JPH0292413A - Forced cooling method for shape - Google Patents

Forced cooling method for shape

Info

Publication number
JPH0292413A
JPH0292413A JP24547488A JP24547488A JPH0292413A JP H0292413 A JPH0292413 A JP H0292413A JP 24547488 A JP24547488 A JP 24547488A JP 24547488 A JP24547488 A JP 24547488A JP H0292413 A JPH0292413 A JP H0292413A
Authority
JP
Japan
Prior art keywords
cooling
water
density
cooling water
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24547488A
Other languages
Japanese (ja)
Other versions
JPH0530523B2 (en
Inventor
Masao Kurokawa
黒川 征男
Maki Ida
真樹 井田
Hiroyasu Hayashibe
林部 博康
Hiroyuki Hasegawa
長谷川 博行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP24547488A priority Critical patent/JPH0292413A/en
Publication of JPH0292413A publication Critical patent/JPH0292413A/en
Publication of JPH0530523B2 publication Critical patent/JPH0530523B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Abstract

PURPOSE:To improve shape and quality of the shapes by setting density of cooling water of each cooling nozzle of plural numbers disposed lengthwise to cool the vertical flange surface of the shapes in a certain process. CONSTITUTION:The plural cooling water injecting nozzles 9 are disposed lengthwise opposing to the flange 1a vertical to the horizontal web 1b of the H shaped steel. By these nozzles 9, the shapes are cooled forcibly. Thereby, effective water quantity density is obtained previously through a test piece for cooling. Through the effective quantity density corresponding to the cooling width of each nozzle and the effective cooling water density of the uppermost nozzle, an influence coefficient of down flowing water is obtained. Then, through the relation between the ratio of the down flowing water volume density to the cooling water volume density and the influence coefficient of the down flowing, the cooling water volume density to satisfy the target effective water volume density of each cooling width of the shapes 1 is set successively to the cooling water injecting nozzles from the upper to the lower parts to perform the cooling. By this method, the shape and quality of the shapes are improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 少なくとも圧延形鋼の一つの被冷却面が水平面に対して
ほぼ垂直に載置された例えば、H形鋼、■形鋼等のフラ
ンジ面を熱間圧延中あるいは圧延後に水冷して上下方向
の曲がりの発生を抑制するための強制冷却方法に関する
[Detailed Description of the Invention] [Industrial Application Field] At least one surface to be cooled of the rolled section steel is placed almost perpendicularly to a horizontal surface, such as a flange surface of an H section steel, a ■ section steel, etc. The present invention relates to a forced cooling method for suppressing vertical bending by water cooling during or after hot rolling.

(従来の技術) 一般に、第8図に示すように圧延製造中または圧延終了
後のH形鋼1の各部の温度分布が不均一になるとH姿勢
において上または下方向に曲がりが発生することが知ら
れている。この曲がりの程度が大きいとローラテーブル
2での搬送が困難になったり、矯正工程ではH形鋼をロ
ーラ矯正機へ円滑に導入できないことがある。
(Prior Art) Generally, as shown in FIG. 8, if the temperature distribution in various parts of the H-section steel 1 becomes uneven during rolling manufacturing or after rolling, upward or downward bending may occur in the H position. Are known. If the degree of bending is large, it may become difficult to convey the steel on the roller table 2, or the H-shaped steel may not be smoothly introduced into the roller straightening machine during the straightening process.

このような曲がりは、ローラーテーブル2と両側のフラ
ンジ下部およびクエブtbで囲われる閉空間の影響によ
って、上部フランジの温度よりも下部フランジの温度が
高くなる場合、また、H形鋼の場合フランジlaの板厚
に対してウェブ1bの板厚が薄いという独特の断面形状
に起因する残留応力を軽減するためのフランジ外面外面
からの強制冷却がフランジ上下で均等でない場合などに
発生する。従来、圧延材断面内の温度分布を均一化する
各種の冷却手段が提案されており、例えば、特公昭56
−30378号公報には、H形鋼の下フランジ内側のウ
ェブ下面を含まない面に冷却水を噴射する水冷装置が提
案されている。その他、H形鋼の下側内側全面とフラン
ジ外面を冷却する特公昭57−4407号公報、H形鋼
フランジ外面のみを冷却する装置を提供した実公昭45
−18679号公報等が周知である。ところで、近時、
薄肉ウェブH形鋼を圧延によって製造する試みがなされ
ている。薄肉ウェブH形鋼は、近年の建築物の高層化に
対応して、H形鋼ウェブの薄肉化、あるいはウェブの薄
肉化とフランジの厚肉化により単重に対する断面性能を
向上させた高性能H形鋼である。さて、この薄肉ウェブ
H形鋼はフランジとウェブの肉厚比が大きいため、熱応
力がより大きくなるのに加えて、薄肉化されるウェブの
剛性が小さいので、熱応力により容易にウェブが座屈し
て冷却ウェブ波が発生する。このため、薄肉ウェブH形
鋼を圧延により製造するためには、フランジの強制冷却
は不可欠でその程度は従来サイズの場合よりも極めて大
である0強制冷却の程度が大きくなるに従いフランジ上
下の不均一冷却の程度も大きくなり、曲がりの発生程度
も大きくなる。
Such bending occurs when the temperature of the lower flange becomes higher than the temperature of the upper flange due to the influence of the closed space surrounded by the roller table 2, the lower part of the flanges on both sides, and the quebe tb. This occurs when forced cooling from the outer surface of the flange is not uniform on the upper and lower sides of the flange to reduce residual stress due to the unique cross-sectional shape in which the web 1b is thinner than the thickness of the web 1b. Conventionally, various cooling means have been proposed to make the temperature distribution uniform within the cross section of the rolled material.
Japanese Patent Publication No. 30378 proposes a water cooling device that injects cooling water onto a surface inside a lower flange of an H-shaped steel that does not include the lower surface of the web. In addition, Japanese Patent Publication No. 57-4407 provides cooling for the entire lower inner surface of H-shaped steel and the outer surface of the flange, and Japanese Utility Model Publication No. 1977 provides a device for cooling only the outer surface of H-shaped steel flanges.
-18679 etc. are well known. By the way, recently,
Attempts have been made to produce thin web H-section steel by rolling. Thin-web H-beam steel is a high-performance product that has improved cross-sectional performance relative to unit weight by making the H-beam steel web thinner, or by making the web thinner and thickening the flange, in response to the rise in the height of buildings in recent years. It is H-shaped steel. Now, since this thin-walled web H-section steel has a large wall thickness ratio between the flange and the web, the thermal stress becomes larger.In addition, the rigidity of the thinned web is small, so the web easily seats due to thermal stress. The cooling web waves are generated. For this reason, in order to manufacture thin-walled web H-section steel by rolling, forced cooling of the flange is essential, and the degree of cooling is much greater than in the case of conventional sizes. The degree of uniform cooling also increases, and the degree of bending also increases.

