JPH04285006A - Production of granular activated carbon - Google Patents

Production of granular activated carbon

Info

Publication number
JPH04285006A
JPH04285006A JP3105006A JP10500691A JPH04285006A JP H04285006 A JPH04285006 A JP H04285006A JP 3105006 A JP3105006 A JP 3105006A JP 10500691 A JP10500691 A JP 10500691A JP H04285006 A JPH04285006 A JP H04285006A
Authority
JP
Japan
Prior art keywords
activated carbon
powder
plastic
particles
granular activated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3105006A
Other languages
Japanese (ja)
Inventor
Eiji Tanaka
栄治 田中
Tetsuo Maeno
前野 徹郎
Akinori Nakayama
中山 彰規
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Chemical Co Ltd
Original Assignee
Kuraray Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Chemical Co Ltd filed Critical Kuraray Chemical Co Ltd
Priority to JP3105006A priority Critical patent/JPH04285006A/en
Publication of JPH04285006A publication Critical patent/JPH04285006A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a nice-looking granular activated carbon with its adsorptivity hardly deteriorated and without soiling the fingertip when the hand touches it by adding PE or PP powder to granular activated carbon and then irradiating the activated carbon with FIR. CONSTITUTION:A PE or PP powder having 1-50mum particle diameter is added to granular activated carbon and mixed. In this case, the powder is attracted on the activated carbon surface in uniform thickness by utilizing the static electricity generated between the activated carbon surface and the plastic powder surface. The activated carbon is then irradiated with FIR of 10-20mum wavelength to melt the plastic surface to form a coat, and the desired granular activated carbon coated with the transparent plastic film is obtained. Since the coat is formed on the surface in uniform thickness and the PE or PP film is highly diffusible to gases, the adsorptivity of the activated carbon is hardly decreased by the coat.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、表面がプラスチック皮
膜でコートされた活性炭粒子の製法に関するもので、更
に詳しく述べると、表面が透明なプラスチック皮膜でコ
ートされて、外観が美しく、手でふれても指先が汚れず
且つ吸着性が殆ど低下しない活性炭粒子の製法である。
[Industrial Application Field] The present invention relates to a method for producing activated carbon particles whose surface is coated with a plastic film. More specifically, the present invention relates to a method for producing activated carbon particles whose surface is coated with a transparent plastic film, so that they have a beautiful appearance and are easy to handle. This is a method for producing activated carbon particles that will not stain your fingertips and will hardly reduce its adsorption properties.

【0002】0002

【従来の技術】活性炭は高い吸着性を有するため多くの
用途に使用されているが、活性炭に手を触れたり、或い
は他の物体と接触したりすると、活性炭の微粉末によっ
て黒く汚れる欠点がある。このため従来から、多くの微
粉発生防止法が試みられている。これらの中主な方法と
して、活性炭の表面にヘキサエチルポリアクリレート(
HEPA)をコーティングする方法、種々のラテックス
或いは塗料等を表面に塗布する方法がある。
[Prior Art] Activated carbon is used in many applications because of its high adsorption properties, but it has the disadvantage that if you touch it or come into contact with other objects, it will stain black due to the fine powder of activated carbon. . For this reason, many methods for preventing the generation of fine powder have been attempted. Among these methods, the main method is to apply hexaethyl polyacrylate (
There are methods of coating the surface with HEPA) and methods of applying various latexes or paints to the surface.

【0003】しかし、活性炭の表面はミクロ的にかなり
激しい凹凸があるため、これらの方法では塗膜の厚さが
不均一になることが避けられず、微粉の発生を完全に防
止するためには、塗布量を相当多くする必要があった。 従って、活性炭の吸着性の低下が著しい欠点が指摘され
ていた。
[0003] However, since the surface of activated carbon has quite severe microscopic irregularities, these methods inevitably result in uneven coating film thickness, and in order to completely prevent the generation of fine particles, it is necessary to , it was necessary to considerably increase the amount of coating. Therefore, it has been pointed out that activated carbon has a drawback in that its adsorptive properties are significantly reduced.

