength to each member constituting the stator. It is required to have the following.

【0016】しかしながら本実施例のようにティース先
端部付近にFRPなどの非磁性材を用い、ティース根元
付近に鉄などの強磁性材を用いる方式においては、それ
まで電機子巻線胴部5の内部を通過していた磁束の一部
が透過率がより大きい鉄心ティース4の中を通過するよ
うになり、電機子巻線胴部5に働く電磁力を低減するこ
とができる。また、ティース根元付近では、ティース先
端部に比較して、底面ダンパ7の幅(周方向長さ)を調
整することなどで、磁束の通過する断面積を大きく取る
ことができる。このため、この付近での磁束密度は飽和
磁束密度を越えることなく、鉄損に関しては、空隙電機
子巻線方式を作用した場合と同程度に小さく抑えること
ができる。
However, in the method of this embodiment, in which a non-magnetic material such as FRP is used near the tip of the tooth and a ferromagnetic material such as iron is used near the root of the tooth, the armature winding body 5 is A part of the magnetic flux that has passed through the interior now passes through the core teeth 4, which have a higher transmittance, and the electromagnetic force acting on the armature winding body 5 can be reduced. In addition, near the teeth roots, the cross-sectional area through which the magnetic flux passes can be made larger by adjusting the width (circumferential length) of the bottom damper 7 compared to the teeth tips. Therefore, the magnetic flux density in this vicinity does not exceed the saturation magnetic flux density, and iron loss can be suppressed to the same level as when the air-gap armature winding method is used.

【0017】また、床面ダンパ7は小さな弾性率を有す
るので変形しやすく、前述の電磁力に基づく電機子巻線
胴部5の歪エネルギを吸収して、内部摩擦などで熱に変
えることにより、電機子巻線胴部5の径方向の振動を減
衰させることができる。また床面ダンパ7の材料は非磁
性材であるので、この付近に分布する磁束の流路を最適
化することができる。すなわち、床面ダンパ7の厚み(
径方向長さ)、幅(周方向長さ)を変え、適当な断面形
状にすることにより、ティース根本付近の磁束分布を変
化させることができる。このため、それまで電機子巻線
胴部5の内部を通過していた磁束の一部をティース内を
通過させるようにし、電機子巻線胴部5に働く電磁力を
低減することができる。
In addition, the floor damper 7 has a small elastic modulus, so it is easily deformed, and by absorbing the strain energy of the armature winding body 5 based on the electromagnetic force mentioned above and converting it into heat through internal friction, etc. , the radial vibration of the armature winding body 5 can be damped. Furthermore, since the material of the floor damper 7 is a non-magnetic material, the flow path of the magnetic flux distributed in this vicinity can be optimized. In other words, the thickness of the floor damper 7 (
By changing the width (radial length) and width (circumferential length) and forming an appropriate cross-sectional shape, the magnetic flux distribution near the root of the teeth can be changed. Therefore, part of the magnetic flux that had previously passed through the inside of the armature winding body 5 is made to pass through the inside of the teeth, and the electromagnetic force acting on the armature winding body 5 can be reduced.

【0018】また、側面ダンパ8は非磁性材で形成され
ているため、磁束集中による鉄損の集中を防ぐことがで
きる。そして、底面ダンパが、電磁力による電機子巻線
胴部5の径方向の振動を抑制するのに対して、側面ダン
パ8は主に、周方向の電磁力による振動を抑制する効果
がある。
Furthermore, since the side damper 8 is made of a non-magnetic material, it is possible to prevent concentration of iron loss due to concentration of magnetic flux. While the bottom damper suppresses radial vibration of the armature winding body 5 due to electromagnetic force, the side damper 8 mainly has the effect of suppressing vibration due to circumferential electromagnetic force.

【0019】上述したように、超電導回転電機固定子に
おいて、電機子巻線付近を以上のような構造とすること
で、回転子から固定子内に流入する磁束の流路に関する
最適化を図ることができる。これにより、磁束集中によ
る鉄損を最小限に抑えながら、電機子巻線胴部5に働く
電磁力を低減し、かつこの電磁力に基づく振動を抑制す
ることができる。
As mentioned above, in the stator of a superconducting rotating electrical machine, by creating the above-described structure near the armature windings, it is possible to optimize the flow path of the magnetic flux flowing from the rotor into the stator. Can be done. Thereby, it is possible to reduce the electromagnetic force acting on the armature winding body 5 while minimizing iron loss due to magnetic flux concentration, and to suppress vibrations based on this electromagnetic force.