ところで、圧延姿勢のH形鋼のフランジの外側面の強制
冷却状態は垂直板に対して水平方向から冷却水を噴射す
る形態となる。このため、フランジ下部はフランジ面を
流下する冷却水の影響を受け、フランジ上部と下部では
冷却速度が異なり、被圧延材のフランジ面幅方向(上下
方向)での温度分布が均一にならない問題点がある。
By the way, the forced cooling state of the outer surface of the flange of the H-section steel in the rolling position is such that cooling water is injected from the horizontal direction to the vertical plate. For this reason, the lower part of the flange is affected by the cooling water flowing down the flange surface, and the cooling rate is different between the upper and lower parts of the flange, causing the problem that the temperature distribution in the width direction (up and down direction) of the flange surface of the rolled material is not uniform. There is.

さて、一般に鋼材の強制冷却方式はスプレー冷却、ラミ
ナーフロー冷却、ジェット冷却、ミストジェット冷却等
の方式が採用されるが、冷却速度の推定、温度の推定の
ための熱伝達係数は冷却水量密度、表面温度等の関数と
した実験式が用いられ、例えば「鋼材の強制冷却」 (
昭和53年11月・日本鉄鋼協会発行)には各種の実験
式が示されている。ところが、これらの実験式を導くた
めの前提となっている冷却方式は殆ど被冷却面が水平姿
勢のスラブや板などを上方または下方向から冷却する構
成である。
Now, in general, methods such as spray cooling, laminar flow cooling, jet cooling, and mist jet cooling are adopted as forced cooling methods for steel materials, but the heat transfer coefficient for estimating the cooling rate and temperature is based on the cooling water volume density, Empirical formulas are used as a function of surface temperature, etc., such as "forced cooling of steel" (
Various experimental formulas are shown in November 1973, published by the Iron and Steel Institute of Japan). However, most of the cooling systems that are the premise for deriving these experimental formulas are configured to cool slabs, plates, etc. whose surface to be cooled is in a horizontal position from above or below.

従って前記H姿勢のH形鋼フランジ外側面の強制冷却に
おいては、このような一般的な実験式で冷却能を評価す
ることは゛適切でないことが分かった。
Therefore, in forced cooling of the outer surface of the H-section steel flange in the H position, it has been found that it is not appropriate to evaluate the cooling capacity using such a general experimental formula.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は圧延によってH形、■形鋼等のフランジを有す
る形鋼を製造する際、H圧延姿勢での上下方向の曲がり
を抑制するためのフランジ強制冷却方法を提供するもの
であり、さらに詳しくは形鋼の垂直面を幅方向(高さ方
向)に均一あるいは目標とする実効水量密度分布を得る
ための最適な冷却水量密度分布を設定する方法を提供す
るものである。
The present invention provides a flange forced cooling method for suppressing vertical bending in the H-rolling posture when manufacturing H-shape, ■-shape, etc. shaped steel sections having flanges by rolling. provides a method for setting an optimal cooling water volume density distribution in order to obtain a uniform or targeted effective water volume density distribution in the width direction (height direction) of a vertical surface of a section steel.

〔課題を解決するための手段・作用〕[Means and actions to solve the problem]

第9図は本発明を実施するH形調圧延装置列の例であり
、圧延材は加熱炉3で加熱された後、ブレークダウンミ
ル4で粗圧延され、次いで中間ユニバーサルミル5とこ
れにタンデム配置されたフランジ幅圧下を行うエツジン
グミル6で最終製品に近い寸法・形状まで圧延され、さ
らに仕上げユニバーサルミルフで整形される。フランジ
冷却設備8a、 8bは中間ユニバーサルミル5および
エツジングミル6によりリバース圧延中に水冷を行うた
めのもので、圧延ラインの両側に設けている。同様にフ
ランジ水冷設備8cは仕上げミル7での仕上げ圧延後に
水冷を行うために設置したものである。
FIG. 9 shows an example of an H-shaped rolling mill train for carrying out the present invention, in which the rolled material is heated in a heating furnace 3, then roughly rolled in a breakdown mill 4, and then rolled in an intermediate universal mill 5 and tandem thereto. It is rolled to a size and shape close to that of the final product using an etching mill 6 that reduces the flange width, and is further shaped using a finishing universal mill. The flange cooling equipment 8a, 8b is for water cooling during reverse rolling by the intermediate universal mill 5 and the edging mill 6, and is provided on both sides of the rolling line. Similarly, the flange water cooling equipment 8c is installed to perform water cooling after finish rolling in the finishing mill 7.

第2図は圧延方向の正面から見た。冷却水噴射ノズル(
以下ノズルと言う)の配置例であり、H形鋼1のフラン
ジfの外側面に対して複数個のノズル9によって冷却水
を噴射する。第2図(a)はフランジ幅方向に対してノ
ズル9を真横に配設した例、第2図(b)はノズル9を
斜め上方から下向きに噴射するように配設した例を示す
。第3図に示すH形tI41はフランジ1aの幅fおよ
びウェブ1bの高さhが製品サイズにより異なるので第
2図(a) 、 (b)のようなノズル配置ではフラン
ジ外側面とノズルの水平距@dとノズルの高さ方向位置
、およびノズルの段を選択する必要がある。第4図は冷
却水の噴射形態を示したもので、(a)はフランジIa
の外側面から見た噴射水の衝突形態を、(b)はその圧
延方向正面から見た横断面図を示す。
Figure 2 is viewed from the front in the rolling direction. Cooling water injection nozzle (
This is an example of the arrangement of cooling water (hereinafter referred to as nozzles), and cooling water is injected onto the outer surface of the flange f of the H-beam 1 by a plurality of nozzles 9. FIG. 2(a) shows an example in which the nozzle 9 is arranged right sideways with respect to the flange width direction, and FIG. 2(b) shows an example in which the nozzle 9 is arranged so as to spray downward from diagonally above. In the H-type tI41 shown in Figure 3, the width f of the flange 1a and the height h of the web 1b differ depending on the product size, so in the nozzle arrangement as shown in Figures 2(a) and (b), the outer surface of the flange and the nozzle are horizontal. It is necessary to select the distance @d, the height direction position of the nozzle, and the nozzle stage. Figure 4 shows the cooling water injection form, and (a) shows the flange Ia.
(b) shows a cross-sectional view of the jet water as viewed from the front in the rolling direction.

