JPH04285058A - Production of bismuth-containing oxide superconducting material - Google Patents

Production of bismuth-containing oxide superconducting material

Info

Publication number
JPH04285058A
JPH04285058A JP3076877A JP7687791A JPH04285058A JP H04285058 A JPH04285058 A JP H04285058A JP 3076877 A JP3076877 A JP 3076877A JP 7687791 A JP7687791 A JP 7687791A JP H04285058 A JPH04285058 A JP H04285058A
Authority
JP
Japan
Prior art keywords
bismuth
oxide superconducting
superconducting material
oxygen
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3076877A
Other languages
Japanese (ja)
Inventor
Shigeki Kobayashi
茂樹 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP3076877A priority Critical patent/JPH04285058A/en
Publication of JPH04285058A publication Critical patent/JPH04285058A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a Bi-contg. oxide superconducting material having an increased critical temp. at which transition to superconductivity is attained an improved superconducting characteristics. CONSTITUTION:Powdery starting materials for a Bi-contg. oxide superconducting material are heated in a low oxygen atmosphere under <=0.1 atm partial pressure of oxygen and the heated starting materials are molded and fired to produce a Bi-contg. oxide superconducting material.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、転移開始温度が向上し
たビスマス系酸化物超伝導材を製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a bismuth-based oxide superconducting material having an improved transition initiation temperature.

【0002】0002

【従来の技術】ビスマス系酸化物超伝導材の製造方法と
しては、従来固相反応粉あるいは共沈粉等を原料粉とし
て用い、これを予め大気中で仮焼することにより超伝導
物質を合成し、成形した後、焼成するという工程が一般
に採用されている。
[Prior Art] Conventionally, a method for producing bismuth-based oxide superconducting materials uses solid-phase reaction powder or co-precipitated powder as raw material powder, and synthesizes the superconducting material by pre-calcining it in the atmosphere. Generally, a process is adopted in which the material is molded and then fired.

【0003】このようにして得られたビスマス系酸化物
超伝導材には、超伝導に転移する臨界温度(Tc)が8
0K付近の低Tc相、および臨界温度が110K付近の
高Tc相と、少なくとも2種の超伝導相が存在する。
The bismuth-based oxide superconducting material thus obtained has a critical temperature (Tc) for transitioning to superconductivity of 8.
There are at least two types of superconducting phases: a low Tc phase around 0K and a high Tc phase with a critical temperature around 110K.

【0004】このうち、臨界温度が80K付近の低Tc
相は、例えばイットリウム系超伝導材に見られるのと同
様に、その超伝導特性が含有酸素量に対して非常に敏感
に変化することが知られている。そしてビスマス系超伝
導体では、イットリウム系超伝導材とは逆に、含有酸素
量が少ないほど臨界温度が高くなる傾向を示し、このた
め、例えば焼成工程における焼成雰囲気をコントロール
することで、焼結体中の含有酸素量を制御し、臨界温度
を上昇させることが検討されている。
Among these, low Tc with a critical temperature of around 80K
It is known that the superconducting properties of the phase change very sensitively to the amount of oxygen it contains, similar to what is seen in yttrium-based superconducting materials, for example. Contrary to yttrium-based superconductors, bismuth-based superconductors tend to have a higher critical temperature as the oxygen content decreases. Studies are underway to control the amount of oxygen in the body and raise the critical temperature.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記従
来の製造方法において焼成雰囲気をいくらコントロール
しても、得られる焼結体の臨界温度を充分向上させるこ
とができなかった。これは、上記従来の方法では、仮焼
後の原料粉中の超伝導相の酸素含有量が多い状態、すな
わち臨界温度が低い状態となっているためと認められ、
これをこのまま成形して焼成した場合、焼成雰囲気の制
御のみでは酸素含有量を低減することは困難であった。
However, no matter how much the firing atmosphere is controlled in the above-mentioned conventional manufacturing method, it has not been possible to sufficiently improve the critical temperature of the resulting sintered body. This is believed to be because in the conventional method described above, the superconducting phase in the raw material powder after calcination has a high oxygen content, that is, the critical temperature is low.
When this was molded and fired as it was, it was difficult to reduce the oxygen content only by controlling the firing atmosphere.

【0006】また、高Tc相を主体とした超伝導材を作
製する場合には、その生成を促進するために原料粉中に
鉛を添加することがしばしば行なわれる。ところが、こ
の鉛の高Tc相への固溶量が低いため、焼成工程で添加
量の多くは蒸気となって散逸してしまい、鉛の添加によ
る超伝導特性向上の効果があまり期待できなかった。
[0006] Furthermore, when producing a superconducting material mainly consisting of a high Tc phase, lead is often added to the raw material powder in order to promote its formation. However, because the amount of lead dissolved in the high-Tc phase was low, much of the added amount was dissipated as vapor during the sintering process, so the effect of adding lead on improving superconducting properties could not be expected to be significant. .