【0004】更にこれらのコーティング剤は接着性が高
いため、凹凸がある粒子の表面に塗膜を形成させる作業
が煩雑であり、塗膜の表面を平滑にすることが困難であ
り、外観が美しくないことも問題とされていた。
Furthermore, since these coating agents have high adhesive properties, the work of forming a coating film on the uneven surface of the particles is complicated, and it is difficult to smooth the surface of the coating film, making it difficult to achieve a beautiful appearance. The lack of one was also considered a problem.

【0005】[0005]

【発明が解決しようとする課題】活性炭粒子の表面を、
薄い均一な厚さのプラスチック皮膜でコートすることに
より、手で触れたり或いは他の物体と接触しても、指先
が黒く汚れたり微粉が発生することがなく、外観も美し
く、且つ吸着性の低下が殆どない活性炭粒子を提供しよ
うとするものである。
[Problem to be solved by the invention] The surface of activated carbon particles is
By coating with a thin, uniformly thick plastic film, even if you touch it with your hands or come into contact with other objects, your fingertips won't become black and dirty, and no fine powder will be generated, giving it a beautiful appearance and reducing the adsorption properties. The aim is to provide activated carbon particles with almost no carbon.

【0006】[0006]

【課題を解決するための手段】本発明者等は、活性炭に
プラスチック粉末をコートすることにより、微粉末の発
生を抑制する方法について検討した。その結果、プラス
チック微粉末を、摩擦による静電気を利用して活性炭表
面に吸着させた後、遠赤外線を照射してプラスチック粉
末を溶融してコートすることにより、吸着性能を殆ど低
下させることなく、微粉末の発生が防止できることを見
出した。更に、プラスチック微粉末の粒子径と吸着性の
関係について検討した結果、本発明に到達した。
[Means for Solving the Problems] The present inventors have studied a method of suppressing the generation of fine powder by coating activated carbon with plastic powder. As a result, by adsorbing fine plastic powder onto the surface of activated carbon using static electricity caused by friction, and then irradiating it with far infrared rays to melt and coat the plastic powder, we were able to achieve fine particles with almost no decrease in adsorption performance. It has been found that generation of powder can be prevented. Further, as a result of studying the relationship between the particle size and adsorption properties of fine plastic powder, the present invention was achieved.

【0007】すなわち、活性炭粒子に、中心粒子径1〜
50μm のポリエチレンまたはポリプロピレン粉末を
加えて混合し、その際活性炭表面とプラスチック粉末の
間に発生した静電気を利用してプラスチック粉末を活性
炭表面に均一な厚さに吸着せしめ、波長10〜20μm
 の遠赤外線を照射してプラスチック粉末を溶融してコ
ートすることを特徴とする、活性炭表面が透明なプラス
チック皮膜でコートされた活性炭粒子の製法である。
That is, the activated carbon particles have a center particle diameter of 1 to
50 μm polyethylene or polypropylene powder is added and mixed, and the static electricity generated between the activated carbon surface and the plastic powder is used to adsorb the plastic powder to the activated carbon surface to a uniform thickness, and the wavelength is 10 to 20 μm.
This is a method for producing activated carbon particles whose surface is coated with a transparent plastic film, which is characterized by melting and coating plastic powder by irradiating it with far infrared rays.

【0008】以下本発明について詳しく説明する。The present invention will be explained in detail below.

【0009】本発明に使用する活性炭は細孔構造を有す
る炭素材料で、通常1g当たり数100m2 或いはそ
れ以上の大きな比表面積を有し、非常に多くの物質に対
し高い吸着性を示す特異な性質を持っている。
The activated carbon used in the present invention is a carbon material with a pore structure, and has a large specific surface area of several 100 m2 or more per gram, and has the unique property of exhibiting high adsorption to a large number of substances. have.