まず、実際にノズル9の位置を設定する場合は次ぎのよ
うな条件を考慮する。即ち、圧延方向と直交する断面で
の水平面に対するノズル噴射方向中心となす伏角α、圧
延方向の水平面に対するノズルのひねり角β、フランジ
幅方向のノズル間隔UV、長さ方向ノズル間隔fLh、
フランジ外側面からノズルまでの水平圧@d等の項目で
ある。なお、これらの条件決定にはフランジ幅方向およ
び長さ方向の冷却水の衝突幅Wh 、Wvや隣合ったノ
ズルから噴射される冷却水のフランジに衝突する位置の
重なりや隙間、たとえばSv、Sh等も合わせて考慮す
べきである。
First, when actually setting the position of the nozzle 9, the following conditions are considered. That is, the inclination angle α between the center of the nozzle jet direction and the horizontal plane in the cross section perpendicular to the rolling direction, the twist angle β of the nozzle with respect to the horizontal plane in the rolling direction, the nozzle interval UV in the flange width direction, the longitudinal nozzle interval fLh,
Items include horizontal pressure @d from the outer surface of the flange to the nozzle. In addition, these conditions are determined by considering the impact width Wh and Wv of the cooling water in the flange width direction and length direction, and the overlap and gap between the positions where the cooling water injected from adjacent nozzles collides with the flange, such as Sv and Sh. etc. should also be considered.

第5図は冷却水がフランジ1aに衝突し、フランジ面上
で拡がる形態を模式的に示したもので、斜線で示す範囲
Aは直接に冷却水の噴射を受けて強制冷却される領域、
横線で示す範囲Bは直接の噴射は受けないが、冷却水が
フランジ面に沿って上方に盛り上がることにより強制冷
却される範囲、縦線で示す範囲Cはやはり直接の噴射は
受けないが、冷却水の流下により冷却される領域、白抜
きの範囲りは流下水と盛り上がり水により冷却される領
域、点模様で示す範囲Eは強制冷却されない領域を示し
ている。ところで、前記した圧延装置例の場合、ローラ
テーブルの搬送方向両側にノズルを縦設してH形鋼のフ
ランジ面に冷却水の噴射方向が一定となるよう配置する
ことによって、H形鋼をローラーテーブルで移送しつつ
フランジ面を冷却する。従って、製品長さ方向のフラン
ジ面の冷却の均一化は容易であるが、フランジ幅方向(
高さ方向)の冷却均一化は容易ではない。即ち、第5図
のフランジ幅fの範囲内において、上端部の幅W1は強
制冷却を受けない部分、幅W2は最上段ノズルからの噴
射水の盛り上がりにより強制冷却される部分、幅W3は
各ノズルからの噴射水の盛り上がりもあるが、主として
直接の冷却水の噴射と流下水により強制冷却される部分
、幅W4は流下水によってのみ強制冷却される部分とな
る。強制冷却されない部分W1の存在はフランジ幅方向
の均一冷却および上フランじと下フランじどの対称冷却
を不可能にするので可能な限り小さくすることが好まし
いが、この部分を解消するために最上段のノズルの噴射
位置をフランジ上端近傍に近づけ過ぎると、ウェブ上面
へ冷却水が侵入し、ウェブの急速冷却をさける必要のあ
る薄肉ウェブH形鋼などでは、熱応力によるウェブ波の
発生など大きな問題を生じることになる。また、盛り上
がり水によってのみ冷却されるW2の部分もW3の部分
に比べて冷却能が小さいので、Wlとともに小さくする
ことが望ましい。ひねり角βの設定は冷却水と被冷却材
の接触領域を拡げる上で効果的であることは第5図によ
り明らかである。
FIG. 5 schematically shows the form in which the cooling water collides with the flange 1a and spreads on the flange surface, and the shaded area A is the area where the cooling water is directly sprayed and forcibly cooled.
Range B, indicated by the horizontal line, is not directly injected, but is forcibly cooled by the cooling water rising upward along the flange surface, and range C, indicated by the vertical line, is not directly injected, but is cooled. The area that is cooled by flowing water, the white area is the area that is cooled by flowing water and rising water, and the dotted area E is an area that is not forcibly cooled. By the way, in the case of the above-mentioned example of the rolling apparatus, the nozzles are installed vertically on both sides of the roller table in the conveying direction, and are arranged so that the direction of jetting cooling water is constant on the flange surface of the H-section steel, so that the H-section steel can be rolled by the rollers. The flange surface is cooled while being transferred on a table. Therefore, it is easy to uniformly cool the flange surface in the product length direction, but the flange width direction (
Uniform cooling in the height direction) is not easy. That is, within the range of the flange width f in FIG. 5, the width W1 of the upper end is the part that is not subjected to forced cooling, the width W2 is the part that is forcibly cooled by the swelling of water jetted from the top nozzle, and the width W3 is the part that is not forcedly cooled. Although there is a swell of water jetted from the nozzle, the portion that is forcibly cooled mainly by the direct jet of cooling water and the flowing water, and the width W4 is the portion that is forcibly cooled only by the flowing water. The existence of the portion W1 that is not forcedly cooled makes uniform cooling in the flange width direction and symmetrical cooling of the upper and lower flanges impossible, so it is preferable to make it as small as possible. If the injection position of the nozzle is too close to the top of the flange, the cooling water will enter the upper surface of the web, causing serious problems such as the generation of web waves due to thermal stress in thin-walled web H-beam steel, etc., where it is necessary to avoid rapid cooling of the web. will occur. Furthermore, since the portion W2, which is cooled only by the rising water, has a smaller cooling capacity than the portion W3, it is desirable to make it smaller as well as Wl. It is clear from FIG. 5 that setting the twist angle β is effective in expanding the contact area between the cooling water and the material to be cooled.

以上のようなノズル配置を前提に、本発明は冷却水量の
調整によって冷却制御可能なフランジの被水冷領域(第
5図W3)を対象に各段のノズルの噴射水量密度を設定
する手段を提供するもので、フランジ全面を均一に、あ
るいはフランジ幅方向中心軸に対し上下対称の冷却パタ
ーンとなるように冷却することを目的として、予め実験
により求めた冷却速度測定結果から各段のノズルの噴射
領域ごとに実効水量密度(後述)を求め、この実効水量
密度と流下水が零である最上段ノズルの実効水量密度の
比(実効水量密度比)を、上部から下方に流下する水量
密度と実際の冷却水量密度との関数として表すことによ
り適正な各段のノズルの噴射水量を求めることを要旨と
するものである。以下、本発明の具体的な方法をさらに
詳細に述べる。
Based on the above-described nozzle arrangement, the present invention provides means for setting the jet water volume density of each stage nozzle for the water-cooled area of the flange (W3 in Fig. 5), which can be cooled and controlled by adjusting the cooling water volume. In order to cool the entire surface of the flange uniformly or in a cooling pattern that is vertically symmetrical with respect to the center axis in the width direction of the flange, the jet of nozzle at each stage is determined based on the cooling rate measurement results obtained through experiments in advance. The effective water density (described later) is determined for each region, and the ratio of this effective water density to the effective water density of the top nozzle where the flowing water is zero (effective water density ratio) is calculated as the density of water flowing downward from the top and the actual water density. The purpose of this paper is to find an appropriate amount of water to be ejected from the nozzles at each stage by expressing it as a function of the cooling water amount density. Hereinafter, a specific method of the present invention will be described in more detail.

第6図は冷却水量密度の影響を調べるためのモデル実験
方法例を示したもので、(a)、(b)はそれぞれ正面
図および側面図である。被冷却試験片10は厚みtfJ
(19mm、幅(高さ)f゛が30θmmの厚板であり
、使用したノズル9はフラットスプレータイプで3kg
f/crr?のもとで噴射角度が110’ 、噴射水量
が10fL/winである。
FIG. 6 shows an example of a model experiment method for investigating the influence of cooling water flow density, and (a) and (b) are a front view and a side view, respectively. The cooled test piece 10 has a thickness tfJ
(It is a thick plate with a width (height) of 19mm and a width (height) of 30θmm, and the nozzle 9 used is a flat spray type and weighs 3kg.
f/crr? The injection angle is 110' and the injection water amount is 10 fL/win.

冷却水の噴射方向は伏角が30°、ひねり角度βが8°
であり、試験片の水冷表面からノズルまでの水平路11
1dは100mmである。このようなノズル9の配置で
は圧力2kgf/err?のもとでノズルからの冷却水
の試験片の幅方向(高さ方向)の噴射幅Wvは約50m
mb長さ方向の噴射幅whは約350mmである。ノズ
ルの配置間隔は試験片幅方向(高さ方向)に50mm、
長さ方向に350mmとして各ノズルから噴射される冷
却水の噴射領域の重なりを小さく配慮した。したがって
、全ノズルから噴射される試験片幅方向の冷却水噴射幅
は250mmであり、ノズルの高さ方向位置は試験片上
端部の幅W2°および下端部の幅W4(ともに25+n
m)は直接に冷却水の噴射を受けない、すなわち、上端
部25mmは最端部を除き冷却水の盛り上がりにより強
制冷却される部分、下端部25mmは流下水のみにより
強制冷却される部分である。これらの端部を除いた部分
W3は噴射による冷却と流下による冷却の混合冷却とな
る。
The cooling water injection direction has an inclination angle of 30° and a twist angle β of 8°.
and a horizontal path 11 from the water-cooled surface of the test piece to the nozzle.
1d is 100mm. With this arrangement of the nozzle 9, the pressure is 2 kgf/err? The spray width Wv of the cooling water from the nozzle in the width direction (height direction) of the specimen is approximately 50 m.
The injection width wh in the mb length direction is approximately 350 mm. The nozzle arrangement interval is 50 mm in the specimen width direction (height direction).
The length was set to 350 mm in the length direction, and the overlapping of the injection areas of the cooling water injected from each nozzle was considered to be small. Therefore, the width of the cooling water sprayed from all nozzles in the width direction of the specimen is 250 mm, and the position of the nozzle in the height direction is the width W2° of the upper end of the specimen and the width W4 of the lower end (both 25+n
m) is not directly sprayed with cooling water, that is, the upper end 25 mm is a part that is forcibly cooled by a swell of cooling water except for the extreme end, and the lower end 25 mm is a part that is forcibly cooled only by flowing water. . The portion W3 excluding these ends is cooled by a mixture of injection cooling and downstream cooling.

このように配置されたノズルから噴射する冷却水の冷却
水量密度(各ノズルが噴射する単位時間当りの噴射水量
をそのノズルから直接噴射をうける水冷表面の面積wh
Xwvで除した値)を全段同一にして水冷を行った。温
度測定位置11は・で示す位置に熱電対を取りつけて行
っており、したがって、直接に冷却水の噴射を受ける部
分W3および盛り上がり水によってのみ冷却される上端
部W2、流下水によってのみ冷却される下端部W4も温
度測定される。冷却能の評価については、予め伝熱計算
により、実験に使用した試験片と同じ板厚で温度測定位
置と同じ水冷表面からの距離の位置における冷却水量密
度と冷却速度の関係を求めておき、実験における冷却速
度がこの計算上の関係を満足する冷却水量密度を逆算し
て求め、この値を用いる0本発明においてはこの冷却水
量密度を実効水量密度という。
The density of the amount of cooling water injected from the nozzles arranged in this way (the amount of water ejected per unit time by each nozzle is expressed as the area of the water cooling surface directly injected from that nozzle wh)
Water cooling was performed with the same value (value divided by Xwv) for all stages. The temperature measurement position 11 is carried out by attaching a thermocouple to the position indicated by . Therefore, the part W3 that receives the cooling water directly, the upper end part W2 that is cooled only by the rising water, and the part W2 that is cooled only by the flowing water. The temperature of the lower end W4 is also measured. To evaluate the cooling capacity, use heat transfer calculations to determine the relationship between the cooling water volume density and cooling rate at the same plate thickness as the test piece used in the experiment and at the same distance from the water cooling surface as the temperature measurement position. The cooling water density at which the cooling rate in the experiment satisfies this calculated relationship is determined by back calculation, and this value is used. In the present invention, this cooling water density is referred to as the effective water density.

伝熱計算に使用した水冷熱伝達係数は前記の技術文献「
鋼材の強制冷却」を引用した。なお、冷却速度は計算も
実測も同一のある温度範囲の平均冷却速度を用いた。
The water-cooling heat transfer coefficient used for heat transfer calculations is based on the above technical document “
``Forced cooling of steel materials.'' Note that the average cooling rate in the same temperature range was used for both calculations and actual measurements.