【0007】本発明は、上記従来の問題点に鑑みなされ
たものであり、超伝導に転移する臨界温度が向上し、超
伝導特性の向上したビスマス系酸化物超伝導材焼結体を
製造する方法を提供することを目的とする。
The present invention has been made in view of the above-mentioned conventional problems, and is intended to produce a bismuth-based oxide superconducting material sintered body with improved superconducting properties by increasing the critical temperature at which it transitions to superconductivity. The purpose is to provide a method.

【0008】[0008]

【課題を解決するための手段】本発明のビスマス系酸化
物超伝導材の製造方法は、ビスマス系酸化物超伝導材の
原料粉を酸素分圧が0.1気圧以下の低酸素雰囲気下で
加熱する加熱処理工程と、得られた熱処理粉を成形した
後、焼成する焼成工程とからなることを特徴とする。
[Means for Solving the Problems] The method for producing a bismuth-based oxide superconducting material of the present invention is to process raw material powder for a bismuth-based oxide superconducting material in a low-oxygen atmosphere with an oxygen partial pressure of 0.1 atmosphere or less. It is characterized by consisting of a heat treatment step in which the powder is heated, and a firing step in which the obtained heat-treated powder is molded and then fired.

【0009】本発明において、ビスマス系酸化物超伝導
材とは、少なくともビスマス(Bi)ストロンチウム(
Sr)、カルシウム(Ca)、銅(Cu)を含む酸化物
よりなる超伝導材である。原料粉の製造方法は特に限定
されないが、固相反応粉、共沈粉等が使用可能である。 高Tc相を主体とする超伝導体を製造する場合には、更
に鉛(Pb)が添加される場合が多いが、この際の鉛の
添加量としては、ビスマス量の15〜50%の範囲とす
ることが望ましい。
In the present invention, the bismuth-based oxide superconducting material includes at least bismuth (Bi) strontium (
It is a superconducting material made of an oxide containing Sr), calcium (Ca), and copper (Cu). The method for producing the raw material powder is not particularly limited, but solid phase reaction powder, co-precipitated powder, etc. can be used. When manufacturing a superconductor mainly consisting of a high Tc phase, lead (Pb) is often added, but the amount of lead added in this case is in the range of 15 to 50% of the amount of bismuth. It is desirable to do so.

【0010】加熱処理工程では、この原料粉を、酸素分
圧が0.1気圧以下の低酸素雰囲気下で加熱する。酸素
分圧が0.1気圧を越えると転移開始温度の向上効果が
小さい。通常、アルゴン(Ar)、窒素(N2 )等と
酸素(O2 )との混合気体を使用するか、あるいは熱
処理系全体を減圧することで実現できる。
In the heat treatment step, this raw material powder is heated in a low oxygen atmosphere with an oxygen partial pressure of 0.1 atm or less. When the oxygen partial pressure exceeds 0.1 atm, the effect of improving the transition start temperature is small. Usually, this can be achieved by using a gas mixture of argon (Ar), nitrogen (N2), etc. and oxygen (O2), or by reducing the pressure of the entire heat treatment system.

【0011】熱処理温度は400〜850℃の範囲が望
ましい。200℃付近から酸素の出入りはあるが、40
0℃未満ではその量が少なく、効果が小さい。また85
0℃を越えると、還元作用が強くなり、超伝導体の分解
が増加するので好ましくない。
[0011] The heat treatment temperature is preferably in the range of 400 to 850°C. Although oxygen enters and exits from around 200℃,
Below 0°C, the amount is small and the effect is small. 85 again
If the temperature exceeds 0°C, the reducing action becomes strong and the decomposition of the superconductor increases, which is not preferable.

