JPH0651582B2 - Method of chemically strengthening float glass - Google Patents

Method of chemically strengthening float glass

Info

Publication number
JPH0651582B2
JPH0651582B2 JP4736885A JP4736885A JPH0651582B2 JP H0651582 B2 JPH0651582 B2 JP H0651582B2 JP 4736885 A JP4736885 A JP 4736885A JP 4736885 A JP4736885 A JP 4736885A JP H0651582 B2 JPH0651582 B2 JP H0651582B2
Authority
JP
Japan
Prior art keywords
glass
potassium
float
float glass
chemically strengthening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4736885A
Other languages
Japanese (ja)
Other versions
JPS61209930A (en
Inventor
眞一 荒谷
正昭 片野
武志 溝口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP4736885A priority Critical patent/JPH0651582B2/en
Publication of JPS61209930A publication Critical patent/JPS61209930A/en
Publication of JPH0651582B2 publication Critical patent/JPH0651582B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、薄板で大面積の建築、車輌用ガラス、什器等
各種成形品に利用されるソーダー石灰系フロートガラ
ス、とくに光デイスク等の電子材料分野に利用されるフ
ロートガラスの化学強化方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a soda-lime float glass, which is used for various moldings such as thin and large-area construction, glass for vehicles, fixtures, etc. The present invention relates to a method for chemically strengthening float glass used in the field of materials.

〔従来の技術〕[Conventional technology]

フロートガラスはいわゆる普通板ガラスに比べ表面平滑
性、平坦性、厚みの均一性等に優れているので建築、車
輌等の分野に加え電子材料分野、たとえば液晶やプラズ
マ等のデイスプレイなどに広く利用されつつある。
Float glass has excellent surface smoothness, flatness, thickness uniformity, etc., compared to so-called ordinary flat glass, so it is widely used not only in the fields of construction, vehicles, etc. but also in the field of electronic materials, such as liquid crystal and plasma displays. is there.

さらに最近の傾向として4mm厚以下の薄板ガラスが賞用
されており、厚みが薄いものほど強度の向上が望まれて
いる。
Furthermore, as a recent trend, thin glass with a thickness of 4 mm or less has been favored, and the thinner the thickness, the higher the strength is desired.

薄板ガラスを効果的に強化するためにアルカリイオン置
換による化学強化法を適用することは周知であるが、フ
ロートガラスにそのまま化学強化法を用いた場合、ガラ
スに反りが生じて(たとえば厚さ1mmにおいて0.45〜1.
25mm/300mmφ)平坦性を損ない、ことに光デイスク基
板等において要求される平坦度(たとえば厚さ1mmにお
いて0.2mm以下/300mmφ)を得ることができないもので
あつた。
It is well known that the chemical strengthening method by alkali ion substitution is applied to effectively strengthen thin glass, but when the chemical strengthening method is used as it is for float glass, the glass warps (for example, a thickness of 1 mm). At 0.45 to 1.
(25 mm / 300 mmφ) flatness was impaired, and in particular the flatness required for optical disk substrates and the like (for example, 0.2 mm or less / 300 mmφ at a thickness of 1 mm) could not be obtained.

反りの原因はガラスのフロート成形時の溶融金属、通例
Snの接触ガラス面への侵入の影響によるものと推察され
るが、この反りに対する画期的な対処法は見出されてい
ない。たとえばガラスのSn浸出面を研削、研摩したうえ
でアルカリイオン置換処理することが実施されているが
この方法では工程が煩雑あるのみならず割れや表面欠陥
が生じ易く、コストが高価なものとなるという問題があ
つた。
Warpage is caused by molten metal during glass float molding, usually
It is speculated that this is due to the effect of Sn entering the contact glass surface, but no epoch-making countermeasure against this warp has been found. For example, the Sn leaching surface of glass is ground and polished, and then alkali ion substitution treatment is carried out, but this method not only complicates the process but also easily causes cracks and surface defects, which makes the cost expensive. There was a problem.