【0010】活性炭の原料には、通常ヤシ殻または木材
等の炭化物或いは石炭が使用され、これらの原料を高温
で水蒸気または炭酸ガスで賦活して製造される。或いは
これらの炭素材料を塩化亜鉛、リン酸、濃硫酸等で処理
して作られる場合もある。活性炭の性質は原料または製
造方法により多少異なるが、どのような原料や方法で作
られた活性炭も本発明に使用出来る。また活性炭は使用
目的により破砕炭、造粒炭、顆粒炭或いは活性炭繊維、
活性炭フェルト、活性炭織物、活性炭シート等の多くの
形状にすることが出来る。どの様な形態の活性炭も本発
明に使用することが出来るが、余り粒子径が大きくない
造粒炭及び破砕炭、顆粒炭或いは活性炭繊維が好ましい
[0010] As raw materials for activated carbon, usually carbonized materials such as coconut shells or wood, or coal are used, and these raw materials are activated with steam or carbon dioxide gas at high temperatures to produce activated carbon. Alternatively, it may be made by treating these carbon materials with zinc chloride, phosphoric acid, concentrated sulfuric acid, etc. Although the properties of activated carbon differ somewhat depending on the raw material or production method, activated carbon produced by any raw material or method can be used in the present invention. Depending on the purpose of use, activated carbon can be crushed carbon, granulated carbon, granulated carbon, activated carbon fibers,
It can be made into many shapes such as activated carbon felt, activated carbon fabric, activated carbon sheet, etc. Any form of activated carbon can be used in the present invention, but granulated carbon, crushed carbon, granulated carbon, or activated carbon fibers whose particle size is not too large are preferred.

【0011】本発明の活性炭のコート剤に使用するプラ
スチックは、ポリエチレン及びポリプロピレンである。 ポリエチレンは、僅かに枝分かれ構造を含む線状高分子
化合物で、通常分子量6000以上のワックス状固体で
、融点が低く(軟化点が低いものは120 ℃程度) 
、極めて熱可塑性に優れ、化学的に安定で、絶縁性も高
く、その皮膜は湿度透過性は低いが、ガスの透過性が高
い性質を有するため、本発明には極めて適した性質を持
っている。
The plastics used in the activated carbon coating agent of the present invention are polyethylene and polypropylene. Polyethylene is a linear polymer compound with a slightly branched structure, and is usually a waxy solid with a molecular weight of 6,000 or more, and has a low melting point (low softening point is about 120 °C).
, has extremely excellent thermoplasticity, is chemically stable, and has high insulation properties, and its film has low moisture permeability but high gas permeability, so it has properties that are extremely suitable for the present invention. There is.

【0012】ポリエチレンの重合法は大別して、高圧法
、中圧法、低圧法に分けられるが、この中、高圧法は分
子量が低く、分子の枝分かれが多いため結晶性が低く、
熱可塑性に優れ、軟化点も低いため最も好ましい。
[0012] Polyethylene polymerization methods can be broadly divided into high pressure methods, medium pressure methods, and low pressure methods. Among these, the high pressure method has a low molecular weight and many molecular branches, so it has low crystallinity.
It is most preferred because it has excellent thermoplasticity and a low softening point.

【0013】ポリプロピレンは分子構造からも明らかな
様に、ポリエチレンに最も類似したポリマーで、ポリエ
チレン分子と同様に線状高分子であるが、側鎖にメチル
基を有するため、重合法によりその配置及び規則性が変
化して物性の変動も大きいが、融点は最も低い場合約1
50 ℃になり、熱可塑性その他の物性もポリエチレン
に類似しているため、本発明には極めて適した性質を持
っている。
As is clear from its molecular structure, polypropylene is a polymer most similar to polyethylene, and like polyethylene molecules, it is a linear polymer, but since it has a methyl group in its side chain, its arrangement and shape can be changed by the polymerization method. Although the regularity changes and the physical properties fluctuate greatly, the melting point is about 1 at the lowest.
50°C, and its thermoplasticity and other physical properties are similar to polyethylene, making it extremely suitable for the present invention.

