JPH04285031A - Produciton of forming glass material and optical element - Google Patents

Produciton of forming glass material and optical element

Info

Publication number
JPH04285031A
JPH04285031A JP7038791A JP7038791A JPH04285031A JP H04285031 A JPH04285031 A JP H04285031A JP 7038791 A JP7038791 A JP 7038791A JP 7038791 A JP7038791 A JP 7038791A JP H04285031 A JPH04285031 A JP H04285031A
Authority
JP
Japan
Prior art keywords
glass
glass material
acid
optical element
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7038791A
Other languages
Japanese (ja)
Inventor
Tamakazu Yogo
瑞和 余語
Shuji Murakami
修司 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP7038791A priority Critical patent/JPH04285031A/en
Publication of JPH04285031A publication Critical patent/JPH04285031A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

PURPOSE:To prevent the cracking of a glass when formed and the contamination of the formed article and mold at the time of producing a glass material for press-forming an optical element by dipping the glass material in acid, and then heating the material under reduced pressure or in a dry atmosphere. CONSTITUTION:A glass material (e.g. silicate glass) used for press-forming an optical element is dipped in acid (e.g. nitric acid) to elute the component soluble in acid from the glass surface as a cation (e.g. Na<+>), the hydrogen ion of acid is diffused instead into the glass to exchange the cation, and a porous hydrated layer rich in SiO2 is formed on the glass surface. The glass material is then heated under reduced pressure or in a dry atmosphere to cause dehydration and condensation in the hydrated layer, hence the network structure of Si-O-Si is formed, and a dense glass layer rich in SiO2 is formed on the glass surface. Consequently, when the treated glass material is press-formed into an optical element, the fusion of the formed article to the mold member, the contamination due to the volatilization of the glass component, etc., are prevented.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、プレス成形用ガラス素
材の製造方法、及び該方法により得られたガラス素材を
用いた光学素子の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a glass material for press molding, and a method for manufacturing an optical element using the glass material obtained by the method.

【0002】0002

【従来の技術】近年、所定の表面精度を有する成形用型
内に光学素子成形用の素材例えばある程度の形状及び表
面精度に予備成形されたガラスブランクを収容して加熱
下でプレス成形することにより、研削及び研磨等の後工
程を不要にした、高精度光学機能面を有する光学素子を
製造する方法が開発されている。
[Prior Art] In recent years, a material for molding optical elements, such as a glass blank preformed to a certain degree of shape and surface accuracy, is housed in a mold with a predetermined surface accuracy and press-molded under heat. 2. Description of the Related Art A method for manufacturing an optical element having a high-precision optical functional surface that eliminates the need for post-processes such as grinding and polishing has been developed.

【0003】この様なプレス成形法では、成形用上型部
材と成形用下型部材とをそれぞれ成形用胴型部材内に摺
動可能に対面配置し、これら上型部材、下型部材及び胴
型部材により形成されるキャビティ内に成形用素材を導
入し、型部材の酸化防止のため雰囲気を非酸化性雰囲気
例えば窒素雰囲気として、成形可能温度例えば成形用素
材が108 〜1012ポアズとなる温度まで型部材を
加熱し、型を閉じ適宜の時間プレスして型部材表面形状
を成形用素材表面に転写し、そして型部材温度を成形用
素材のガラス転移温度より十分に低い温度まで冷却し、
プレス圧力を除去し、型を開いて成形済光学素子を取出
す。
[0003] In such a press molding method, an upper mold member for molding and a lower mold member for molding are respectively arranged slidably facing each other in a molding body member, and these upper mold member, lower mold member and body are A molding material is introduced into the cavity formed by the mold member, and the atmosphere is set to a non-oxidizing atmosphere, such as a nitrogen atmosphere, to prevent oxidation of the mold member, and the molding material is heated to a moldable temperature, for example, a temperature at which the molding material becomes 108 to 1012 poise. The mold member is heated, the mold is closed and pressed for an appropriate time to transfer the surface shape of the mold member to the surface of the molding material, and the mold member temperature is cooled to a temperature sufficiently lower than the glass transition temperature of the molding material,
The press pressure is removed and the mold is opened to remove the molded optical element.