【0020】図2に本発明の他の実施例を示す。図2は
冷却パイプ10の拡大断面図であり、冷却パイプ10の
中央部に中間支持板13を設けたものである。前述した
実施例によっても電機子巻線胴部5に働く電磁力をかな
り低減できるが、それでもなお、超電導界磁巻線による
強磁場のため従来機に比べて強大な電磁力が働くことは
避けられない。このため、電機子巻線胴部5の径方向の
剛性を増大するため、冷却パイプ10の中央部に中間支
持板13のある断面構造とする。このような断面構造に
すると、まず、径方向電磁力に基づく冷却パイプの上下
方向の圧縮力に関し、これを支持する断面積が増大して
、パイプ内部に発生する圧縮応力を小さく抑えることが
できる。また、この電磁力による冷却パイプ10の上下
辺の曲げに関しては、中央に支持部を増やしたことで、
径方向電磁力に対する曲げ剛性が増大することになる。
FIG. 2 shows another embodiment of the present invention. FIG. 2 is an enlarged sectional view of the cooling pipe 10, in which an intermediate support plate 13 is provided at the center of the cooling pipe 10. Although the embodiment described above can considerably reduce the electromagnetic force acting on the armature winding body 5, it is still possible to avoid a strong electromagnetic force acting on the armature winding body 5 due to the strong magnetic field caused by the superconducting field winding compared to the conventional machine. I can't do it. Therefore, in order to increase the radial rigidity of the armature winding body 5, the cooling pipe 10 has a cross-sectional structure with an intermediate support plate 13 in the center. With such a cross-sectional structure, firstly, the cross-sectional area that supports the vertical compressive force of the cooling pipe based on radial electromagnetic force increases, and the compressive stress generated inside the pipe can be kept to a small level. . In addition, regarding the bending of the upper and lower sides of the cooling pipe 10 due to this electromagnetic force, by increasing the support part in the center,
The bending rigidity against radial electromagnetic force increases.

【0021】断面構造の変更に伴い、冷却パイプ10内
を流れる水などの冷媒の流量が中間支持板13がない場
合に比較して減少し、冷却特性が低下することが考えら
れる。これに対しては、冷却パイプ10の内表面に凹凸
をつけ、伝熱面積を増大することにより熱伝達率を向上
させ、冷却効率の低下を防ぐことができる。
[0021] Due to the change in the cross-sectional structure, the flow rate of refrigerant such as water flowing through the cooling pipe 10 is reduced compared to the case without the intermediate support plate 13, and it is conceivable that the cooling characteristics are deteriorated. To deal with this, the inner surface of the cooling pipe 10 is made uneven to increase the heat transfer area, thereby improving the heat transfer coefficient and preventing the cooling efficiency from decreasing.

【0022】更に、以上延べた断面構造を有する冷却パ
イプ10は、図3に示すように、中間支持板13の部分
で分割した構造、すなわち内表面に凹凸を持つ2本のパ
イプを並列させて形成することも可能である。
Furthermore, as shown in FIG. 3, the cooling pipe 10 having the cross-sectional structure extended above has a structure divided at the intermediate support plate 13, that is, two pipes having unevenness on the inner surface are arranged in parallel. It is also possible to form

【0023】[0023]

【発明の効果】以上説明したように、本発明によれば、
超電導回転電機固定子の電機子巻線胴部及びティース部
一帯の磁束流路を制御できるので、電機子巻線に直接作
用する超電導界磁巻線からの磁束量を低減でき、電機子
巻線に働く電磁力を低減できる効果がある。
[Effects of the Invention] As explained above, according to the present invention,
Since the magnetic flux flow path throughout the armature winding body and teeth of the superconducting rotating electric machine stator can be controlled, the amount of magnetic flux from the superconducting field winding that acts directly on the armature winding can be reduced, and the armature winding This has the effect of reducing the electromagnetic force acting on the

【0024】また、埋設した材料は振動吸収材でもある
ため、上記電磁力に基づく電機子巻線胴部の、径方向及
び周方向の振動を抑制する効果がある。
Furthermore, since the buried material is also a vibration absorbing material, it has the effect of suppressing vibrations in the radial direction and circumferential direction of the armature winding body due to the electromagnetic force.