【0014】これらのプラスチック粉末の中心粒子径は
1〜50μm の範囲内のものを使用する必要がある。 中心粒子径が1μm 以下になると活性炭の吸着性の低
下が大きくなる。これは中心粒子径が1μm 以下にな
ると相当多量の微粒子が含まれているため、活性炭のマ
クロポアー構造が閉塞されて、吸着性が低下するものと
考えられる。一方、中心粒子径が50μm以上になると
微粉発生防止効果が低下する。これは形成されたプラス
チック皮膜の厚さが不均一となり、部分的に極めて薄い
部分ができるためと考えられる。
[0014] These plastic powders must have a central particle diameter within the range of 1 to 50 μm. When the center particle diameter is 1 μm or less, the adsorptivity of activated carbon is greatly reduced. This is thought to be because when the center particle diameter is 1 μm or less, a considerable amount of fine particles are included, which causes the macropore structure of the activated carbon to become clogged, resulting in a decrease in adsorptivity. On the other hand, if the central particle diameter is 50 μm or more, the effect of preventing generation of fine powder decreases. This is thought to be due to the fact that the thickness of the formed plastic film is non-uniform and some parts are extremely thin.

【0015】この様な見地から、プラスチック粉末の中
心粒子径は5〜30μm がより好ましい。
From this point of view, the center particle diameter of the plastic powder is more preferably 5 to 30 μm.

【0016】これらのプラスチック粉末の添着量は、活
性炭の吸着性を低下させないためには少ない程好ましい
ことは言う迄もない。添着量は活性炭粒子の大きさによ
っても変わるため特に限定しないが、通常の大きさの粒
子の場合、100 重量部に対してはプラスチック粉末
は0.01〜3.0 重量部が好ましく、0.1 〜1
.0 重量部がより好ましい。
It goes without saying that it is preferable that the amount of these plastic powders impregnated is as small as possible in order not to reduce the adsorptivity of activated carbon. The amount of impregnation is not particularly limited as it varies depending on the size of the activated carbon particles, but in the case of particles of normal size, the plastic powder is preferably 0.01 to 3.0 parts by weight per 100 parts by weight, and 0.01 to 3.0 parts by weight of the plastic powder. 1 ~1
.. 0 parts by weight is more preferred.

【0017】次に、活性炭粒子にこれらのプラスチック
粉末をコーティングする方法について説明する。活性炭
に所定量のプラスチック粉末を加えてよく混合する必要
がある。両者を混合すると活性炭表面とプラスチック粉
末の摩擦によって静電気が発生し、プラスチック粉末が
活性炭表面に吸引されて吸着される。更に混合を継続す
ることにより、活性炭表面に吸着されているプラスチッ
ク粉末層の厚さは均一化される。
Next, a method of coating activated carbon particles with these plastic powders will be explained. It is necessary to add a certain amount of plastic powder to activated carbon and mix well. When the two are mixed, static electricity is generated due to friction between the activated carbon surface and the plastic powder, and the plastic powder is attracted and adsorbed to the activated carbon surface. By continuing to mix further, the thickness of the plastic powder layer adsorbed on the activated carbon surface becomes uniform.

【0018】ポリエチレン及びポリプロピレンは絶縁性
が極めて高い性質を持っている。炭素材料は一般にかな
り導電性を有するが、活性炭は賦活工程で炭素材料の導
電性を高めている不純物が大部分除去され、且つ細孔構
造よりなるポーラスな材質とあっているため、一般の炭
素材料と比較して導電性は大幅に低下している。従って
、活性炭の表面とプラスチック粉末の間には多量の静電
気が蓄積され、大きな吸引力が働くものと考えられる。
Polyethylene and polypropylene have extremely high insulating properties. Carbon materials generally have high electrical conductivity, but activated carbon has impurities that increase the electrical conductivity of carbon materials removed during the activation process, and is a porous material with a pore structure. The electrical conductivity is significantly reduced compared to the material. Therefore, it is thought that a large amount of static electricity is accumulated between the surface of the activated carbon and the plastic powder, and a large attraction force is exerted.

【0019】活性炭粒子とプラスチック粉末を混合する
ためには、通常の工業的方法、例えば、ミキサー、リボ
ンミキサー、スタティックミキサー、ボールミル、サン
プルミル、ニーダー等を使用することが出来る。
To mix the activated carbon particles and plastic powder, conventional industrial methods such as mixers, ribbon mixers, static mixers, ball mills, sample mills, kneaders, etc. can be used.