【0012】加熱処理工程を経た粉体は、成形した後、
続いて焼成工程に供される。焼成温度としては750〜
900℃の範囲が望ましい。750℃未満では焼結効果
が小さく、また超伝導体の結晶性も悪くなる。900℃
を越えると、溶融が激しくなり、超伝導相が消失してし
まう。焼結雰囲気は特に制限されないが、低Tc相を主
体とする超伝導体を製造する場合には、焼成も低酸素圧
下で行うか、焼結体が雰囲気から酸素を吸収しないよう
にする工夫が必要となる。例えば、原料粉を銀Ag管に
つめ、塑性加工して緻密化した後、焼成すれば、表面の
銀シース材の存在で酸素の吸収が低減できるため、大気
中で焼成しても臨界温度の低下が防止できる。
[0012] After the powder that has undergone the heat treatment process is molded,
Subsequently, it is subjected to a firing process. The firing temperature is 750~
A range of 900°C is desirable. If the temperature is lower than 750°C, the sintering effect will be small and the crystallinity of the superconductor will also be poor. 900℃
If the value exceeds 100%, melting will become intense and the superconducting phase will disappear. The sintering atmosphere is not particularly limited, but when producing a superconductor mainly consisting of a low Tc phase, sintering should be performed under low oxygen pressure, or measures should be taken to prevent the sintered body from absorbing oxygen from the atmosphere. It becomes necessary. For example, if raw material powder is packed in a silver-Ag tube, densified through plastic processing, and then fired, oxygen absorption can be reduced due to the presence of the silver sheath material on the surface, so even when fired in the atmosphere, the critical temperature can be maintained. Deterioration can be prevented.

【0013】[0013]

【作用】ビスマス系酸化物超伝導材における低Tc相は
、ホールがオーバドープされた系であり、組成から酸素
が抜けると、ホール濃度が低下して臨界温度が向上する
。本発明は、原料粉の状態で、低酸素雰囲気下の熱処理
を行うもので、これにより超伝導相の酸素のコントロー
ルが容易にでき、含有酸素量を低減して臨界温度を上昇
させることが可能となる。また、焼結体全体の均質化、
弱結合相の除去等にも役立ち、臨界電流密度(Jc)の
向上にもつながる。
[Operation] The low Tc phase in the bismuth-based oxide superconducting material is a system in which holes are overdoped, and when oxygen is removed from the composition, the hole concentration decreases and the critical temperature increases. In the present invention, the raw material powder is heat-treated in a low-oxygen atmosphere, which makes it possible to easily control the oxygen in the superconducting phase, reduce the amount of oxygen contained, and increase the critical temperature. becomes. In addition, homogenization of the entire sintered body,
It is also useful for removing weakly bonded phases and leads to an improvement in critical current density (Jc).

【0014】一方、組成中に鉛を含む場合、熱処理工程
を低酸素圧下で行うことにより鉛の固溶限が上昇し、よ
り多くの鉛が固溶可能になる。また、熱処理段階での固
溶量が上昇することで、焼成工程における鉛の蒸発によ
る散逸が抑制される。この結果、鉛の固溶量が増加し、
臨界温度が向上する。鉛が高Tc相中に固溶することに
より、限界温度が向上する理由はよくわかっていないが
、Cu−O面でのホール濃度に間接的に関与しているも
のと予想される。
On the other hand, when lead is included in the composition, the solid solubility limit of lead is increased by performing the heat treatment step under low oxygen pressure, and more lead can be dissolved in the solid solution. Furthermore, by increasing the amount of solid solution in the heat treatment stage, dissipation due to evaporation of lead in the firing process is suppressed. As a result, the amount of solid solution of lead increases,
Critical temperature improves. Although the reason why the critical temperature is improved by solid solution of lead in the high Tc phase is not well understood, it is expected that it is indirectly involved in the hole concentration at the Cu-O surface.

【0015】[0015]

【実施例】Bi:Sr:Ca:Cu=1:1:1:2と
なるように配合した固相反応粉を840℃、O2 /A
r混合雰囲気中で、熱処理を行なった。O2 /Ar混
合比は表1に示すよう0〜1の範囲で変更した。熱処理
後の粉体を金型プレスして5×2×20mmの成形体を
得、さらに酸素分圧0.1気圧の下で850℃、4時間
焼成して焼成体を得た。得られたビスマス系超伝導材の
超伝導の評価を行ない、結果を表1に示した。超伝導の
評価は交流磁化率の測定で行ない、急激な磁化率の変化
の開始点を臨界温度Tcとした。
[Example] Solid phase reaction powder blended so that Bi:Sr:Ca:Cu=1:1:1:2 was heated at 840°C and O2/A.
Heat treatment was performed in a mixed atmosphere. The O2/Ar mixing ratio was varied within the range of 0 to 1 as shown in Table 1. The heat-treated powder was pressed with a mold to obtain a molded body of 5 x 2 x 20 mm, and further fired at 850° C. for 4 hours under an oxygen partial pressure of 0.1 atm to obtain a fired body. The superconductivity of the obtained bismuth-based superconducting material was evaluated, and the results are shown in Table 1. Superconductivity was evaluated by measuring alternating current magnetic susceptibility, and the starting point of rapid change in magnetic susceptibility was defined as the critical temperature Tc.