なお特開昭47-39320号によればアルカリイオン置換に際
しまずガラス全面を所望のK/Na比のアルカリ塩と接触さ
せて後、さらにK/Na比のより高いアルカリ塩と接触させ
ることにより効果的に強度を発現することが開示されて
いるが、本発明の目的とするフロートガラスのSn接触面
と非接触面の相違に起因してアルカリイオン置換の際に
発生する反りを抑制するものとは全く異なる。
According to JP-A-47-39320, the effect is obtained by first contacting the entire surface of the glass with an alkali salt having a desired K / Na ratio and then further contacting it with an alkali salt having a higher K / Na ratio in the alkali ion substitution. Although it is disclosed that the strength of the float glass is expressed, it is intended to suppress the warpage that occurs during the alkali ion substitution due to the difference between the Sn contact surface and the non-contact surface of the float glass which is the object of the present invention. Is completely different.

〔発明が解決すべき問題点〕[Problems to be solved by the invention]

既述したように先行技術においてはフロートガラスをイ
オン置換する際に発生する反りを抑制するうえで研摩し
てもその工程が煩雑で高コストであつたり、あるいはカ
リウムを含む塩で二段階処理しても効果的に反りを抑制
できないという問題を有する。
As described above, in the prior art, the process is complicated and costly even if polishing is performed to suppress the warpage that occurs when the float glass is subjected to ion substitution, or a two-step treatment with a salt containing potassium is performed. However, there is a problem that the warp cannot be effectively suppressed.

本発明はフロートガラスをアルカリイオン置換によつて
強化するに際して反りの発生を抑制する新規な方法を提
供するものである。
The present invention provides a novel method for suppressing the occurrence of warpage when strengthening float glass by alkali ion substitution.

〔問題を解決するための手段〕[Means for solving problems]

本発明はソーダー石灰系ガラスのフロート成形時におけ
る溶融金属との接触面をカリウム含有溶融塩で被覆して
380℃ないし650℃、10分ないし70時間熱処理を施
し、次いでガラス全面をカリウム含有溶融塩と接触させ
て熱処理し強化させることを特徴とする。
In the present invention, the contact surface with molten metal during float forming of soda lime glass is coated with molten salt containing potassium.
It is characterized in that heat treatment is carried out at 380 ° C. to 650 ° C. for 10 minutes to 70 hours, and then the entire surface of the glass is brought into contact with a molten salt containing potassium to perform heat treatment to strengthen it.

フロート成形時において溶融ガラスは溶融金属(通例S
n)面に沿つてその上を延展して平滑面(以下ボトム面
という)を形成し、他方その上面は雰囲気に接して平滑
な自由表面(以下トツプ面という)を形成する。
At the time of float molding, molten glass is molten metal (usually S
n) extends along the surface to form a smooth surface (hereinafter referred to as the bottom surface), while its upper surface contacts the atmosphere to form a smooth free surface (hereinafter referred to as the top surface).

前記Snと接したボトム面においてはSnが10〜20μmの深
さにわたりガラス内に浸入する。このボトム面へのSnの
浸入に伴ないガラス中のソーダーイオンをはじめとする
他の成分は相対的に低減することが推測される。
On the bottom surface in contact with Sn, Sn penetrates into the glass to a depth of 10 to 20 μm. It is presumed that other components such as soda ions in the glass are relatively reduced due to the infiltration of Sn into the bottom surface.

ところでフロートガラスをそのままアルカリイオン置換
により強化を施したものはトツプ面側が膨張し該トツプ
面側が凸になる反りが発生することが明らかであるが、
これは上述したようなボトム面へのSnの浸入によりボト
ム面でのアルカリイオン置換が抑制され、一方トツプ面
側のアルカリイオン置換は抑制されず、しかも置換した
アルカリイオン半径が大であることがその一因となつて
いるであろうことが推察される。
By the way, it is clear that when the float glass is strengthened by alkali ion substitution as it is, a warp occurs in which the top surface side expands and the top surface side becomes convex,
This is because the alkali ion substitution on the bottom surface is suppressed by the infiltration of Sn into the bottom surface as described above, while the alkali ion substitution on the top surface side is not suppressed, and the substituted alkali ion radius is large. It is speculated that this may be one of the causes.