【0020】活性炭粒子とプラスチック粉末を混合しな
がら、或いは混合した後、波長10〜20μm の遠赤
外線を照射することにより、プラスチック粉末が溶融し
て活性炭表面にコートされる。表面にプラチスチック粉
末が吸着されている活性炭粒子に遠赤外線を照射すると
、ポリエチレン及びポリプロピレンは波長10〜20μ
m の遠赤外線領域に強い吸収バンドを有するため、赤
外線を吸収して加熱され、溶融して微粒子が相互に接着
され、フィルム状となって活性炭粒子の表面にコートさ
れる。
[0020] While or after mixing the activated carbon particles and the plastic powder, far infrared rays having a wavelength of 10 to 20 μm are irradiated to melt the plastic powder and coat the surface of the activated carbon. When activated carbon particles with plastic powder adsorbed on their surfaces are irradiated with far infrared rays, polyethylene and polypropylene have a wavelength of 10 to 20 microns.
Since it has a strong absorption band in the far infrared region of m , it absorbs infrared rays and is heated, melting and bonding the fine particles to each other, forming a film and coating the surface of the activated carbon particles.

【0021】活性炭粒子も表面を被覆しているプラスチ
ック粉末、或いは溶融して生成したフィルムを透過した
赤外線を吸収して加熱されるが、その度合いはプチスチ
ック粉末よりかなり低いため、活性炭の表面にコート層
が形成されるとき、両者の間にかなりの温度差が生じて
コート層と表面が完全に密着せず、ガスが活性炭の内部
に浸透し易い状態となる。本発明方法はこのような表面
構造と相まって、表面に生成されたコート層の厚さが均
一であり、更にポリエチレン及びポリプロピレンフィル
ムは、ガス透過性が高い性質を有するため、コートによ
る活性炭の吸着性低下の度合いは、極めて小さい特徴を
持っている。
[0021] Activated carbon particles are also heated by absorbing infrared rays that have passed through the plastic powder coating the surface or the film formed by melting, but the degree of heating is considerably lower than that of plastic powder, so it is difficult to coat the surface of activated carbon. When the layer is formed, a considerable temperature difference occurs between the two, and the coating layer and the surface do not come into complete contact with each other, making it easy for gas to penetrate into the inside of the activated carbon. Coupled with this surface structure, the method of the present invention allows the coating layer formed on the surface to have a uniform thickness, and since polyethylene and polypropylene films have high gas permeability, the adsorption of activated carbon by the coating is improved. The degree of decline is characterized by being extremely small.

【0022】また、プラスチック粉末は赤外線吸収バン
ドと一致した遠赤外線を照射され、高温になって溶融す
るため生成したコート層は透明で、表面が平滑で光沢が
あり美しい外観を持っている。
Furthermore, the plastic powder is irradiated with far-infrared rays that match the infrared absorption band and melts at a high temperature, so the coated layer formed is transparent, has a smooth and glossy surface, and has a beautiful appearance.

【0023】[0023]

【実施例】以下実施例を挙げて本発明を更に具体的に説
明する。
EXAMPLES The present invention will be explained in more detail with reference to Examples below.

【0024】(実施例1、比較例1)中心粒子径20μ
m のポリエチレン0.2 重量部と、粒子径32〜6
0メッシュ、比表面積1200m2/gのヤシ殻活性炭
100 重量部をミキサーに入れ10分間攪拌した後、
取り出すとプラスチックは殆ど活性炭に付着して剥離し
なかった。次に波長15μmの遠赤外線を照射しながら
更に5分間攪拌した。
(Example 1, Comparative Example 1) Center particle diameter 20μ
m of polyethylene 0.2 parts by weight and a particle size of 32 to 6
After putting 100 parts by weight of coconut shell activated carbon with 0 mesh and specific surface area of 1200 m2/g into a mixer and stirring for 10 minutes,
When taken out, most of the plastic adhered to the activated carbon and did not peel off. Next, the mixture was further stirred for 5 minutes while irradiating far infrared rays with a wavelength of 15 μm.

【0025】活性炭粒子に付着していたプラスチック粉
末は透明なコート層になり、冷却すると、ツルツルした
透明なコート層を有する活性炭が得られた。
The plastic powder adhering to the activated carbon particles became a transparent coating layer, and upon cooling, activated carbon having a smooth and transparent coating layer was obtained.