【0016】又、同様にして熱処理した粉体を♯80メ
ッシュでふるって10mmφのAg管につめ、5mmφ
までスウェージ加工した。この材料を大気中、860℃
で4時間焼成した。同様に超伝導の評価を行ない、結果
を表1に併記した。
[0016] In addition, the powder heat-treated in the same manner was sieved through #80 mesh and packed into a 10 mmφ Ag tube.
Swaged to This material was heated to 860℃ in the atmosphere.
It was baked for 4 hours. Superconductivity was similarly evaluated, and the results are also listed in Table 1.

【0017】[0017]

【表1】[Table 1]

【0018】表に明らかなように、熱処理を酸素分圧0
.1気圧以下で行なった実施例1〜3は臨界温度Tcが
大幅に向上している。また、実施例2、比較例2のAg
シ−ス材につき、4端子電流による臨界電流密度Jcの
測定を液体窒素N2 中で行なった結果、各々1.2×
104 A/cm2 (実施例2)、1.5×103 
A/cm2 (比較例2)であり、本発明の方法で得ら
れたビスマス系酸化物超伝導材は臨界電流密度Jcも従
来に比し向上していることがわかる。
As shown in the table, the heat treatment was carried out at an oxygen partial pressure of 0.
.. In Examples 1 to 3, which were conducted at 1 atm or less, the critical temperature Tc was significantly improved. In addition, Ag in Example 2 and Comparative Example 2
The critical current density Jc of the sheath material was measured using a four-terminal current in liquid nitrogen N2.
104 A/cm2 (Example 2), 1.5×103
A/cm2 (Comparative Example 2), and it can be seen that the critical current density Jc of the bismuth-based oxide superconducting material obtained by the method of the present invention is also improved compared to the conventional one.

【0019】次に、Bi:Sr:Ca:Cu=2:2:
2:3で、かつビスマスを15〜50%の範囲で鉛によ
り置換した共沈粉を750℃で仮焼して得た原料粉を使
用して、同様の方法によりビスマス系酸化物超伝導材を
製造した。熱処理は、840℃で、酸素分圧0.05気
圧のO2 /Ar混合ガス中で行なった。上記実施例と
同様の方法で焼成を行ない、通常の焼成体およびAgシ
ース材を作製した。焼成条件は酸素分圧0.1気圧、8
40℃、4時間とした。また比較のため、熱処理を酸素
分圧0.2気圧下で行なった以外は同様の方法で超伝導
材を製造し、それぞれの超伝導特性を評価した。
Next, Bi:Sr:Ca:Cu=2:2:
A bismuth-based oxide superconducting material was produced by the same method using a raw material powder obtained by calcining coprecipitated powder at 750°C with a ratio of 2:3 and replacing bismuth with lead in a range of 15 to 50%. was manufactured. The heat treatment was performed at 840° C. in an O2/Ar mixed gas with an oxygen partial pressure of 0.05 atm. Firing was performed in the same manner as in the above example to produce a normal fired body and Ag sheath material. Firing conditions are oxygen partial pressure 0.1 atm, 8
The temperature was 40°C for 4 hours. For comparison, superconducting materials were manufactured in the same manner except that the heat treatment was performed under an oxygen partial pressure of 0.2 atm, and the superconducting properties of each were evaluated.

【0020】この結果、熱処理工程の酸素分圧を0.2
気圧としたものは、臨界温度Tcがいずれも110Kを
下回った。これに対し、酸素分圧0.05気圧で熱処理
を行なった本発明のビスマス系超伝導材は、臨界温度T
cが従来に比し5〜10K高い115〜120Kを示し
た。
As a result, the oxygen partial pressure in the heat treatment step was reduced to 0.2
The critical temperature Tc of all samples set to atmospheric pressure was below 110K. On the other hand, the bismuth-based superconducting material of the present invention heat-treated at an oxygen partial pressure of 0.05 atm has a critical temperature of T
c was 115 to 120K, which is 5 to 10K higher than that of the conventional model.