本発明はこの点に鑑みて為されたものであり、まずフロ
ートガラスのボトム面におけるソーダーイオンの一部を
イオン半径の大なるカリウムイオンにより置換すべくカ
リウム含有溶融塩で被覆、熱処理することによりボトム
面側が凸になる反りを形成させ、次いでガラス全面のソ
ーダーイオンをよりイオン半径の大なるイオン、実用上
カリウムイオンにより置換して強化するに際し、必然的
に生ずべきトツプ面側が凸になる反りを前記ボトム面側
が凸になる反りにより相殺し、反りのない化学強化ガラ
スを製造しようとするものである。
The present invention has been made in view of this point, first by coating a portion of the soda ions on the bottom surface of the float glass with potassium ions having a large ionic radius to replace the potassium-containing molten salt, by heat treatment When forming a warp that makes the bottom surface convex, and then replacing soda ions on the entire surface of the glass with ions having a larger ionic radius, potassium ions in practice, and strengthening, the top surface side, which should inevitably occur, becomes convex The warp is offset by the warp in which the bottom surface side is convex, and a chemically strengthened glass having no warp is manufactured.

フロートガラスのボトム面をカリウム含有溶融塩で被
覆、熱処理する方法は特定されるものではないが、たと
えばカリウムの硝酸塩、硫酸塩、リン酸塩あるいはこれ
らの混合塩浴中にガラスを浸漬し、直ちにガラスを引上
げてガラスを被覆したカリウム塩が冷却固化して後、ト
ツプ面を被覆したカリウム塩を水洗除去し、次いで乾燥
の後予め所定温度に加熱した電気炉内にガラスを配置し
所定時間加熱する。前記温度、時間はボトム面における
アルカリイオン置換が効率的かつ過不足なく行え、また
ガラスに変形を与えない範囲、すなわち380℃〜650℃、
10分〜70時間が適当である。すなわち温度が380℃
未満ではガラスのボトム面におけるカリウムイオン置換
が不充分であり、したがつて反り抑制効果が殆どなく、
650℃を超えるとガラスに変形や白濁を生じ易くかつ平
滑性を損う。処理時間は前記温度と関係し10分未満で
は温度は650℃以上を必要とするが、一方前述の欠陥を
伴なうので好ましくない。また70時間以上ではボトム
面でのカリウムイオン置換が進行し過ぎてボトム面側に
凸の反りが著しくなり、後の化学強化処理においてもこ
の反りを相殺し得ないし、経済上不利となる。その後ガ
ラスを炉から取出し、冷却、水洗、乾燥する。
The method of coating the bottom surface of the float glass with a molten salt containing potassium and heat treatment is not specified, but for example, the glass is immersed in a bath of potassium nitrate, sulfate, phosphate or a mixed salt thereof and immediately After pulling up the glass and cooling and solidifying the potassium salt coating the glass, the potassium salt coating the top surface is washed away with water, and after drying, the glass is placed in an electric furnace heated to a predetermined temperature and heated for a predetermined time. To do. The temperature, the time is the range in which the alkali ion substitution on the bottom surface can be performed efficiently and without excess or deficiency, and the glass is not deformed, that is, 380 ° C to 650 ° C.
10 minutes to 70 hours is suitable. That is, the temperature is 380 ℃
If less than, the potassium ion substitution on the bottom surface of the glass is insufficient, therefore there is almost no warp suppressing effect,
If it exceeds 650 ° C, the glass tends to be deformed or clouded and the smoothness is impaired. The treatment time is related to the above temperature, and if it is less than 10 minutes, the temperature needs to be 650 ° C. or higher, but on the other hand, it is not preferable because it involves the aforementioned defects. Further, if it is longer than 70 hours, the substitution of potassium ions on the bottom surface proceeds too much, and the convex warpage becomes remarkable on the bottom surface side, which cannot be offset even in the subsequent chemical strengthening treatment, which is economically disadvantageous. After that, the glass is taken out of the furnace, cooled, washed with water and dried.

得られたガラスは−0.03mm〜0.45mm/300mmφボトム面
側が凸になつている。
The glass obtained has a convex bottom surface side of -0.03 mm to 0.45 mm / 300 mmφ.

以上の処理を行つて後フロートガラス全面にわたりカリ
ウムによりイオン置換しガラス全面に表面圧縮層を形成
すべく処理する。
After the above treatment, the entire surface of the post-float glass is subjected to ion substitution with potassium to form a surface compression layer on the entire surface of the glass.