【0026】この活性炭の微粉量は0.0024mg/
cc であった。尚、微粉量は50ccのエチルアルコ
ールに試料約2gを入れ、30分間振とうした後、アル
コール液の吸光度より求めたものである。
[0026] The amount of fine powder of this activated carbon is 0.0024 mg/
It was cc. The amount of fine powder was determined from the absorbance of the alcohol solution after placing about 2 g of the sample in 50 cc of ethyl alcohol and shaking for 30 minutes.

【0027】比較のため、プラスチックコートをする前
の活性炭について微粉量を測定したところ、0.079
mg/ccであった(比較例1)。
For comparison, the amount of fine powder was measured on activated carbon before being coated with plastic, and it was found to be 0.079.
mg/cc (Comparative Example 1).

【0028】(比較例2)中心粒子径65μm のポリ
エチレン粒子を使用した以外は、実施例1と同じ条件で
プラスチックコートをした活性炭粒子を調製した。コー
ト層は実施例1で得られた粒子と比較してやや不透明で
あった。この活性炭の微粉量は0.01mg/cc で
あった。
(Comparative Example 2) Plastic-coated activated carbon particles were prepared under the same conditions as in Example 1, except that polyethylene particles with a center particle diameter of 65 μm were used. The coat layer was slightly more opaque than the particles obtained in Example 1. The amount of fine powder of this activated carbon was 0.01 mg/cc.

【0029】(実施例2)実施例1で作成した試料を内
容積60mlの浄水器カートリッジに充填し、原水塩素
濃度2ppmの液を1リットル/分で通水し、脱塩素能
力を測定した。家庭用浄水器協会法に基づく除去率80
%以上の通水倍数は、800 リットルであった。比較
のため、プラスチック微粉末をコーティングしない活性
炭について同様に測定したところ、通水倍数は815 
リットルであり、コート層による性能低下は殆どなかっ
た。
(Example 2) The sample prepared in Example 1 was filled into a water purifier cartridge with an internal volume of 60 ml, and a raw water solution having a chlorine concentration of 2 ppm was passed through the cartridge at a rate of 1 liter/min to measure the dechlorination ability. Removal rate 80 based on the Home Water Purifier Association Law
The water flow rate was 800 liters. For comparison, when activated carbon without coating with plastic fine powder was similarly measured, the water permeability factor was 815.
liter, and there was almost no deterioration in performance due to the coating layer.

【0030】(実施例3、比較例3)中心粒子径30μ
m のポリプロピレン0.5 重量部と、粒子径4〜6
メッシュ、比表面積1200m2/gのヤシ殻活性炭1
00 重量部をミキサーに入れ10分間攪拌した後、取
り出すとプラスチック粉末は殆ど活性炭に付着して剥離
しなかった。次に波長15μm の遠赤外線を照射しな
がら更に5分間攪拌した。
(Example 3, Comparative Example 3) Center particle diameter 30μ
m of polypropylene and a particle size of 4 to 6.
Mesh, coconut shell activated carbon 1 with specific surface area 1200m2/g
00 parts by weight was put into a mixer and stirred for 10 minutes, and when taken out, almost all the plastic powder adhered to the activated carbon and did not peel off. Next, the mixture was stirred for an additional 5 minutes while irradiating far infrared rays with a wavelength of 15 μm.

【0031】活性炭粒子に付着していたプラスチック粉
末は透明なコート層になり、冷却すると、ツルツルした
透明なコート層を有する活性炭が得られた。
The plastic powder adhering to the activated carbon particles became a transparent coat layer, and upon cooling, activated carbon having a smooth and transparent coat layer was obtained.

【0032】この活性炭の微粉量は0.0017mg/
cc であった。微粉量は実施例1と同様にして測定し
た。
[0032] The amount of fine powder of this activated carbon is 0.0017 mg/
It was cc. The amount of fine powder was measured in the same manner as in Example 1.