【0025】更に、電機子巻線胴部内の冷却パイプ内部
に設けた中間支持板は、電機子巻線胴部の径方向の剛性
を増大させる効果がある。
Furthermore, the intermediate support plate provided inside the cooling pipe in the armature winding body has the effect of increasing the radial rigidity of the armature winding body.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例による超電導回転電機固定子
の電機子巻線胴部の構成を示す部分断面図である。
FIG. 1 is a partial sectional view showing the configuration of an armature winding body of a stator of a superconducting rotating electric machine according to an embodiment of the present invention.

【図2】本発明の他の実施例による冷却パイプの構成を
示す拡大断面図である。
FIG. 2 is an enlarged sectional view showing the configuration of a cooling pipe according to another embodiment of the present invention.

【図3】同じく冷却パイプの他の構成を示す拡大断面図
である。
FIG. 3 is an enlarged cross-sectional view showing another configuration of the cooling pipe.

【符号の説明】[Explanation of symbols]

1  固定子 3  絶縁ティース 4  鉄心ティース 7  底面ダンパ(振動吸収材) 8  側面ダンパ(振動吸収材) 10  冷却パイプ 13  中間支持板 1 Stator 3 Insulating teeth 4 Iron core teeth 7 Bottom damper (vibration absorber) 8 Side damper (vibration absorber) 10 Cooling pipe 13 Intermediate support plate

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  ティース部が非磁性材からなる空隙電
機子巻線方式の固定子と、超電導界磁巻線を有する回転
子とが、所定の空隙を介し対向してなる超電導回転電機
の固定子において、前記固定子の電機子巻線底面付近、
及び電機巻線周囲の絶縁材とティースとの境界部分に、
非磁性材料からなる振動吸収材を埋設したことを特徴と
する超電導回転電機の固定子。
1. Fixing of a superconducting rotating electric machine, in which a stator of an air-gap armature winding type whose teeth portions are made of a non-magnetic material and a rotor having a superconducting field winding face each other with a predetermined gap interposed therebetween. In the stator, near the bottom surface of the armature winding of the stator,
And at the boundary between the insulation material around the electric machine winding and the teeth,
A stator for a superconducting rotating electric machine characterized by having a vibration absorbing material made of a non-magnetic material buried therein.
【請求項2】  固定子のティースの一部分を磁性材で
構成したことを特徴とする請求項1記載の超電導回転電
機の固定子。
2. The stator for a superconducting rotating electrical machine according to claim 1, wherein a portion of the teeth of the stator are made of a magnetic material.
【請求項3】  電機子巻線胴部内に埋設されている冷
却パイプ内の軸方向断面中央部近傍に、中間支持板を設
けたことを特徴とする請求項1または2記載の超電導回
転電機の固定子。
3. The superconducting rotating electrical machine according to claim 1, wherein an intermediate support plate is provided near the center of the axial cross section of the cooling pipe buried in the armature winding body. stator.
JP3047955A 1991-03-13 1991-03-13 Superconducting rotating electric machine stator Expired - Fee Related JP2743122B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3047955A JP2743122B2 (en) 1991-03-13 1991-03-13 Superconducting rotating electric machine stator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3047955A JP2743122B2 (en) 1991-03-13 1991-03-13 Superconducting rotating electric machine stator

Publications (2)

Publication Number Publication Date
JPH04285462A true JPH04285462A (en) 1992-10-09
JP2743122B2 JP2743122B2 (en) 1998-04-22

Family

ID=12789778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3047955A Expired - Fee Related JP2743122B2 (en) 1991-03-13 1991-03-13 Superconducting rotating electric machine stator

Country Status (1)