この処理は従来公知の方法を採用し、たとえば500℃付
近の硝酸カリ浴中に30分〜数時間ガラスを浸漬するこ
とにより十数〜数十μm程度のカリウム置換層が形成さ
れる。この操作の後ガラスは冷却、洗浄される。しかし
て反りが抑制され、化学強化されたガラスを得ることが
できる。
This treatment employs a conventionally known method, for example, by immersing the glass in a potassium nitrate bath at about 500 ° C. for 30 minutes to several hours, a potassium substitution layer of about several tens to several tens μm is formed. After this operation, the glass is cooled and washed. Thus, warp is suppressed and chemically strengthened glass can be obtained.

〔実施例〕〔Example〕

以下に実施の具体例について説明する。 Specific examples of implementation will be described below.

フロートガラスとしてサイズが300mmφ、厚みが1mmの
ものを準備し以下の各1例につき5枚づつ供した。400
℃の硝酸カリ浴中にガラスを浸漬して直ちに引上げて放
冷し、ガラスを被覆した硝酸カリが固化した後、トツプ
面の硝酸カリを水スプレーにより除去し乾燥した。
Float glass having a size of 300 mmφ and a thickness of 1 mm was prepared, and 5 sheets were provided for each of the following examples. 400
The glass was immersed in a potassium nitrate bath at 0 ° C. and immediately pulled up and allowed to cool. After the glass-coated potassium nitrate solidified, the potassium nitrate on the top surface was removed by a water spray and dried.

次いで以下の条件でガラスを電気炉内で加熱処理した。Next, the glass was heat-treated in the electric furnace under the following conditions.

実施例1;610℃、40分 実施例2;520℃、 6時間 実施例3;400℃、16時間 参考例1;360℃、44時間 その後ガラスを取出し冷却、水洗、乾燥して一部のガラ
スについては反り量を測定した。
Example 1; 610 ° C., 40 minutes Example 2; 520 ° C., 6 hours Example 3; 400 ° C., 16 hours Reference Example 1; 360 ° C., 44 hours After that, the glass was taken out, cooled, washed with water, dried and partially removed. The amount of warpage of the glass was measured.

さらにガラスをいずれも490℃の硝酸カリ浴中に150分浸
漬処理し、ガラスを取出して冷却、水洗した。
Further, each glass was immersed in a potassium nitrate bath at 490 ° C. for 150 minutes, taken out, cooled, and washed with water.

得られたガラスについて形状測定器(SLOAN社製DEKTAK
II)により反り量を、応力測定器により表面圧縮応力を
測定した。処理条件と反り量の関係については第1表に
示す。なお、表中参考例1は好適な処理温度条件範囲外
のものであり、参考例2は化学強化のみを施した場合、
参考例3は何ら処理を施さない生板ガラスの場合につい
て併せて示してある。
For the obtained glass, a shape measuring instrument (DEKTAK manufactured by SLOAN)
The amount of warpage was measured by II) and the surface compressive stress was measured by a stress measuring device. The relationship between the processing conditions and the amount of warpage is shown in Table 1. In the table, Reference Example 1 is out of the suitable treatment temperature condition range, and Reference Example 2 is a case where only chemical strengthening is applied,
Reference Example 3 also shows the case of a green sheet glass that is not subjected to any treatment.

第1表より解るように本発明によれば反り量が0.20mm/
300mmφ以下であつてフロート生板ガラスに近似してい
る。また表面圧縮応力はいずれも2600〜3300Kg/cm2の範
囲であつて従来の化学強化法によるものと同等である。
As can be seen from Table 1, according to the present invention, the warp amount is 0.20 mm /
It is less than 300mmφ and is similar to float green sheet glass. The surface compressive stress is in the range of 2600 to 3300 Kg / cm 2 , which is equivalent to that of the conventional chemical strengthening method.