【0033】この本発明の活性炭に燐酸を10wt%添
着した後、この10g を脱臭機に充填し、1m3の箱
内に入れ、アンモニア除去速度を測定した。その結果を
図1に示す。
After impregnating the activated carbon of the present invention with 10 wt % of phosphoric acid, 10 g of this was filled into a deodorizer and placed in a 1 m 3 box, and the ammonia removal rate was measured. The results are shown in Figure 1.

【0034】(比較例3)比較のため、プラスチックコ
ートをする前の活性炭について、微粉量を測定したとこ
ろ、0.123mg/ccであった。また実施例1と同
様に、活性炭に燐酸を10wt%添着し、この10g 
を用いてアンモニア除去テストを行った。その結果を図
1に示す。
(Comparative Example 3) For comparison, the amount of fine powder was measured for activated carbon before being coated with plastic, and it was found to be 0.123 mg/cc. Similarly to Example 1, 10 wt% of phosphoric acid was impregnated on activated carbon, and 10 g of phosphoric acid was impregnated with activated carbon.
An ammonia removal test was conducted using The results are shown in Figure 1.

【0035】図1に示すように、プラスチック微粉末を
コートする前の活性炭も実施例1の活性炭の吸着速度と
殆ど変わらなかった。
As shown in FIG. 1, the adsorption rate of the activated carbon before being coated with the plastic fine powder was almost the same as that of the activated carbon of Example 1.

【0036】(比較例4)中心粒子径0.01μm の
ポリエチレン粒子を使用した以外は、実施例3と同じ条
件でプラスチックコートをした活性炭粒子を調製した。 この活性炭粒子に燐酸を10wt%添着した後、実施例
3と同じ条件でアンモニア除去速度を測定した。その結
果を図1に示す。吸着速度が大幅に低下していることが
認められる。
(Comparative Example 4) Plastic-coated activated carbon particles were prepared under the same conditions as in Example 3, except that polyethylene particles with a center particle diameter of 0.01 μm were used. After impregnating 10 wt % of phosphoric acid to the activated carbon particles, the ammonia removal rate was measured under the same conditions as in Example 3. The results are shown in Figure 1. It is observed that the adsorption rate is significantly reduced.

【0037】[0037]

【発明の効果】本発明の方法により、表面をポリエチレ
ン及びポリプロピレンでコートした活性炭は、吸着性の
低下が極めて少ない他、コート層が透明で、その厚さが
均一であるから、美しい外観を有する特徴を持っている
。従って、直接手を触れても指先が黒くならず、或いは
摩擦による磨耗で黒い埃が発生することがないため、従
来困難であった分野にも活性炭の用途を拡大することが
出来る。
Effects of the Invention: Activated carbon whose surface is coated with polyethylene and polypropylene by the method of the present invention has a beautiful appearance because the adsorption property is extremely little reduced and the coating layer is transparent and has a uniform thickness. It has characteristics. Therefore, the fingertips will not turn black even when touched directly, or black dust will not be generated due to abrasion due to friction, so activated carbon can be used in fields that were previously difficult to use.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】実施例3及び比較例3、4における、活性炭粒
子の放置時間と残存アンモニア濃度の関係を示す。
FIG. 1 shows the relationship between the standing time of activated carbon particles and the residual ammonia concentration in Example 3 and Comparative Examples 3 and 4.

【符号の説明】[Explanation of symbols]

1  実施例3 2  比較例3 3  比較例4 1 Example 3 2 Comparative example 3 3 Comparative example 4

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  活性炭粒子に、中心粒子径1〜50μ
m のポリエチレンまたはポリプロピレン粉末を加えて
混合し、その際活性炭表面とプラスチック粉末の間に発
生した静電気を利用してプラスチック粉末を活性炭表面
に均一な厚さに吸着せしめ、波長10〜20μm の遠
赤外線を照射してプラスチック粉末を溶融してコートす
ることを特徴とする、活性炭表面が透明なプラスチック
皮膜でコートされた活性炭粒子の製法。
[Claim 1] The activated carbon particles have a center particle diameter of 1 to 50μ.
m of polyethylene or polypropylene powder is added and mixed, and the static electricity generated between the activated carbon surface and the plastic powder is used to adsorb the plastic powder to a uniform thickness on the activated carbon surface, and far infrared rays with a wavelength of 10 to 20 μm are used. A method for producing activated carbon particles in which the surface of activated carbon is coated with a transparent plastic film, which is characterized by coating the activated carbon by irradiating it with melting plastic powder.
JP3105006A 1991-03-15 1991-03-15 Production of granular activated carbon Pending JPH04285006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3105006A JPH04285006A (en) 1991-03-15 1991-03-15 Production of granular activated carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3105006A JPH04285006A (en) 1991-03-15 1991-03-15 Production of granular activated carbon

Publications (1)

Publication Number Publication Date
JPH04285006A true JPH04285006A (en) 1992-10-09

Family

ID=14395991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3105006A Pending JPH04285006A (en) 1991-03-15 1991-03-15 Production of granular activated carbon

Country Status (1)

Country Link
JP (1) JPH04285006A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5853690A (en) * 1996-02-28 1998-12-29 Toyota Jidosha Kabushiki Kaisha Method for decomposing water using an activated carbon catalyst
EP1103522A1 (en) * 1999-11-23 2001-05-30 Westvaco Corporation Coated activated carbon
WO2006078270A3 (en) * 2004-05-26 2006-09-08 Milliken & Co Protective garment system having activated carbon composite with improved adsorbency
WO2006080933A3 (en) * 2004-05-26 2006-11-30 Milliken & Co Composite containing activated carbon and process for making the same
US7589034B2 (en) 2004-05-26 2009-09-15 Milliken & Company Treated activated carbon and process for making same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5853690A (en) * 1996-02-28 1998-12-29 Toyota Jidosha Kabushiki Kaisha Method for decomposing water using an activated carbon catalyst
EP1103522A1 (en) * 1999-11-23 2001-05-30 Westvaco Corporation Coated activated carbon
WO2006078270A3 (en) * 2004-05-26 2006-09-08 Milliken & Co Protective garment system having activated carbon composite with improved adsorbency
WO2006080933A3 (en) * 2004-05-26 2006-11-30 Milliken & Co Composite containing activated carbon and process for making the same
US7589034B2 (en) 2004-05-26 2009-09-15 Milliken & Company Treated activated carbon and process for making same

Similar Documents

Publication Publication Date Title
US5162286A (en) Method of producing granular activated carbon
US4296166A (en) Air filter of polyurethane mesh containing carbon adsorbent
EP1103522A1 (en) Coated activated carbon
HK1042448A1 (en) Modified photocatalyst sol
CN104446283A (en) Diatom ooze wall material capable of efficiently purifying air or resisting against bacteria or automatically humidifying and preparation method of diatom ooze wall material
CN107935618B (en) Ecological decoration diatom ooze-artificial sandstone composite board and preparation method thereof
JPH04285006A (en) Production of granular activated carbon
GB2099872A (en) Filter for gas or liquid separation and method of producing the same
CN106076251B (en) Lithium chloride-active carbon fiber felt solidification compound adsorbent and preparation method thereof
TW201325711A (en) Housing and method for manufacturing the housing
JP2000226207A (en) Production of activated charcoal and activated charcoal
JPH02233140A (en) Adsorbing material
CN2806521Y (en) Active carbon non-woven fabric
JPS6220847B2 (en)
Zhang et al. Environmentally friendly preparation of a strong basic anion exchange fibers and its application in sugar decolorization
JPH0280313A (en) Colored active carbon
DE1955935A1 (en) Flexible porous adsorbent material and process for its manufacture
Noritomi et al. Adsorption of α-chymotrypsin on plant biomass charcoal
Aber et al. Application of physicochemically prepared activated carbon fiber for the removal of basic blue 3 from water
TW200924968A (en) Functional foam structure composite fabric and its manufacturing method
CN108371940A (en) A kind of material and preparation method thereof for adsorbing PM2.5 particles in air
CN1307077A (en) Paint additive and its use
JPS5850127B2 (en) Manufacturing method of filter media
JPH01111441A (en) Functional powder supporting sheet
JPH0353459A (en) Activated carbon electrode