Country Link
JP (1) JP2743122B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011030874A1 (en) * 2009-09-11 2011-03-17 川崎重工業株式会社 Superconducting rotating electrical machine, and stator used for superconducting rotating electrical machine
WO2014068827A1 (en) * 2012-11-01 2014-05-08 川崎重工業株式会社 Stator for superconducting rotating machine and superconducting rotating machine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58184335A (en) * 1982-04-22 1983-10-27 Atsugi Motor Parts Co Ltd Fluid-pressure shock absorber with variable damping capacity
JPH02193565A (en) * 1989-01-20 1990-07-31 Toshiba Corp Stator of superconducting removing-armature
JPH02219460A (en) * 1989-02-16 1990-09-03 Agency Of Ind Science & Technol Stator winding for superconducting generator and superconducting generator using same
JPH02273067A (en) * 1989-04-13 1990-11-07 Toshiba Corp Stator of superconductive electric rotating machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58184335A (en) * 1982-04-22 1983-10-27 Atsugi Motor Parts Co Ltd Fluid-pressure shock absorber with variable damping capacity
JPH02193565A (en) * 1989-01-20 1990-07-31 Toshiba Corp Stator of superconducting removing-armature
JPH02219460A (en) * 1989-02-16 1990-09-03 Agency Of Ind Science & Technol Stator winding for superconducting generator and superconducting generator using same
JPH02273067A (en) * 1989-04-13 1990-11-07 Toshiba Corp Stator of superconductive electric rotating machine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011030874A1 (en) * 2009-09-11 2011-03-17 川崎重工業株式会社 Superconducting rotating electrical machine, and stator used for superconducting rotating electrical machine
CN102498649A (en) * 2009-09-11 2012-06-13 川崎重工业株式会社 Superconducting rotating electrical machine, and stator used for superconducting rotating electrical machine
JP5122685B2 (en) * 2009-09-11 2013-01-16 川崎重工業株式会社 Superconducting rotating electrical machine and stator for superconducting rotating electrical machine
US8643240B2 (en) 2009-09-11 2014-02-04 Kawasaki Jukogyo Kabushiki Kaisha Superconducting rotating electrical machine and stator for use with superconducting rotating electrical machine
WO2014068827A1 (en) * 2012-11-01 2014-05-08 川崎重工業株式会社 Stator for superconducting rotating machine and superconducting rotating machine
JP2014093826A (en) * 2012-11-01 2014-05-19 Kawasaki Heavy Ind Ltd Stator for superconducting rotating machine, and superconducting rotating machine
US9941759B2 (en) 2012-11-01 2018-04-10 Kawasaki Jukogyo Kabushiki Kaisha Stator winding arrangement of superconducting rotating machine

Also Published As

Publication number Publication date
JP2743122B2 (en) 1998-04-22

Similar Documents

Publication Publication Date Title
US20110241455A1 (en) Magnetic Shield for Stator Core End Structures of Electric Rotating Machine
US11728091B2 (en) Three-phase reactor comprising iron-core units and coils
US4427910A (en) Magnetic slot wedge with low average permeability and high mechanical strength
US20010030486A1 (en) Electric machine with structural spacer
JP2006516879A (en) Trapezoidal motor magnetic pole device that increases magnetic flux to improve motor torque density
US8618710B2 (en) Wedge for a stator of a generator with preformed coil windings
US20080054733A1 (en) Slotless Ac Induction Motor
JP3133224B2 (en) Permanent magnet excitation synchronous motor for vehicles
US20180287436A1 (en) Optimized stator tooth for electric motor / generator
JP2005354870A (en) Stator of motor
CN107181341B (en) Permanent magnet motor for compressor and compressor with same
US20090195113A1 (en) Induction machine stator apparatus and method
JP2743122B2 (en) Superconducting rotating electric machine stator
JP2007166797A (en) Dynamo-electric machine and its control method, and compressor, blower, and air conditioner
JP2003333772A (en) Stator core having laminate made of iron-aluminum alloy and method for using the same
JP3671929B2 (en) Rotating electric machine
US20220239177A1 (en) Stator assembly flux alignment
JP3475099B2 (en) Rotating electric machine
US20110062805A1 (en) Switched reluctance machine with eddy current loss dampener
JP2000116040A (en) Salient pole rotor of rotating electric machine
WO2019202790A1 (en) Dynamo-electric machine, and elevator hoist system
EP2741398A1 (en) Rotor of an electric generator
JP2003304657A (en) Permanent magnet type synchronous motor
JP5129034B2 (en) AC excitation rotating electric machine
JP3658521B2 (en) Amorphous winding core transformer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees