JPH04284914A - Flow rate setting method for flange water-cooling device - Google Patents

Flow rate setting method for flange water-cooling device

Info

Publication number
JPH04284914A
JPH04284914A JP4495391A JP4495391A JPH04284914A JP H04284914 A JPH04284914 A JP H04284914A JP 4495391 A JP4495391 A JP 4495391A JP 4495391 A JP4495391 A JP 4495391A JP H04284914 A JPH04284914 A JP H04284914A
Authority
JP
Japan
Prior art keywords
water
cooling
flange
nozzle
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4495391A
Other languages
Japanese (ja)
Other versions
JP2508927B2 (en
Inventor
Michiharu Hannoki
播木 道春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP3044953A priority Critical patent/JP2508927B2/en
Publication of JPH04284914A publication Critical patent/JPH04284914A/en
Application granted granted Critical
Publication of JP2508927B2 publication Critical patent/JP2508927B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide a flow rate setting method a flange cooling device to prevent a shape defect such as bending or buckling, etc., after cooling when shapes having flanges of H-shape steel or I-shape steel, etc., are manufactured by rolling. CONSTITUTION:By processing a controlling range of cooling capacity of a spray nozzle 2 at each step of a water cooling device 4 for a flange as a parallelogram formed of an injection-collision area S and a water flowing area F, the amount of water of the nozzle at each step is set.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、フランジ水冷装置の流
量設定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flow rate setting method for a flange water cooling device.

【0002】0002

【従来の技術】一般に、H形鋼やI形鋼等の断面形状が
複雑な形鋼を熱間圧延する場合、断面各部の肉厚差に起
因する断面内の温度差によって、冷却後に曲りや座屈等
の形状不良が生じることが知られている。
[Prior Art] Generally, when hot rolling steel sections with complex cross-sectional shapes, such as H-section steel and I-section steel, the temperature difference within the cross section caused by the difference in wall thickness at various parts of the cross section causes bending and bending after cooling. It is known that shape defects such as buckling occur.

【0003】そこで、この形状不良を防止するために、
熱間圧延中あるいは圧延後に厚肉部であるフランジを強
制的に水冷して、形鋼断面内の温度分布を均一化する方
法が行われている。
[0003] Therefore, in order to prevent this shape defect,
A method is used in which the thick-walled flange is forcibly cooled with water during or after hot rolling to uniformize the temperature distribution within the cross section of the steel section.

【0004】図8はH形鋼圧延ラインの一例であり、圧
延材は加熱炉5で加熱均熱された後、ブレークダウンミ
ル6で粗圧延され、次いで中間ユニバーサルミル7とエ
ッジングミル8で最終製品に近い寸法・形状まで圧延さ
れた後、仕上ユニバーサルミル9で整形される。そして
、その後H形鋼搬送ラインの両側にフランジ水冷装置4
でフランジ両面が強制的に水冷されることによって、断
面内の温度差は小さくなり、次工程で所定の長さに切断
された後、放冷される。
FIG. 8 shows an example of an H-shaped steel rolling line, in which the rolled material is heated and soaked in a heating furnace 5, then roughly rolled in a breakdown mill 6, and then final rolled in an intermediate universal mill 7 and an edging mill 8. After being rolled to a size and shape close to the product, it is shaped using a finishing universal mill 9. After that, flange water cooling devices 4 are installed on both sides of the H-beam conveyance line.
By forcibly cooling both sides of the flange with water, the temperature difference within the cross section is reduced, and in the next step, the flange is cut to a predetermined length and then left to cool.

【0005】フランジ水冷装置4としては、図9に示す
ように、スプレーノズルを多数個配置した多段ノズルヘ
ッダー3が用いられている。
As shown in FIG. 9, the flange water cooling device 4 uses a multistage nozzle header 3 in which a large number of spray nozzles are arranged.

【0006】この多段ノズルヘッダーにおける流量設定
方法に関しては、特開平2−92413号公報により開
示されているように、被冷却面全体を各段ノズルからの
冷却水噴射衝突面の冷却能力でもって評価する方法が採
られている。
Regarding the method of setting the flow rate in this multi-stage nozzle header, as disclosed in Japanese Patent Laid-Open No. 2-92413, the entire surface to be cooled is evaluated by the cooling capacity of the surface on which the cooling water jets from each stage nozzle collide. A method has been adopted to do so.

【0007】すなわち、予め各段のノズルから一定の水
量密度で噴射した時の冷却速度を基に、各段ノズルの噴
射領域ごとに実効水量密度を求め、この実効水量密度と
流下水が0の最上段の実効水量密度との比を、上方から
下方へ流下する水量密度と実際の水量密度との関数とし
て表すことにより、各段ノズルの水量を設定する方法で
ある。
That is, based on the cooling rate when a constant water density is injected from the nozzles of each stage, the effective water density is calculated for each injection area of each stage nozzle, and this effective water density is calculated when the flowing water is 0. This is a method of setting the water volume of each stage nozzle by expressing the ratio of the effective water volume density of the top stage as a function of the water volume density flowing downward from above and the actual water volume density.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、特開平
2−92413号公報により開示された方法は、ノズル
の段数が多く、しかもノズルの取付角度が同じ場合には
有効であるが、ノズルの段数が少ないたとえば2〜3段
冷却には、ノズルの取付角度も各段で異なるため、不向
きであることが判った。
[Problems to be Solved by the Invention] However, the method disclosed in JP-A-2-92413 is effective when the number of nozzle stages is large and the mounting angles of the nozzles are the same; It has been found that this method is unsuitable for a small number of cooling stages, for example, two to three stages, because the mounting angle of the nozzle is different for each stage.

【0009】すなわち、2〜3段冷却においては、各ノ
ズルの噴射領域内においてそのノズル自体の噴射水の流
下の影響が大きく、冷却面全体を噴射面として評価でき
ないためである。
That is, in two- to three-stage cooling, the influence of the flow of water jetted from each nozzle itself is large within the jetting area of each nozzle, and the entire cooling surface cannot be evaluated as the jetting surface.

【0010】したがって、本発明の主たる目的は、圧延
によってH形鋼やI形鋼等のフランジを有する形鋼を製
造する際、曲りや座屈等の形状不良の発生を防止し、か
つノズルの段数が少ないたとえば2〜3段冷却にも適用
できるフランジ冷却装置の流量設定方法を提供するもの
であり、さらに詳しくは、形鋼断面内の温度分布を均一
化するために、高精度でかつ簡便な冷却能力評価式でも
って各ノズルの水量を設定できるフランジ水冷装置の流
量設定方法を提供するものである。
[0010] Therefore, the main object of the present invention is to prevent the occurrence of shape defects such as bending and buckling when manufacturing a section steel having a flange such as an H section steel or an I section steel by rolling, and to prevent the formation of a nozzle. The present invention provides a flow rate setting method for a flange cooling device that can be applied to cooling with a small number of stages, for example, 2 to 3 stages. The present invention provides a flow rate setting method for a flange water cooling device in which the amount of water for each nozzle can be set using a cooling capacity evaluation formula.

【0011】[0011]

【課題を解決するための手段】上記課題は、フランジ面
が水平面に対してほぼ垂直に載置された形鋼に対向して
高さ方向多段に多数個冷却水噴射ノズルが配置されたフ
ランジ水冷装置によって、熱間圧延中あるいは圧延後に
前記形鋼のフランジ面を強制冷却する際の流量設定方法
であって、予め前記各段ノズルの水量と前記各段ノズル
より噴射した時の冷却水のフランジ面衝突域および流下
水を考慮した流水域における熱伝達率との関係を求めて
おき、前記各段ノズルの熱伝達率を前記衝突域と流水域
の関数として評価することによって、前記各段ノズルの
水量を各段ごとに順次設定することで解決できる。
[Means for solving the problem] The above problem is solved by a flange water cooling system in which a large number of cooling water injection nozzles are arranged in multiple stages in the height direction facing a section steel whose flange surface is placed almost perpendicular to a horizontal surface. A flow rate setting method for forcibly cooling the flange surface of the section steel during or after hot rolling using a device, the flow rate being determined in advance by determining the amount of water in each stage nozzle and the flange of the cooling water when injected from each stage nozzle. By determining the relationship between the heat transfer coefficient in the running water area considering the surface collision area and flowing water, and evaluating the heat transfer coefficient of each stage nozzle as a function of the collision area and the running water area, This can be solved by sequentially setting the amount of water for each stage.