【0004】尚、型部材内に導入する前に成形用素材を
適宜の温度まで予備加熱したり、あるいは成形用素材を
成形可能温度まで加熱してから型部材内に導入すること
もできる。更に、型部材とともに成形用素材を搬送しな
がら、それぞれ所定の場所で加熱、プレス及び冷却を行
ない、連続化及び高速化をはかることもできる。
[0004] The molding material may be preheated to an appropriate temperature before being introduced into the mold member, or the molding material may be heated to a moldable temperature and then introduced into the mold member. Furthermore, while conveying the molding material together with the mold member, heating, pressing, and cooling can be performed at predetermined locations, thereby achieving continuity and high speed.

【0005】以上の様な光学素子プレス成形法及びその
装置は、例えば特開昭58−84134号公報、特開昭
49−97009号公報、イギリス国特許第37819
9号公報、特開昭63−11529号公報、特開昭59
−150728号公報及び特開昭61−26528号公
報に開示されている。
The above optical element press molding method and its apparatus are disclosed in, for example, Japanese Patent Application Laid-open No. 58-84134, Japanese Patent Application Laid-open No. 49-97009, and British Patent No. 37819.
9, JP-A-63-11529, JP-A-59
It is disclosed in Japanese Patent Laid-open No. 150728 and Japanese Patent Application Laid-open No. 61-26528.

【0006】しかし、以上の様な光学素子のプレス成形
においては、成形時の高温下で成形用素材と型部材とが
融着することがある。ひとたび融着が発生すると、プレ
ス後の冷却時において成形済光学素子と型部材との熱膨
張係数の差に基づき該素子に作用する引っ張り力により
該素子にヒビやワレが生じたり、型内から成形済光学素
子を取出す際に該素子の一部が型部材に付着して残留し
以後の成形に悪影響を及ぼしたりすることがある。
However, in the press molding of optical elements as described above, the molding material and the mold member may fuse together at high temperatures during molding. Once fusion occurs, the element may crack or break due to the tensile force that acts on the element due to the difference in thermal expansion coefficient between the molded optical element and the mold member during cooling after pressing, or the element may crack or crack from within the mold. When taking out a molded optical element, a part of the element may adhere to and remain on the mold member, which may adversely affect subsequent molding.

【0007】上記融着の防止のためには離型剤を使用す
ることが考えられるが、光学素子の場合には特に光学機
能面が高度の平滑性を要求されるところ、離型剤の使用
はその残留により平滑性低下及び透明性低下等の品質低
下をもたらすので、離型剤の使用は好ましくない。また
、上記融着の発生しにくい型部材の性質も研究されてい
るが、型部材材質による融着防止は該型部材の選択の幅
を狭めることになり、この点で不利がある。
[0007] In order to prevent the above-mentioned fusion, it is possible to use a mold release agent, but in the case of optical elements, where the optical functional surface requires a high level of smoothness, the use of a mold release agent is difficult. It is not preferable to use a mold release agent because its residue causes quality deterioration such as a decrease in smoothness and a decrease in transparency. Further, the properties of mold members that are less likely to cause fusion have been studied, but preventing fusion by using the material of the mold member narrows the range of selection of the mold member, which is disadvantageous in this respect.

【0008】上記問題点を解決する手段として、成形用
素材をプレス成形温度より低い温度で減圧下に加熱処理
した後プレス成形する方法が提案されている(特開平1
−315447号公報)。この方法によれば成形済光学
素子と型部材との融着の発生を抑制し、また成形用素材
及び成形済光学素子の破砕を防止できる。
As a means to solve the above problems, a method has been proposed in which a molding material is heat treated under reduced pressure at a temperature lower than the press molding temperature and then press molded (Japanese Patent Application Laid-Open No.
-315447). According to this method, it is possible to suppress the occurrence of fusion between the molded optical element and the mold member, and also to prevent the molding material and the molded optical element from being crushed.

【0009】[0009]

【発明が解決しようとする課題】しかし、特開平1−3
15447号公報の方法においても、ガラスからの揮発
物により型が汚れたり、そのまま続けて成形を行なうと
汚れが成形品に移ったりするため、型を頻繁にクリーニ
ングする必要があり、更なる改良が望まれていた。
[Problem to be solved by the invention] However, JP-A-1-3
Even in the method of Publication No. 15447, the mold gets dirty due to volatile matter from the glass, and if molding continues, the dirt transfers to the molded product, so the mold needs to be cleaned frequently, and further improvements are needed. It was wanted.

【0010】従って、本発明の目的は、ガラス成分の揮
発を抑制し成形品と型の汚れを防止したプレス成形用ガ
ラス素材の製造方法、及び該方法により得られたガラス
素材を用いた光学素子の製造方法を提供することにある
Therefore, the objects of the present invention are to provide a method for producing a glass material for press molding that suppresses the volatilization of glass components and prevents staining of molded products and molds, and an optical element using the glass material obtained by the method. The purpose of this invention is to provide a method for manufacturing the same.

【0011】[0011]

【課題を解決するための手段】本発明に従って、光学素
子のプレス成形に用いるガラス素材を製造する方法にお
いて、ガラス素材を浸漬した後減圧下または乾燥雰囲気
下で加熱することを特徴とするプレス成形用ガラス素材
の製造方法、及び該方法により得られたガラス素材を用
いた光学素子の製造方法が提供される。
[Means for Solving the Problems] According to the present invention, in a method for manufacturing a glass material used for press molding of an optical element, the glass material is immersed and then heated under reduced pressure or in a dry atmosphere. A method of manufacturing a glass material for use in glass materials, and a method of manufacturing an optical element using the glass material obtained by the method are provided.

【0012】本発明においては、成形品と型部材との密
着力を低減し融着の発生を防止し、しかも成形品表面で
のマイクロクラックを抑制し成形品の破砕を防止し、更
にガラス成分の揮発を抑制し成形品と型の汚れを防止す
ることができる。
In the present invention, the adhesion between the molded product and the mold member is reduced to prevent the occurrence of fusion, and microcracks on the surface of the molded product are suppressed to prevent the molded product from being crushed. It is possible to suppress the volatilization of and prevent staining of molded products and molds.

【0013】以下本発明をより詳細に説明する。まず、
本発明における、密着力低減とマイクロクラックの抑制
、及びガラス揮発成分の低減のメカニズムを述べる。 ケイ酸塩ガラスを酸に浸漬すると、ガラス表面から酸に
可溶な成分が陽イオン(Ba2+,Li+ ,Na+ 
,K+ 等)となって溶け出し、代わりに酸の水素イオ
ンがガラス中に拡散して、陽イオンのイオン交換が起き
る。この結果、ガラス表面にSiO2 に富んだ多孔性
の水和層が形成される。次いで、減圧下または乾燥雰囲
気下で加熱すると、表面の水和層で脱水縮合反応  S
i−OH  +  Si−OH  →  Si−O−S
i  が起こり、Si−O−Siの網目構造が生成する
。これにより、ガラス表面には、表面に向かって酸可溶
成分が徐々に減少した、SiO2に富む緻密なガラス層
が形成される。
The present invention will be explained in more detail below. first,
The mechanisms of reducing adhesion, suppressing microcracks, and reducing glass volatile components in the present invention will be described. When silicate glass is immersed in acid, acid-soluble components from the glass surface are converted into cations (Ba2+, Li+, Na+
, K+, etc.), and hydrogen ions from the acid diffuse into the glass instead, causing ion exchange of cations. As a result, a porous hydrated layer rich in SiO2 is formed on the glass surface. Then, when heated under reduced pressure or in a dry atmosphere, a dehydration condensation reaction occurs in the surface hydration layer.
i-OH + Si-OH → Si-O-S
i occurs, and a Si-O-Si network structure is generated. As a result, a dense glass layer rich in SiO2 is formed on the glass surface, with acid-soluble components gradually decreasing toward the surface.

【0014】また、ケイ酸塩ガラスのガラス転移点Tg
はSiO2 単味(石英ガラス)が最も高く、これにア
ルカリ等の網目構造修飾酸化物が加わるにつれてTgは
低下する。従って、本発明によるプレス成形用ガラス素
材は、表面に近付くほどTgが高くなっており、この結
果、成形時におけるガラスと型の密着力が低下し融着が
抑制される。もちろん、加熱の際にガラス表面の水の除
去とマイクロクラックの低減も伴なうので、型酸化防止
による融着抑制効果及びガラスの破砕防止効果もある。 更に、酸浸漬の際に溶出する成分はSiO2に比べて成
形時に揮発しやすい成分であり、本発明ではプレス成形
用ガラス素材の表面についてこれらの成分を予め低減し
ているため、成形品や型表面に付着して汚れることを防
止できる。
[0014] Furthermore, the glass transition point Tg of silicate glass
Tg is highest for SiO2 alone (silica glass), and as network structure modifying oxides such as alkali are added to this, Tg decreases. Therefore, in the glass material for press molding according to the present invention, the Tg becomes higher as it approaches the surface, and as a result, the adhesion between the glass and the mold during molding decreases and fusion is suppressed. Of course, since heating also involves removing water from the glass surface and reducing microcracks, there is also an effect of suppressing fusion by preventing mold oxidation and an effect of preventing glass from breaking. Furthermore, the components eluted during acid immersion are components that easily volatilize during molding compared to SiO2, and in the present invention, since these components are reduced in advance on the surface of the glass material for press molding, molded products and molds Prevents it from sticking to the surface and getting dirty.

【0015】[0015]

【実施例】以下、図面に基づき実施例を示して本発明を
説明する。 [実施例1]図1は本発明により得られたプレス成形に
用いるガラス素材の断面図であり、1はガラス素材内部
、2は表面改質層、3はコバ部、4,5は光学的機能面
である。図2は図1のA−A´断面での、表面層の深さ
方向の元素濃度を示す。
[Embodiments] The present invention will be explained below by showing embodiments based on the drawings. [Example 1] Figure 1 is a cross-sectional view of a glass material used for press molding obtained according to the present invention, where 1 is the inside of the glass material, 2 is a surface modified layer, 3 is an edge portion, and 4 and 5 are optical parts. It's functional. FIG. 2 shows the element concentration in the depth direction of the surface layer in the AA' cross section of FIG.

【0016】図3は本発明のガラス素材の製造方法の工
程図である。まず、図3に示すSK12(オハラ製)基
体30を酸処理用治具にセットし、水洗槽(1)20,
水洗槽(2)21で洗浄後、3N硝酸処理槽22で3分
間浸漬処理してガラス表面にSiO2 に富む多孔性の
水和層(酸処理層)31を形成した。その後、水洗槽(
3)23,水洗槽(4)24で洗浄後、IPAベーパー
槽25に入れ次いで引上げ、表面の溶剤を乾燥・除去し
た。
FIG. 3 is a process diagram of the method for manufacturing the glass material of the present invention. First, the SK12 (manufactured by Ohara) substrate 30 shown in FIG. 3 is set in an acid treatment jig, and the washing tank (1) 20,
After cleaning in a water washing tank (2) 21, the glass was immersed in a 3N nitric acid treatment tank 22 for 3 minutes to form a porous hydration layer (acid treatment layer) 31 rich in SiO2 on the glass surface. After that, the washing tank (
3) After washing in 23 and water washing tank (4) 24, it was placed in an IPA vapor tank 25 and then pulled up to dry and remove the solvent on the surface.

【0017】このガラス基体30の表面には酸処理で生
成したSiO2 に富む多孔性の水和層31がそのまま
残っており、その後減圧下または乾燥雰囲気下で加熱可
能な電気炉を用い、10−2Torrの減圧下で400
℃,4時間熱処理した。以上の処理を行なったガラス基
体の表面には図2に示すようにガラス表面に向かって酸
可溶成分が減少したSiO2 に富む緻密な表面改質層
2が形成された。
A porous hydrated layer 31 rich in SiO2 generated by the acid treatment remains on the surface of the glass substrate 30, and is then heated using an electric furnace capable of heating under reduced pressure or in a dry atmosphere. 400 under a vacuum of 2 Torr
It was heat-treated at ℃ for 4 hours. As shown in FIG. 2, a dense surface-modified layer 2 rich in SiO2 was formed on the surface of the glass substrate subjected to the above treatment, with acid-soluble components decreasing toward the glass surface.

【0018】次に、以下の様にして成形時におけるガラ
スと型の密着力を測定した。予め加圧、加熱下でプレス
成形したガラス素材と型を、歪点と屈伏点の間の温度に
保ち、ガラス素材と上下いずれか一方の型を引離すのに
要する力をロードセルにより求めた。このとき形状因子
を除くため金型は平板を用いた。
Next, the adhesion between the glass and the mold during molding was measured as follows. The glass material and mold, which had been press-molded in advance under pressure and heat, were kept at a temperature between the strain point and the yield point, and the force required to separate the glass material from either the upper or lower mold was determined using a load cell. At this time, a flat plate was used as the mold to eliminate the shape factor.

【0019】次に、成形試験を行なった。SK12ガラ
スをφ10,第1面15R,第2面32Rの両凸レンズ
に研磨した後、本発明のプレス成形用ガラス素材の製造
方法に従って表面処理を施した。こうして得られたガラ
ス素材を、形状のわずかに異なる非球面金型によりプレ
ス成形を行なった。
Next, a molding test was conducted. After polishing SK12 glass into a biconvex lens with a diameter of 10 mm, a first surface 15R, and a second surface 32R, surface treatment was performed according to the method for manufacturing a glass material for press molding of the present invention. The glass material thus obtained was press-molded using an aspherical mold with a slightly different shape.

【0020】表1に各種の表面処理を行なって得られた
ガラス素材の密着力、成形時の融着ワレ頻度、型クリー
ニング間隔を示す。   密着力についてみると、従来例は未処理に比べて余
り改善されていない。しかし、ガラス表面の水分除去の
結果、型酸化防止による融着抑制効果があり、また表面
のマイクロクラックの減少によりガラスの強度アップひ
いてはワレ防止効果があった。この結果、従来例では融
着ワレ頻度が未処理の24%に対し14%に低減された
。 これに対し、実施例1では上記融着ワレ防止効果に加え
て、ガラスと型の密着力が従来例の0.28kgf/m
m2 に比べて0.17kgf/mm2 に減少したこ
とを反映して融着ワレ頻度も14%から8%にまで減少
した。
Table 1 shows the adhesion strength of glass materials obtained by various surface treatments, the frequency of fusion cracking during molding, and the mold cleaning interval. Regarding adhesion, the conventional example is not much improved compared to the untreated one. However, as a result of removing moisture from the glass surface, there was an effect of suppressing fusion by preventing mold oxidation, and the reduction of microcracks on the surface increased the strength of the glass and also had an effect of preventing cracking. As a result, in the conventional example, the frequency of fusion cracking was reduced to 14%, compared to 24% in the untreated case. On the other hand, in Example 1, in addition to the above-mentioned fusion crack prevention effect, the adhesion force between the glass and the mold was 0.28 kgf/m compared to the conventional example.
Reflecting the decrease in 0.17 kgf/mm2 compared to m2, the frequency of fusion cracks also decreased from 14% to 8%.

【0021】次に、型汚れをクリーニングする間隔は、
従来例は未処理に比べてほとんど改善されていない。こ
れに対し、実施例1では従来例の33ショットから72
ショトと2倍以上に延びていることが分かる。
Next, the interval for cleaning the mold stains is as follows:
The conventional example shows almost no improvement compared to the untreated one. On the other hand, in Example 1, there are 72 shots compared to 33 shots in the conventional example.
It can be seen that it is more than twice as long as the shot.

【0022】[実施例2]電気炉における加熱条件を湿
度10%,400℃,12時間とする他は、実施例1と
同一条件で密着力を測定し、また両凸レンズの成形試験
を行なった。表1に示したように、密着力、融着ワレ頻
度、型クリーニング間隔とも実施例1とほぼ同等の結果
が得られた。
[Example 2] Adhesion was measured under the same conditions as in Example 1, except that the heating conditions in the electric furnace were 10% humidity, 400°C, and 12 hours, and a molding test of a biconvex lens was conducted. . As shown in Table 1, almost the same results as Example 1 were obtained in terms of adhesion, frequency of fusion cracking, and mold cleaning interval.

【0023】尚、本発明を適用可能なガラスとしてはS
K12に限らず、SiO2 を含む硝材であればよい。 また、酸処理用の酸としては硝酸、塩酸、硫酸、酢酸等
がガラス組成に応じて使用できる。SK12ではBaを
溶出するためには硫酸は好ましくはない。処理層の厚さ
は薄過ぎると効果が小さく、厚過ぎると処理層自体が割
れて成形品表面に微小なクラックを発生することもある
ため、成形品の形状に合わせ、ガラス素材の変形量に合
わせて決めることが好ましい。
[0023] The glass to which the present invention can be applied is S
It is not limited to K12, and any glass material containing SiO2 may be used. Further, as the acid for acid treatment, nitric acid, hydrochloric acid, sulfuric acid, acetic acid, etc. can be used depending on the glass composition. In SK12, sulfuric acid is not preferred for eluting Ba. If the thickness of the treated layer is too thin, the effect will be small, and if it is too thick, the treated layer itself may break and cause minute cracks on the surface of the molded product. It is preferable to decide on both.

【0024】[0024]

【発明の効果】以上説明したように、本発明によれば、
ガラス素材を酸浸漬した後、減圧下または乾燥雰囲気下
で加熱して、ガラス素材の表面層を改質することにより
、プレス成形中及び成形後のガラスと型との密着性を低
減し、かつ成形品表面のマイクロクラックを抑制するこ
とで、ガラスと型の融着を抑制し、ガラスの破砕すなわ
ちワレ防止効果が得られる。更に、酸浸漬時に、揮発し
易いガラス成分を溶出しているので、成形の際にガラス
成分の揮発が抑えられるので、成形品と型の汚れが防止
できる。
[Effects of the Invention] As explained above, according to the present invention,
After immersing the glass material in an acid, it is heated under reduced pressure or in a dry atmosphere to modify the surface layer of the glass material, thereby reducing the adhesion between the glass and the mold during and after press molding, and By suppressing microcracks on the surface of the molded product, it is possible to suppress fusion between the glass and the mold, and to prevent the glass from fracturing or cracking. Furthermore, since the easily volatile glass components are eluted during acid immersion, the volatilization of the glass components during molding can be suppressed, thereby preventing staining of the molded product and mold.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明により得られたプレス成形用ガラス素材
の模式断面図である。
FIG. 1 is a schematic cross-sectional view of a glass material for press molding obtained by the present invention.

【図2】図1のA−A´断面での、表面層の深さ方向の
元素濃度を示す図である。
2 is a diagram showing the element concentration in the depth direction of the surface layer in the AA′ cross section of FIG. 1. FIG.

【図3】本発明のプレス成形用ガラス素材の製造方法の
工程図である。
FIG. 3 is a process diagram of the method for manufacturing a glass material for press molding of the present invention.

【符合の説明】[Explanation of sign]

1  ガラス素材内部 2  表面改質層 3  コバ部 4,5  光学的機能面 20,21,23,24  水洗槽 22  酸処理槽 25  IPAベーパー槽 30  ガラス基体 31  水和層(酸処理層) 1 Inside the glass material 2 Surface modified layer 3 Edge part 4,5 Optical functional aspect 20, 21, 23, 24 Washing tank 22 Acid treatment tank 25 IPA vapor tank 30 Glass substrate 31 Hydration layer (acid treatment layer)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  光学素子のプレス成形に用いるガラス
素材を製造する方法において、ガラス素材を浸漬した後
減圧下または乾燥雰囲気下で加熱することを特徴とする
プレス成形用ガラス素材の製造方法。
1. A method for producing a glass material for press molding, which comprises immersing the glass material and then heating it under reduced pressure or in a dry atmosphere.
【請求項2】  請求項1記載の方法により得られたガ
ラス素材をプレス成形することを特徴とする光学素子の
製造方法。
2. A method for manufacturing an optical element, comprising press-molding a glass material obtained by the method according to claim 1.
JP7038791A 1991-03-12 1991-03-12 Produciton of forming glass material and optical element Pending JPH04285031A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7038791A JPH04285031A (en) 1991-03-12 1991-03-12 Produciton of forming glass material and optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7038791A JPH04285031A (en) 1991-03-12 1991-03-12 Produciton of forming glass material and optical element

Publications (1)

Publication Number Publication Date
JPH04285031A true JPH04285031A (en) 1992-10-09

Family

ID=13429985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7038791A Pending JPH04285031A (en) 1991-03-12 1991-03-12 Produciton of forming glass material and optical element

Country Status (1)

Country Link
JP (1) JPH04285031A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011225403A (en) * 2010-04-22 2011-11-10 Asahi Glass Co Ltd Method for manufacturing optical element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011225403A (en) * 2010-04-22 2011-11-10 Asahi Glass Co Ltd Method for manufacturing optical element

Similar Documents

Publication Publication Date Title
KR860001491B1 (en) Process for molding glass shapes of high precision
US4481023A (en) Process to mold precision glass articles
US8826695B2 (en) Method for manufacturing optical glass element
US4734118A (en) Process to mold precision glass articles
US4880453A (en) Method for making glass articles with defect-free surfaces and soluble glasses therefor
US3208839A (en) Method of shaping a glass article
WO2007114172A1 (en) Glass material for mold pressing and process for producing optical glass element
JPS632821A (en) Formation of glass optical element, mold therefor and manufacture of mold
US4969944A (en) Process to mold precision glass articles
US4854958A (en) Process to mold precision glass articles
US10364175B2 (en) Methods for producing shaped glass articles
JPH0151458B2 (en)
JPH04285031A (en) Produciton of forming glass material and optical element
JP2005213091A (en) Method for manufacturing glass optical element
JPH0231012B2 (en)
JP2739916B2 (en) Glass blank for manufacturing optical element and method for manufacturing optical element using the same
JPH021779B2 (en)
JPH0146453B2 (en)
JP2739913B2 (en) Glass blank for manufacturing optical element and method for manufacturing optical element using the same
JPH11343126A (en) Production of blank for press forming and production of optical element
JPH0651582B2 (en) Method of chemically strengthening float glass
JP2636010B2 (en) Glass material for molding and method for producing the same
JPH021778B2 (en)
JPH021780B2 (en)
JP2740453B2 (en) Manufacturing method of glass material for molding optical elements