【0021】[0021]

【発明の効果】以上のように、本発明方法によれば、ビ
スマス系酸化物超伝導材の臨界温度を従来に比し著しく
向上させることができる。従って、使用可能温度が大幅
に上昇し、より広い分野への利用が期待できる。さらに
超伝導特性の重要な要素である臨界電流密度も向上する
など、優れた超伝導特性を有するビスマス系酸化物超伝
導材を製造することができる。
As described above, according to the method of the present invention, the critical temperature of a bismuth-based oxide superconducting material can be significantly improved compared to the conventional method. Therefore, the usable temperature will be significantly increased, and it can be expected to be used in a wider range of fields. Furthermore, it is possible to produce a bismuth-based oxide superconducting material with excellent superconducting properties, such as improved critical current density, which is an important element of superconducting properties.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  ビスマス系酸化物超伝導材の原料粉を
酸素分圧が0.1気圧以下の低酸素雰囲気中で加熱する
加熱処理工程と、得られた熱処理粉を成形した後、焼成
する焼成工程とからなることを特徴とするビスマス系酸
化物超伝導材の製造方法。
[Claim 1] A heat treatment step in which raw material powder for bismuth-based oxide superconducting material is heated in a low-oxygen atmosphere with an oxygen partial pressure of 0.1 atmosphere or less, and the resulting heat-treated powder is shaped and then fired. 1. A method for producing a bismuth-based oxide superconducting material, comprising a firing step.
JP3076877A 1991-03-15 1991-03-15 Production of bismuth-containing oxide superconducting material Pending JPH04285058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3076877A JPH04285058A (en) 1991-03-15 1991-03-15 Production of bismuth-containing oxide superconducting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3076877A JPH04285058A (en) 1991-03-15 1991-03-15 Production of bismuth-containing oxide superconducting material

Publications (1)

Publication Number Publication Date
JPH04285058A true JPH04285058A (en) 1992-10-09

Family

ID=13617865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3076877A Pending JPH04285058A (en) 1991-03-15 1991-03-15 Production of bismuth-containing oxide superconducting material

Country Status (1)

Country Link
JP (1) JPH04285058A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031266A (en) * 2005-06-23 2007-02-08 Sumitomo Electric Ind Ltd Bi-BASE SUPERCONDUCTOR AND ITS MANUFACTURING METHOD, SUPERCONDUCTING WIRE MATERIAL AND SUPERCONDUCTING DEVICE

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031266A (en) * 2005-06-23 2007-02-08 Sumitomo Electric Ind Ltd Bi-BASE SUPERCONDUCTOR AND ITS MANUFACTURING METHOD, SUPERCONDUCTING WIRE MATERIAL AND SUPERCONDUCTING DEVICE
JP4631813B2 (en) * 2005-06-23 2011-02-16 住友電気工業株式会社 Bi-based superconductor and manufacturing method thereof, superconducting wire and superconducting equipment

Similar Documents

Publication Publication Date Title
JP2567505B2 (en) Method for producing bismuth oxide superconductor
Kaneko et al. (Tl, Pb, Bi) Sr2Ca2Cu3O z superconductors with zero resistance at 120 K
US5317008A (en) Method of manufacturing bismuth type oxide superconductor
WO1991000622A1 (en) Silver doped superconductor composite
JPH0780710B2 (en) Manufacturing method of oxide high temperature superconductor
JPH04285058A (en) Production of bismuth-containing oxide superconducting material
Hwang et al. Effect of atmosphere on the formation of low T c and high T c phases in Bi‐Pb‐Sr‐Ca‐Cu‐O superconductors
Ramli et al. Microstructure and superconducting properties of Ag-substituted YBa2-xAgxCu3O7-δ ceramics prepared by sol-gel method
JPH01308803A (en) Production of oxide superconductor
CA2453922C (en) Oxide high-critical temperature superconductor acicular crystal and method for producing the same
JPH10330117A (en) Oxide superconductor, its production and current lead using the same
JP2523928B2 (en) Oxide superconductor and method for producing the same
JP2634187B2 (en) Method for producing thallium-based oxide superconductor
JP2709000B2 (en) Superconductor and method of manufacturing the same
JP2590242B2 (en) Manufacturing method of oxide superconductor
JP2789103B2 (en) Oxide superconductor and manufacturing method thereof
JP2821568B2 (en) Method for producing superconducting whisker composite
JPH01100054A (en) Production of oxide superconductor
Lu et al. MICROSTRUCTURE AND PROPERTIES OF Bi-BASED SUPERCONDUCTORS IN THE PARTIAL MELTING AND SINTERING PROCESS
JPH01317161A (en) Production of bismuth-based oxide superconductor
Abd-Shukor Ultrasonic shear velocity anomalies in bulk thallium-1212 high temperature superconductor
Guidi et al. BPSCCO-Ag powders obtained by a wet method and with a low carbon content for tape preparation
JPH04285014A (en) Bismuth-based oxide superconducting material
Falter et al. Thermal processing of ceramic superconductors in the system Bi-Ca-Sr-Cu-O
Gololobov et al. Effect of Mg impurity on the superconductivity of metal oxides of the system Bi-Sr-Ca-Cu