【0012】0012

【作用】本発明者が、図1(B)に示すように、熱間圧
延後のH形鋼1のフランジ1fに対して高さ方向3段に
冷却水噴射ノズル2が配置されたフランジ水冷装置4に
よって、H形鋼1のフランジ1f面に冷却水を噴射し、
強制冷却を行ったところ、次のようなことが判った。
[Function] As shown in FIG. 1(B), the present inventor developed a flange water cooling system in which cooling water injection nozzles 2 are arranged in three stages in the height direction with respect to the flange 1f of the H-section steel 1 after hot rolling. Cooling water is injected onto the flange 1f surface of the H-shaped steel 1 by the device 4,
When forced cooling was performed, the following was found.

【0013】(1)垂直なフランジ面に衝突した噴射水
は、表面に沿う流下水となって下方へ流れるが、下方の
ノズルの噴射域Sの下には流れ込まず、下方の流水域F
に流れる。 (2)多段スプレー冷却において、図2に示すように、
冷却能力の指標である熱伝達率は、直接噴射水が当たる
噴射衝突域Sと流下水に流れる流水域Fとに区分できる
。 (3)各段ノズルの冷却能力制御範囲としては、図1(
A)に示すように、噴射衝突域Sと流水域Fとで形成さ
れる平行四辺形として扱うことができる。 上記実験結果より、本発明においては、各段スプレーノ
ズル2から噴射された冷却水のフランジ衝突域Sと上方
からの流下水のない流水域Fの熱伝達率αS,αF (
kcal/m2h℃)は図3および図4に示すように、
水量Qi (l/min ・本)の関数として整理でき
る。 αS =f(Qi )……(1) αF =g(Qi )……(2) 一方、上方からの流下水(ΣQ)の影響は、図5に示す
ように、流水域の熱伝達率倍数kに関し、流下水と当該
水量との比(ΣQ/Qi )で整理できる。 k=h(ΣQ/Qi )……(3) ただし、h;熱伝達率 そこで、上記の各式より、各段ノズルの冷却能力αi 
(kcal/m2h℃)は、搬送方向の各段ノズルの衝
突域および流水域の長さ比率をlS ,lF とすれば
次式で表すことができる。   αi =lS f(Qi )+lF g(Qi )
×h(ΣQ/Qi )……(4)      =F(Q
i )……(4)’、  Qi =F−1(αi )…
…(5)すなわち、各段ノズルでの目標冷却能力として
各々の熱伝達率αi が与えられれば、(5)式より上
段から順次各段ノズルの水量を設定することができる。
(1) The jetted water that collides with the vertical flange surface becomes flowing water along the surface and flows downward, but it does not flow under the injection area S of the lower nozzle, but flows into the lower drainage area F.
flows to (2) In multi-stage spray cooling, as shown in Figure 2,
The heat transfer coefficient, which is an index of the cooling capacity, can be divided into a jet impingement area S where the jet water hits directly and a flow area F where the water flows downstream. (3) The cooling capacity control range of each stage nozzle is shown in Figure 1 (
As shown in A), it can be treated as a parallelogram formed by the jet collision area S and the flowing area F. From the above experimental results, in the present invention, the heat transfer coefficients αS, αF (
kcal/m2h℃) as shown in Figures 3 and 4.
It can be organized as a function of water quantity Qi (l/min · book). αS = f(Qi)...(1) αF = g(Qi)...(2) On the other hand, the influence of flowing sewage water (ΣQ) from above increases the heat transfer coefficient multiple of the flowing water area, as shown in Figure 5. Regarding k, it can be summarized by the ratio of flowing sewage water to the amount of water (ΣQ/Qi). k=h(ΣQ/Qi)...(3) where h: heat transfer coefficient. Therefore, from each of the above equations, the cooling capacity αi of each stage nozzle
(kcal/m2h°C) can be expressed by the following equation, assuming that the length ratio of the collision area and flowing area of each stage nozzle in the conveyance direction is lS and lF. αi = lS f (Qi ) + lF g (Qi )
×h(ΣQ/Qi)...(4) =F(Q
i)...(4)', Qi =F-1(αi)...
...(5) That is, if each heat transfer coefficient αi is given as the target cooling capacity of each stage nozzle, the water amount of each stage nozzle can be set sequentially from the upper stage using equation (5).

【0014】そして、その後上記各段ノズルの設定水量
に基づいて、各段ノズルから冷却水を噴射してH形鋼の
フランジを水冷することにより、H形鋼断面内の温度分
布を均一化することができるので、冷却後の曲りや座屈
等の形状不良の発生を防止することができる。
[0014] Then, based on the set water volume of each stage nozzle, cooling water is injected from each stage nozzle to water-cool the flange of the H-section steel, thereby making the temperature distribution within the cross section of the H-section steel uniform. Therefore, it is possible to prevent shape defects such as bending and buckling after cooling.

【0015】[0015]

【実施例】以下、本発明を図面に示す実施例によりさら
に具体的に説明する。本発明を実施するための圧延ライ
ンとしては、前述の図8に示す圧延ラインをそのまま適
用することとし、以下の条件でH形鋼のフランジの強制
水冷を実施した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be explained in more detail below with reference to embodiments shown in the drawings. As a rolling line for carrying out the present invention, the rolling line shown in FIG. 8 described above was applied as is, and forced water cooling of the flange of an H-section steel was carried out under the following conditions.

【0016】本発明に係るフランジ水冷装置4としては
、図1(A)、(B)に示すように、水平面に対しほぼ
垂直なフランジ1fに対し高さ方向に3段にスプレーノ
ズルを伏角γおよびひねり角δをもって配置し、スプレ
ーノズル2の上段の噴射角を40°、中段および下段の
噴射角を80°とした。また、水冷装置4の取付ピッチ
は、H形鋼の搬送方向において250mm毎の千鳥状配
列とし、高さ方向には75mmピッチ毎に取り付けた。 表1には、各段ノズルの取付角度を示す。また、ノズル
2…群とフランジ1f面との水平距離は200mmとし
た。
As shown in FIGS. 1A and 1B, the flange water cooling device 4 according to the present invention has spray nozzles arranged in three stages in the height direction with respect to the flange 1f, which is substantially perpendicular to the horizontal plane. The spray nozzle 2 was arranged with a twist angle δ, and the spray angle of the upper stage of the spray nozzle 2 was 40°, and the spray angle of the middle and lower stages were 80°. Moreover, the mounting pitch of the water cooling device 4 was a staggered arrangement every 250 mm in the transport direction of the H-section steel, and the mounting pitch was every 75 mm in the height direction. Table 1 shows the mounting angle of each stage nozzle. Further, the horizontal distance between the nozzle 2 group and the flange 1f surface was 200 mm.

【0017】[0017]

【表1】[Table 1]

【0018】次に、H形鋼のフランジ水冷に先立って、
本発明によるフランジ水冷装置の流量設定方法を説明す
る。なお、表2には、本実施例における目標停止温度を
725℃とし、各段における目標熱伝達率を予め計算に
より設定した。
Next, prior to water cooling the flange of the H-section steel,
A flow rate setting method for a flange water cooling device according to the present invention will be explained. In addition, in Table 2, the target stop temperature in this example is 725° C., and the target heat transfer coefficient at each stage is set by calculation in advance.

【0019】[0019]

【表2】[Table 2]

【0020】まず、フランジ水冷装置の流量の設定は、
上段ノズルの水量から求めた。   αi =lS f(Qi )+lF g(Qi )
×h(ΣQ/Qi )……(4)ここで、表1のノズル
条件より、 上段ノズルの衝突域の長さ比率lS =0.34上段ノ
ズルの流水域の長さ比率lF =0.66また、上段で
あることから流下水ΣQ=0より、流水域の熱伝達率倍
数k=h(ΣQ/Qi )=1.0また、上段ノズルの
水量と熱伝達率の関係から、衝突域の熱伝達率αS =
f(Qi )=15.4Q12.52 流水域の熱伝達
率αF =g(Qi )=145Q10.81 したが
って、上段ノズルの冷却能力は、α1 =5.24Q1
2.52 +95.7Q10.81 ……(6)(6)
式より、図6に示す図を表すことができるので、その結
果、 α1 =1500kcal/m2h ℃の水量はQ1 
=8l/min ・本が得られる。
First, the flow rate setting of the flange water cooling device is as follows.
It was determined from the water volume of the upper nozzle. αi = lS f (Qi ) + lF g (Qi )
×h(ΣQ/Qi)...(4) Here, from the nozzle conditions in Table 1, the length ratio of the collision area of the upper stage nozzle lS = 0.34 The length ratio of the flowing area of the upper stage nozzle lF = 0.66 Also, since it is in the upper stage, since the flowing water ΣQ = 0, the heat transfer coefficient multiple k = h (ΣQ/Qi) = 1.0 of the flowing water area. Also, from the relationship between the water volume of the upper stage nozzle and the heat transfer coefficient, the impact area Heat transfer coefficient αS =
f (Qi ) = 15.4Q12.52 Heat transfer coefficient of flowing water area αF = g (Qi ) = 145Q10.81 Therefore, the cooling capacity of the upper nozzle is α1 = 5.24Q1
2.52 +95.7Q10.81 ...(6)(6)
From the formula, the diagram shown in Figure 6 can be expressed, and as a result, α1 = 1500 kcal/m2h ℃ The water amount is Q1
=8l/min ・Books are obtained.

【0021】次に、中段ノズルの水量を上記と同様にし
て求める。
Next, the amount of water in the middle nozzle is determined in the same manner as above.

【0022】中段ノズルの衝突域の長さ比率lS =0
.6 中段ノズルの流水域の長さ比率lF =0.4衝突域の
熱伝達率αS =f(Qi )=2.0Q22.52 
流水域の熱伝達率αF =g(Qi )=875Q20
.27 したがって、中段ノズルの冷却能力は、  α
2 =1.2Q22.52 +350Q20.27 ×
h(8/Q2 )……(7)(7)式より、図6に示す
図を表すことができるので、その結果、 α2 =2500kcal/m2h ℃の水量はQ2 
=18l/min ・本が得られる。
[0022] Length ratio of the collision area of the middle nozzle lS = 0
.. 6 Length ratio of middle nozzle flow area lF = 0.4 Heat transfer coefficient of collision area αS = f (Qi ) = 2.0Q22.52
Heat transfer coefficient of flowing water area αF = g (Qi) = 875Q20
.. 27 Therefore, the cooling capacity of the middle nozzle is α
2 = 1.2Q22.52 +350Q20.27 ×
h(8/Q2)...(7) From equation (7), the diagram shown in Figure 6 can be expressed, so as a result, α2 = 2500kcal/m2h The amount of water at ℃ is Q2
=18l/min ・Books are obtained.

【0023】ちなみに、図5より流水域の熱伝達率倍数
k=h(8/18)=1.04が求まる。
Incidentally, from FIG. 5, the heat transfer coefficient multiple k=h(8/18)=1.04 of the flowing water area can be found.

【0024】そして最後に、下段ノズルの水量を上記と
同様にして求める。
Finally, the amount of water in the lower nozzle is determined in the same manner as above.

【0025】下段ノズルの衝突域の長さ比率lS =0
.43 下段ノズルの流水域の長さ比率lF =0.57衝突域
の熱伝達率αS =f(Qi )=1.1Q32.52
 流水域の熱伝達率αF =g(Qi )=746Q3
0.27 したがって、下段ノズルの冷却能力は、  
α3 =0.47Q32.52 +425Q30.27
 ×h(26/Q3 )……(8)(8)式より、図6
に示す図を表すことができるので、その結果、α3 =
1500kcal/m2h ℃の水量はQ3 =16l
/min ・本が得られる。
[0025] Length ratio lS of the collision area of the lower nozzle = 0
.. 43 Length ratio of lower nozzle flow area lF = 0.57 Heat transfer coefficient of collision area αS = f (Qi ) = 1.1Q32.52
Heat transfer coefficient αF = g (Qi ) = 746Q3
0.27 Therefore, the cooling capacity of the lower nozzle is
α3 =0.47Q32.52 +425Q30.27
×h(26/Q3)...(8) From equation (8), Figure 6
As a result, α3 =
The amount of water at 1500kcal/m2h ℃ is Q3 = 16l
/min ・You can get a book.

【0026】ちなみに、図5より流水域の熱伝達率倍数
k=h(26/16)=1.14が求まる。
Incidentally, from FIG. 5, the heat transfer coefficient multiple k=h(26/16)=1.14 of the flowing water area can be found.

【0027】なお、表2には、前述の各段ノズルにおけ
る目標熱伝達率とともに、上記方法により求められた本
発明法による流量設定値と従来法による流量設定値とを
示した。
Table 2 shows the target heat transfer coefficients for each stage nozzle described above, as well as the flow rate set values according to the present invention method and the flow rate set values according to the conventional method, which were determined by the above method.

【0028】なお、前記伏角(γ)およびひねり角(δ
)は、ウェブ面に冷却水が乗らないように、かつ冷却不
足、過冷却とならないようにその角度は決定されるが、
両者共30°以下であれば問題なくその目的を達成でき
る。また、ノズルの配置は、噴射角度、距離によって決
定されるが、千鳥状配置とすることが好ましい。さらに
、本実施例においては、上段から決定した実施例を示し
たが、必ずしも上段から順次決定する必要はない。
[0028] Note that the inclination angle (γ) and twist angle (δ
), the angle is determined to prevent cooling water from getting on the web surface and to prevent insufficient cooling or overcooling.
If both angles are 30 degrees or less, the purpose can be achieved without any problem. Further, the arrangement of the nozzles is determined by the spray angle and distance, but a staggered arrangement is preferable. Furthermore, although this embodiment has shown an example in which the determination is made from the top, it is not necessarily necessary to determine the determination sequentially from the top.

【0029】そして、これら本発明法および従来法によ
り設定された流量設定値を基に、ウェブ高さ550×フ
ランジ巾250×ウェブ厚さ9/フランジ厚22(単位
mm)のH形鋼の850℃のフランジ面を、約12秒間
搬送しながら、強制冷却した。その結果、図7に示すよ
うに、従来法においては、温度分布にかなりのバラツキ
が見られるのに対し、本発明法によれば、±10℃でほ
ぼ目標通りの停止温度を実現することができる。
Based on the flow rate setting values set by the method of the present invention and the conventional method, 850 The flange surface was forcibly cooled while being transported for about 12 seconds. As a result, as shown in Fig. 7, in the conventional method, there is considerable variation in temperature distribution, whereas in the method of the present invention, it is possible to achieve almost the target stop temperature within ±10°C. can.

【0030】[0030]

【発明の効果】以上のように本発明によれば、高精度で
かつ簡便な冷却能力評価式でもって各ノズルの水量を設
定でき、その結果冷却後のH形鋼断面内の温度分布を均
一化することができるので、曲りや座屈等の形状不良の
発生を防止することができる。
As described above, according to the present invention, the water volume of each nozzle can be set using a highly accurate and simple cooling capacity evaluation formula, and as a result, the temperature distribution within the cross section of the H-section steel after cooling is uniform. Therefore, occurrence of shape defects such as bending and buckling can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】(A)本発明の係る冷却制御のメカニズムを示
す図である。 (B)本発明法によるスプレーノズルの配置状態を示す
側面図である。
FIG. 1 (A) is a diagram showing a cooling control mechanism according to the present invention. (B) is a side view showing the arrangement of spray nozzles according to the method of the present invention.

【図2】衝突域と流水域の温度と熱伝達率の関係を示す
図である。
FIG. 2 is a diagram showing the relationship between the temperature and heat transfer coefficient of the collision area and the flowing water area.

【図3】衝突域における水量と熱伝達率の関係を示す図
である。
FIG. 3 is a diagram showing the relationship between the amount of water in the collision zone and the heat transfer coefficient.

【図4】流下水のない流水域における水量と熱伝達率の
関係を示す図である。
FIG. 4 is a diagram showing the relationship between the amount of water and the heat transfer coefficient in a flowing water area without running water.

【図5】流下水の影響を示す図である。FIG. 5 is a diagram showing the influence of flowing sewage.

【図6】熱伝達率と水量の関係を示す図である。FIG. 6 is a diagram showing the relationship between heat transfer coefficient and water amount.

【図7】圧延後のフランジ水冷前後の温度測定結果を示
す図である。
FIG. 7 is a diagram showing temperature measurement results before and after flange water cooling after rolling.

【図8】H形鋼の圧延ラインを示す概略図である。FIG. 8 is a schematic diagram showing a rolling line for H-section steel.

【図9】従来法によるスプレーノズルの配置状態を示す
側面図である。
FIG. 9 is a side view showing the arrangement of spray nozzles according to a conventional method.

【符号の説明】[Explanation of symbols]

1    H形鋼 1f  フランジ 2    スプレーノズル 3    冷却ヘッダー 4    フランジ水冷装置 5    加熱炉 6    ブレークダウンミル 7    中間ユニバーサルミル 8    エッジングミル 9    仕上ユニバーサルミル 1 H-beam steel 1f flange 2 Spray nozzle 3 Cooling header 4 Flange water cooling device 5 Heating furnace 6 Breakdown mill 7 Intermediate universal mill 8 Edging mill 9 Finishing universal mill

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  フランジ面が水平面に対してほぼ垂直
に載置された形鋼に対向して高さ方向多段に多数個冷却
水噴射ノズルが配置されたフランジ水冷装置によって、
熱間圧延中あるいは圧延後に前記形鋼のフランジ面を強
制冷却する際の流量設定方法であって予め前記各段ノズ
ルの水量と前記各段ノズルより噴射した時の冷却水のフ
ランジ面衝突域および流下水を考慮した流水域における
熱伝達率との関係を求めておき、前記各段ノズルの熱伝
達率を前記衝突域と流水域の関数として評価することに
よって、前記各段ノズルの水量を各段ごとに順次設定す
ることを特徴とするフランジ水冷装置の流量設定方法。
[Claim 1] A flange water cooling device in which a large number of cooling water injection nozzles are arranged in multiple stages in the height direction facing a section steel whose flange surface is placed substantially perpendicular to a horizontal plane.
A flow rate setting method for forcibly cooling the flange surface of the section steel during or after hot rolling, in which the amount of water in each stage nozzle and the flange surface collision area of the cooling water when injected from the each stage nozzle are determined in advance. By determining the relationship between the heat transfer coefficient in the flowing water area considering flowing water, and evaluating the heat transfer coefficient of each stage nozzle as a function of the collision area and the flowing water area, the water volume of each stage nozzle can be determined. A flow rate setting method for a flange water cooling device characterized by setting the flow rate sequentially for each stage.
JP3044953A 1991-03-11 1991-03-11 Flange water cooling device flow rate setting method Expired - Lifetime JP2508927B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3044953A JP2508927B2 (en) 1991-03-11 1991-03-11 Flange water cooling device flow rate setting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3044953A JP2508927B2 (en) 1991-03-11 1991-03-11 Flange water cooling device flow rate setting method

Publications (2)

Publication Number Publication Date
JPH04284914A true JPH04284914A (en) 1992-10-09
JP2508927B2 JP2508927B2 (en) 1996-06-19

Family

ID=12705854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3044953A Expired - Lifetime JP2508927B2 (en) 1991-03-11 1991-03-11 Flange water cooling device flow rate setting method

Country Status (1)

Country Link
JP (1) JP2508927B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0292413A (en) * 1988-09-29 1990-04-03 Nippon Steel Corp Forced cooling method for shape

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0292413A (en) * 1988-09-29 1990-04-03 Nippon Steel Corp Forced cooling method for shape

Also Published As

Publication number Publication date
JP2508927B2 (en) 1996-06-19

Similar Documents

Publication Publication Date Title
US4210288A (en) Cooling apparatus
JP3117590B2 (en) Method and apparatus for cooling H-section steel
JPH04284914A (en) Flow rate setting method for flange water-cooling device
RU2356949C2 (en) Device and method of steel strip cooling
JP6515362B1 (en) Steel material cooling device and method
JP4337157B2 (en) Steel plate cooling method and apparatus
WO2018073973A1 (en) Method and apparatus for cooling hot-rolled steel sheet
JPH0679333A (en) Method for cooling h-shape steel and its device and its line of mills
JPH0292413A (en) Forced cooling method for shape
JPH0450369B2 (en)
JP2019177387A (en) Draining device and draining method of cooling water for hot-rolled steel sheet
JP3552563B2 (en) H-section steel flange cooling device and flange cooling method
JPWO2018073973A1 (en) Method and apparatus for cooling hot-rolled steel sheet
JP7381873B2 (en) Manufacturing method of H-beam steel
JPH0516206Y2 (en)
JP2001219213A (en) Method for cooling wide flange shape
JPH10272509A (en) Method for cooling wide flange shape and cooling device
JPS6222241Y2 (en)
JP3418920B2 (en) H-section steel flange cooling system
JP3064900B2 (en) Shape control method for H-section steel
JP3190239B2 (en) Nozzle top cooling header tube for steel strip cooling
JPS60128220A (en) Method for controlling temperature of strip in cooling zone of continuous annealing furnace
JP2000190017A (en) Wide-flange shape steel flange cooling equipment
JP4752252B2 (en) H-shaped steel cooling method
JP2903988B2 (en) Cooling water control device for H-section steel inner surface