〔発明の効果〕 以上述べたごとく本発明は従来フロートガラスを単に化
学強化した際に生ずる反りを抑制し、かつ表面圧縮応力
も従来法と同等であり、デイスプレイやデイスク基板等
電子材料分野をはじめ広く利用できるという著効を奏す
るものである。
[Advantages of the Invention] As described above, the present invention suppresses the warpage that occurs when the conventional float glass is simply chemically strengthened, and the surface compressive stress is also equivalent to that of the conventional method, and it is used in electronic materials fields such as displays and disk substrates. It has a remarkable effect that it can be widely used.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ソーダー石灰系ガラスのフロート成形時に
おける溶融金属との接触面をカリウム含有溶融塩で被覆
して380℃ないし650℃、10分ないし70時間熱処理を
施し、次いでガラス全面をカリウム含有溶融塩と接触さ
せて熱処理し強化させることを特徴とするフロートガラ
スの化学強化方法。
1. A surface of a soda-lime glass that comes into contact with molten metal during float forming is coated with a molten salt containing potassium, heat-treated at 380 ° C. to 650 ° C. for 10 minutes to 70 hours, and then the entire glass surface contains potassium. A method for chemically strengthening a float glass, which comprises heat-treating by contacting with molten salt to strengthen the glass.
JP4736885A 1985-03-12 1985-03-12 Method of chemically strengthening float glass Expired - Lifetime JPH0651582B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4736885A JPH0651582B2 (en) 1985-03-12 1985-03-12 Method of chemically strengthening float glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4736885A JPH0651582B2 (en) 1985-03-12 1985-03-12 Method of chemically strengthening float glass

Publications (2)

Publication Number Publication Date
JPS61209930A JPS61209930A (en) 1986-09-18
JPH0651582B2 true JPH0651582B2 (en) 1994-07-06

Family

ID=12773164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4736885A Expired - Lifetime JPH0651582B2 (en) 1985-03-12 1985-03-12 Method of chemically strengthening float glass

Country Status (1)

Country Link
JP (1) JPH0651582B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101534178B1 (en) * 2011-08-31 2015-07-06 니폰 덴키 가라스 가부시키가이샤 Toughened glass substrate and process for producing same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3840071A1 (en) * 1988-11-28 1990-05-31 Schott Glaswerke METHOD FOR EXCHANGING IONS ON GLASS OR GLASS CERAMICS
US9302938B2 (en) * 2012-10-05 2016-04-05 Asahi Glass Company, Limited Strengthened glass and methods for making using differential density
TWI633073B (en) * 2013-10-14 2018-08-21 康寧公司 Ion exchange processes and chemically strengthened glass substrates resulting therefrom
JP6066382B2 (en) * 2015-09-15 2017-01-25 日本電気硝子株式会社 Tempered float glass substrate and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101534178B1 (en) * 2011-08-31 2015-07-06 니폰 덴키 가라스 가부시키가이샤 Toughened glass substrate and process for producing same

Also Published As

Publication number Publication date
JPS61209930A (en) 1986-09-18

Similar Documents

Publication Publication Date Title
US4671814A (en) Method of strengthening glass article formed of float glass by ion exchange
JP6377053B2 (en) Glass plate and method for producing glass plate
US20090113935A1 (en) Process for producing glass bar
TWI756171B (en) Glass sheet capable of having controlled warping through chemical strengthening
JPH0651580B2 (en) Method of chemically strengthening float glass
US10399894B2 (en) Glass sheet and method for producing glass sheet
US20060075783A1 (en) Method for strengthening flat glass plate for display
CN106167357B (en) Method for producing chemically strengthened glass
JPH0660040B2 (en) Glass chemical strengthening method
US20190337844A1 (en) Method for producing chemically strengthened glass
CN107207335B (en) Method for producing glass substrate
JPH0651582B2 (en) Method of chemically strengthening float glass
JPS58115043A (en) Ion exchange of plate glass
CN111153603B (en) Glass material, method for producing glass material, and electronic device
KR102289741B1 (en) Chemically strengthened anti-glare glass and glass for anti-glare treatment
JPS61205639A (en) Chemical reinforcement of float glass
JP2019194143A (en) Manufacturing method of chemical strengthen glass
JPH0772093B2 (en) Chemically strengthened float glass
JPS62241845A (en) Method for holding glass plate
KR102565702B1 (en) Strengthened glass substrate manufacturing method and strengthened glass substrate
JPS62100458A (en) Method for chemically strengthening float glass
JPS62100460A (en) Method of chemically strengthening float glass
JPH0651581B2 (en) Method of chemically strengthening float glass
JPH0660038B2 (en) Method for chemically strengthening polished glass
JPH0768053B2 (en) Method of chemically strengthening float glass