流下水の量については各段のノズルから直接噴射を受け
る領域についてはその段のノズル自身の噴射水によるも
のを無視し、上段のノズルからの噴射水の流下に着目す
る。すなわち最上段ノズルの噴射領域については流下水
はτ、最上段を1段目とする1段目のノズルから直接噴
射される領域の流下水量密度は(1)式で表せる。すな
わち本発明において、流下水量密度とは当該ノズルより
上方のノズルから噴射された水量を当該ノズルの噴射領
域の面積で除した値をいう。
Regarding the amount of water flowing down, in the area that receives direct injection from the nozzles of each stage, we ignore the amount of water jetted by the nozzles of that stage themselves, and focus on the flow of water jetted from the nozzles of the upper stage. That is, the amount of flowing water in the injection area of the top nozzle can be expressed as τ, and the density of the amount of flowing water in the area that is directly injected from the first-stage nozzle, with the top layer as the first stage, can be expressed by equation (1). That is, in the present invention, the flowing water density refers to a value obtained by dividing the amount of water injected from a nozzle above the nozzle by the area of the injection region of the nozzle.

Qr+−Ws X (i −1) ・・・・”・・・(
1)但し、Qr11段面のノズルから直接冷却水の噴射
を受ける領域の流下水量 密度(It/m’m1n) Ws :ノズルー個当りの冷却水量密度(117m” 
lll1n) (1)式より1段目のノズルの冷却水量密度Ws、(本
例では全段均一の噴射条件なのでW。
Qr+−Ws X (i −1) ・・・”・・・(
1) However, the flowing water volume density (It/m'm1n) of the area that receives the direct cooling water injection from the nozzle on the Qr11 step surface Ws: Cooling water volume density per nozzle (117 m''
lll1n) From equation (1), the cooling water amount density Ws of the first stage nozzle is Ws (in this example, since the injection conditions are uniform across all stages).

に等しい)に対する流下水量密度QP、の比(以後流下
水量密度比という)は本実験条件のように各段のノズル
の噴射水量密度が同一の場合(i−1)で表せる。
The ratio of the flow rate density QP to the flow rate density QP (equal to ) (hereinafter referred to as flow rate density ratio) can be expressed as (i-1) when the jet water rate density of the nozzles at each stage is the same as in the present experimental conditions.

流下水の影響については各段の直接噴射領域における実
効水量密度と流下水を零と見做す最上段の実効水量密度
の比(以降、流下水影響係数という)、すなわち(2)
式で評価することができる。
Regarding the influence of running water, the ratio of the effective water volume density in the direct injection area of each stage to the effective water volume density of the top stage where running water is assumed to be zero (hereinafter referred to as the running water influence coefficient), that is, (2)
It can be evaluated with an expression.

に、=W!、/W!:、・・・・・・・・・・・・ (
2)但し、KI :流下水影響係数 Wアト最上段の実効水量密度 (fL/ rr? win) wE、:を段目の実効水量密度 (fL / rr? m1n) 第7図は実効水量密度の例で、冷却水量密度は全段40
0IL/ nfmin同一である。
ni,=W! ,/W! :、・・・・・・・・・・・・ (
2) However, KI: Effective water flow density at the top of the effluent water influence coefficient W (fL/rr? win) wE,: Effective water flow density at the top row (fL/rr? m1n) Figure 7 shows the effective water flow density at the top row (fL/rr? m1n) In the example, the cooling water density is 40 in all stages.
0IL/nfmin are the same.

サンプル上端部■の範囲(第6図に招けるW2゛の範囲
)は冷却水の盛り上がりにより強制冷却される領域、下
端部■の範囲(第6図におけるW4の範囲)は流下水に
よってのみ強制冷却される領域、■の範囲は第6図に招
けるW3の範囲のうち最上段ノズルからの直接の噴射に
より強制冷却される領域、■の範囲は上部からの流下水
と直接の噴射により強制冷却される領域である。・が各
温度測定点の値を示すが、長さ方向の2点の値の平均値
である。階段状の実線12は直接冷却水の噴射を受けな
い領域■。
The area at the top ■ of the sample (range W2'' in Figure 6) is a region that is forcibly cooled by the swelling of cooling water, and the area at the bottom ■ (range W4 in Figure 6) is forced only by flowing water. The area to be cooled, the area marked with ■, is the area of W3 shown in Figure 6 that is forcibly cooled by direct injection from the top nozzle, and the area marked with ■ is forcedly cooled by direct injection of water flowing from the top. This is the area to be cooled. * indicates the value at each temperature measurement point, which is the average value of the values at two points in the length direction. A stepped solid line 12 is an area (■) that is not directly sprayed with cooling water.

■については測定点の値がそれぞれの領域の代表値とし
て、直接の噴射を受ける流域■および■については各段
のノズルの噴射領域毎に平均して示したものである。
For (2), the values at the measurement points are representative values for each area, and for the basins (2) and (2) that receive direct injection, the values are averaged for each spray area of the nozzle at each stage.

本図から、直接冷却水の噴射を受けない領域■、■の実
効水量密度は直接噴射を受ける領域■および■のそれよ
り小さいこと、盛り上がり水により冷却される領域■の
実効水量密度は流下水のみで冷却される流域■のそれよ
り小さいが、大台な差異がないことが判る。
From this figure, we can see that the effective water flow density of areas ■ and ■ that do not receive direct cooling water injection is smaller than that of areas ■ and ■ that receive direct injection, and that the effective water flow density of area ■ that is cooled by rising water is that of flowing water. Although it is smaller than that in the basin (2), which is cooled only by water, it can be seen that there is no major difference.

また、直接冷却水の噴射を受ける領域■および■は下方
のノズルでの噴射流域はど実効水量密度が大きく、流下
水が冷却を促進していることが判る。このように水量密
度分布を各膜均一にすると被冷却試験片の幅中心に対し
て非対称な冷却となるのはH形鋼のフランジ冷却の場合
でも同様であり、曲がり発生の原因となることは明らか
である。
In addition, in the areas (2) and (2) that receive direct cooling water injection, the effective water flow density is large in the lower nozzle injection area, indicating that the flowing water promotes cooling. In this way, if the water density distribution is made uniform for each film, the cooling will be asymmetrical with respect to the width center of the specimen to be cooled, which is the same in the case of flange cooling of H-beam steel, and this will not cause bending. it is obvious.

冷却水量密度を各段のノズル毎に調整して冷却制御を行
えるのは直接冷却水の噴射を受ける領域■および■であ
り、直接冷却水の噴射を受けない領域■および■はそれ
ぞれ最上段ノズルの噴射水量密度および全段のトータル
の水量により自動的に決まるもので、冷却制御は不可能
である。
Areas ■ and ■ that receive direct cooling water injection can be controlled by adjusting the cooling water amount density for each nozzle in each stage, and areas ■ and ■ that do not receive direct cooling water injection are the top nozzles, respectively. This is automatically determined by the jet water density and the total water volume of all stages, and cooling control is not possible.

しかし、■および■の領域の実効水量密度は小さい上に
、領域の幅が小さいので、この両領域の冷却の差異の曲
がりへの影響は無視できるほど小さい。このため、直接
冷却水の噴射を受ける領域だけが対称となるような冷却
制御を行えば曲がりは大幅に抑制されることになる。
However, since the effective water density in the regions ■ and ■ is small and the width of the regions is small, the effect of the difference in cooling in these two regions on the bending is so small that it can be ignored. Therefore, if cooling control is performed such that only the area receiving direct cooling water injection is symmetrical, bending can be significantly suppressed.

第1図は直接冷却水の噴射を受ける領域における流下水
量密度比と流下水影響係数との関係を示す。この場合、
冷却水量密度は噴射圧力を変えることにより変えている
FIG. 1 shows the relationship between the density ratio of the amount of flowing water and the influence coefficient of flowing water in the area directly receiving the injection of cooling water. in this case,
The cooling water amount density is changed by changing the injection pressure.

冷却水量密度は実線(O印)が21042/rrl”m
in、破線(×印)が280fL/m’minである。
The solid line (O mark) for the cooling water flow density is 21042/rrl”m
in, the broken line (x mark) is 280 fL/m'min.

Δ、・。Δ,・.

口はそれぞれ300,400,500 ft/ ni”
minであるが、この3者は一点鎖線で示すようにほぼ
同じ傾向となる。
mouths are 300, 400, and 500 ft/ni” respectively.
However, these three have almost the same tendency as shown by the dashed line.

本図のごとく冷却水量密度により流下水量密度比と流下
水影響係数の関係は大きく異なる。
As shown in this figure, the relationship between the effluent volume density ratio and the effluent influence coefficient varies greatly depending on the cooling water volume density.

冷却水量密度が300〜400 Il/rr?minの
場合流下水が冷却を促進しているのに対して冷却水量密
度が200j!/rn”min程度に小さくなると流下
水はむしろ冷却を抑制する。
Is the cooling water density 300-400 Il/rr? In the case of min, the flowing sewage promotes cooling, but the cooling water density is 200j! /rn"min, the flowing sewage actually suppresses cooling.

このように冷却水量密度により流下水量比と流下水影響
係数の関係が大きく異なる理由は定かではないが、冷却
水量密度の調整をノズルの交換によらず圧力によってい
るためと推定される。
Although it is not clear why the relationship between the flowing water ratio and the flowing water influence coefficient differs greatly depending on the cooling water flow density, it is presumed that the cooling water flow density is adjusted by pressure rather than nozzle replacement.

すなわち、流量が大のときは噴射圧力が高いため、噴射
水が流下水の膜を破壊して噴射水と流下水の双方の冷却
能の和が噴射水のみの冷却能より大きくなり、噴射水量
が小のときは噴射圧力が低いため流下水の膜を破壊する
カが弱く噴射水と流下水の双方の冷却能の和が噴射水の
みの冷却における冷却能よりも小奄くなることを示して
いると解釈される。
In other words, when the flow rate is large, the injection pressure is high, so the injection water destroys the film of the flowing water, and the sum of the cooling capacities of both the injection water and the flowing water becomes greater than the cooling capacity of the injection water alone, and the amount of injection water increases. When is small, the injection pressure is low, so the force that destroys the film of the flowing sewage is weak, and the sum of the cooling capacities of both the injection water and the flowing sewage is smaller than the cooling capacity of only the injection water. It is interpreted that

第1図の流下水量密度比と流下水影響係数の関係は概ね
(3)式のごとく簡単な式で表すことができる。
The relationship between the effluent volume density ratio and the effluent influence coefficient in FIG. 1 can be roughly expressed by a simple equation such as equation (3).

但し、W□:1段目ノズルの冷却水量密度(fL / 
m’min ) ここで、係数aは本実験の水量密度の範囲内に限定すれ
ば、 さて、実設備の適正な冷却水量密度の設定について述べ
る。
However, W□: Cooling water flow density of the first stage nozzle (fL /
m'min) Here, if the coefficient a is limited to the range of the water flow density of this experiment, we will now discuss setting the appropriate cooling water flow density for actual equipment.

(2)式において流下水のない最上段ノズルからの噴射
領域における実効水量密度WtIは熱伝達係数の実験式
が高精度ならば実際の冷却水量密度とほぼ等しく、また
流下水がないことから第一段目のノズルの目標とする実
効水量密度(目標実効水量密度)と等しいと置いてよい
In equation (2), the effective water flow density WtI in the injection region from the top nozzle with no flowing water is almost equal to the actual cooling water flow density if the empirical formula for the heat transfer coefficient is highly accurate, and since there is no flowing water, It may be assumed that it is equal to the target effective water flow density (target effective water flow density) of the first stage nozzle.

したがって、(2)式は(5)式のごとく表すことがで
きる。
Therefore, equation (2) can be expressed as equation (5).

に +mW  !+/We鳳 ” W Ol / W 61 = W 6 I/ W g 1  ・・・・・・・・・
 (5)ここで Wo+:i段目の目標実効水量密度(
fl 7m”m1n) 各段毎の冷却水量は (3)式、(4)式および(5)
式より求めることができる。計算は第1段目の冷却水量
密度Ws1がWOIに等しいと置き、上段より順次行え
ばよい。
To +mW! +/We Otori” W Ol / W 61 = W 6 I/ W g 1 ・・・・・・・・・
(5) Here, Wo+: Target effective water flow density of the i-th stage (
fl 7m”m1n) The amount of cooling water for each stage is Equation (3), Equation (4), and Equation (5).
It can be obtained from the formula. The calculations can be performed sequentially from the top stage assuming that the cooling water amount density Ws1 in the first stage is equal to the WOI.

Wl≦300のとき WS+≧300のとき Wg+−We+−0,115XΣW、、・・・・・・・
・・(6°)ul したがって、曲がり抑制のためフランジ幅中心に対して
上下対称冷却を行うには上下対称位置における目標の実
効水量密度を同じにすればよく、また均一冷却を狙う場
合、全段の目標の実効水量密度を同一にして噴射すべき
水量を計算すればよい。
When Wl≦300, when WS+≧300, Wg+-We+-0, 115XΣW,...
...(6°) ul Therefore, in order to perform vertically symmetrical cooling with respect to the center of the flange width to suppress bending, it is sufficient to make the target effective water density at the vertically symmetrical positions the same, and when aiming for uniform cooling, The amount of water to be injected may be calculated by keeping the target effective water amount density of each stage the same.

g&密には各段のノズルの噴射領域内においても冷却不
均一が発生するが、ノズルから噴射される水量分布のコ
ントロールが困難なためやむを得ない問題といえる。
In G&D, non-uniform cooling also occurs within the injection area of the nozzles at each stage, but this is an unavoidable problem because it is difficult to control the distribution of the amount of water injected from the nozzles.

しかし、この問題は、ノズルの設置段数を多くして、各
段のノズルからの冷却水量密度分布を制御することによ
りほぼ解・消できるものであり、事実、本実験程度の多
段ノズル配置でも問題はない。
However, this problem can be almost solved by increasing the number of stages of nozzles installed and controlling the density distribution of the amount of cooling water from the nozzles at each stage. There isn't.

ノズル配置段数が1段或いは2段程度で、各段のノズル
からの噴射領域の幅が大きい場合は、各ノズルの噴射領
域内においてそのノズル自体の噴射水の流下の影響が大
きく、冷却コントロールが不可能になる。
If the number of nozzle stages is one or two, and the width of the spray area from the nozzles in each stage is large, the influence of the flow of water jetted from the nozzle itself is large within the spray area of each nozzle, making cooling control difficult. becomes impossible.

実験における冷却条件のうちノズルの配置、伏角、ひね
り角の設定は実設備とほぼ同じとし、また、ノズル仕様
も実設備と同じにすることにより信頼性の高いデータが
得られる。
Among the cooling conditions in the experiment, the nozzle placement, inclination angle, and twist angle settings were almost the same as in the actual equipment, and the nozzle specifications were also the same as in the actual equipment to obtain highly reliable data.

流下水量密度として本例のごとく当該ノズルより上方の
ノズルから噴射された水量を当該ノズルの噴射面積で除
した値を用いるのではなく、長さ方向の冷却水の衝突幅
(第4図のWv)で除した値を用いても差支えなく、各
段毎の幅方向(高さ方向)の冷却水の衝突幅(第4図の
wh)が−様でない場合には、むしろこの値を用いるの
がよい。
Instead of using the value obtained by dividing the amount of water injected from a nozzle above the nozzle by the injection area of the nozzle as the flowing water density as in this example, we use the collision width of cooling water in the longitudinal direction (Wv in Fig. 4). ), but if the collision width of the cooling water in the width direction (height direction) of each stage (wh in Figure 4) is not -like, it is better to use this value. Good.

また、冷却水量密度を全段同じとするのは、被水冷試験
片の表面状況(たとえばスケールの厚み等)の影響によ
るデータのバラツキがあっても、流下水のない最上段ノ
ズルの噴射領域の実効水量密を評価基準として(2)式
で流下水の冷却能への影響を評価できるためである。
In addition, the reason why the cooling water flow density is the same for all stages is that even if there is variation in data due to the influence of the surface condition of the water-cooled test specimen (for example, scale thickness, etc.), the injection area of the top stage nozzle with no flowing water This is because the effect on the cooling capacity of flowing water can be evaluated using equation (2) using the effective water density as an evaluation criterion.

(実 施 例) 上記と同一の型式のノズルを同一条件で配置した実設備
でH形鋼のフランジ水冷を実施した。
(Example) Flange water cooling of H-section steel was carried out using actual equipment in which nozzles of the same type as above were arranged under the same conditions.

条件を第1表に示した0条件1は全段均一の冷却水量密
度分布、条件2は前述の式より求めたフランジ幅中心に
対して対称でかつ均一水冷の水量密度分布で、目標実効
水量密度は全段ノズル400 (J2 /ln”1in
)ある。
The conditions are shown in Table 1. Condition 1 is a cooling water flow density distribution that is uniform throughout all stages, and Condition 2 is a water cooling water flow density distribution that is symmetrical and uniform with respect to the center of the flange width determined from the above formula, and the target effective water flow. Density is 400 (J2/ln"1in) for all stages of nozzle
)be.

サイズはウェブ高さ×ワラ29幅×ウェブ厚/フランジ
厚で表示した。
The size was expressed as web height x straw 29 width x web thickness/flange thickness.

テスト本数はそれぞれ10本づつである。The number of tests is 10 each.

圧延姿勢上下方向の曲がり(第8図のδ)は圧延材1の
長さ5mについて測定したものである番 第2表は水冷終了直後および常温時の曲がり量であり、
+は上に凸、−は下に凸の曲がりである。
The bending in the vertical direction of the rolling posture (δ in Fig. 8) was measured for a length of 5 m in the rolled material 1. Table 2 shows the bending amount immediately after water cooling and at room temperature.
+ indicates an upwardly convex curve, and - indicates a downwardly convex curve.

この結果から、全段−様の冷却水量分布では不均一に冷
却されることが明らかであり、本発明法の冷却水量密度
の設定の効果が大きいことが確認された。
From this result, it is clear that the cooling water amount distribution throughout the stages results in non-uniform cooling, and it was confirmed that the setting of the cooling water amount density in the method of the present invention is highly effective.

形鋼にも厚鋼板と同様制御圧延後強制冷却を行う材賀制
御技術が通用されるようになると、より厳しい冷却条件
が要求されることになるが、本発明法の適用により曲が
りの問題は解決可能であり、また、温度分布に応じた目
標実効水量密度が必要な場合なども適正な冷却水量密度
分布の設定が可能である。
When the material control technology that performs forced cooling after controlled rolling comes into use for shaped steel, similar to thick steel plates, stricter cooling conditions will be required, but by applying the method of the present invention, the problem of bending can be solved It is possible to solve the problem, and it is also possible to set an appropriate cooling water amount density distribution even when a target effective water amount density is required depending on the temperature distribution.

第1表 第2表 (発明の効果) 本発明方法は形鋼の垂直なフランジ面を強制冷却するに
際し、縦設した複数個の各冷却ノズルの冷却水密度を一
定の手順で設定するだけでフランジ面の温度分布を均一
にするかもしくはフランジ面の温度分布を所望のパター
ンに制御できる。従って、H形鋼の圧延工程に本発明冷
却法を適用した場合には上下方向の曲がりは解消し、搬
送または矯正作業が容易になる。また、薄肉ウェブH形
鋼に代表されるフランジとウェブの厚み差が大きい形鋼
の製造においても形状または品買の改善効果は極めて大
きい。
Table 1 Table 2 (Effects of the Invention) When forcibly cooling a vertical flange surface of a section steel, the method of the present invention requires only setting the cooling water density of each of a plurality of vertically installed cooling nozzles in a fixed procedure. The temperature distribution on the flange surface can be made uniform or the temperature distribution on the flange surface can be controlled to a desired pattern. Therefore, when the cooling method of the present invention is applied to the rolling process of H-section steel, vertical bending is eliminated, and transportation or straightening work becomes easier. Furthermore, in the production of steel sections with a large difference in thickness between the flange and the web, such as thin-web H-section steel, the effect of improving the shape or product purchase is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

′M1図は本発明のメカニズムに係わる流下水量密度比
と流下水影響係数との関係を示すグラフ、第2図(a)
 、 (b)は被冷却材フランジ面に対する冷却水噴射
状況を示す正面略図、第3図はH形鋼の断面説明図、′
s4図(a)は被冷却面への冷却水噴射パターンを示す
側面略図、第4図(b)は第4図(a)の冷却水噴射状
況を示す正面略図、第5図は被冷却面上における被水冷
部分の種類を説明する図、第6図(a) 、 (b)は
冷却試験片の水冷モデルの説明図、第7図は冷却試験片
の位置別の実効水量密度の分布を示すグラフ、第8図は
H形鋼の曲がり状況を説明する斜視図、第9図は形鋼圧
延装置列の例を示す略図である。 1・・・H形rlIla・・・フランジlb−・・ウェ
ブ    2・・・ローラテーブル3・・・加熱炉  
  4・・・ブレークダウンミル5・・・中間ユニバー
サルミル 6・・・エツジングミル 7・・・仕上げユニバーサルミル 8a、8b、8C・・・フランジ水冷設備9・・・冷却
水噴射ノズル 10・・・被冷却試験片 11・・・温度測定位置他4
名 第1図 (a) (b) 9:冷却水噴射ノズル 第3図 第4図 (b) 第5図 10: 1ffl冷却試験片 11:温度測定位置
'M1 diagram is a graph showing the relationship between the effluent volume density ratio and the effluent influence coefficient related to the mechanism of the present invention, Figure 2 (a)
, (b) is a schematic front view showing the state of cooling water injection to the flange surface of the cooled material, Fig. 3 is a cross-sectional explanatory view of the H-section steel,
Figure s4 (a) is a schematic side view showing the cooling water injection pattern to the cooled surface, Figure 4 (b) is a schematic front view showing the cooling water injection situation of Figure 4 (a), and Figure 5 is the cooled surface. Figure 6 (a) and (b) are diagrams explaining the types of water-cooled parts shown above, Figure 6 (a) and (b) are diagrams explaining the water cooling model of the cooling test piece, and Figure 7 shows the distribution of effective water density by position of the cooling test piece. The graph shown in FIG. 8 is a perspective view illustrating the bending state of H-section steel, and FIG. 9 is a schematic diagram showing an example of a section steel rolling apparatus row. 1... H type rlIla... Flange lb-... Web 2... Roller table 3... Heating furnace
4... Breakdown mill 5... Intermediate universal mill 6... Etching mill 7... Finishing universal mill 8a, 8b, 8C... Flange water cooling equipment 9... Cooling water injection nozzle 10... Covered Cooling test piece 11...Temperature measurement position and others 4
Figure 1 (a) (b) 9: Cooling water injection nozzle Figure 3 Figure 4 (b) Figure 5 10: 1ffl cooling test piece 11: Temperature measurement position

Claims (1)

【特許請求の範囲】[Claims] 1 少なくとも一つの被冷却面が水平面に対してほぼ垂
直に載置された形鋼に対向して縦設された複数個の冷却
水噴射ノズルによって前記形鋼を強制冷却する方法にお
いて、予め垂直な被冷却試験片に対して前記各冷却噴射
ノズルから一定の冷却水量密度で噴射した時の実効水量
密度を求めておき、被冷却面の高さ方向のノズル毎の冷
却幅に対応する前記実効冷却水量密度と冷却水噴射ノズ
ルのうちの最上段ノズルの実効冷却水量密度とから流下
水影響係数を求め、続いて流下水量密度と冷却水量密度
との比と前記流下影響係数との関係から前記形鋼の冷却
幅毎の目標実効水量密度を満足する冷却水量密度を上部
の冷却水噴射ノズルから下部ノズルへ逐次設定して冷却
を行うことを特徴とする形鋼の強制冷却方法。
1 In a method of forcibly cooling a section steel with at least one surface to be cooled placed substantially perpendicular to a horizontal surface using a plurality of cooling water injection nozzles installed vertically facing the section steel, The effective water flow density when a constant cooling water flow density is injected from each of the cooling injection nozzles to the specimen to be cooled is determined, and the effective cooling water density corresponding to the cooling width of each nozzle in the height direction of the surface to be cooled is determined. The flowing water influence coefficient is determined from the water flow density and the effective cooling water flow density of the uppermost nozzle of the cooling water injection nozzles, and then the above form is calculated from the relationship between the ratio of the flowing water flow density and the cooling water flow density and the flow flow influence coefficient. A forced cooling method for shaped steel, characterized in that cooling is performed by successively setting a cooling water flow density that satisfies a target effective water flow density for each cooling width of the steel from an upper cooling water injection nozzle to a lower nozzle.
JP24547488A 1988-09-29 1988-09-29 Forced cooling method for shape Granted JPH0292413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24547488A JPH0292413A (en) 1988-09-29 1988-09-29 Forced cooling method for shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24547488A JPH0292413A (en) 1988-09-29 1988-09-29 Forced cooling method for shape

Publications (2)

Publication Number Publication Date
JPH0292413A true JPH0292413A (en) 1990-04-03
JPH0530523B2 JPH0530523B2 (en) 1993-05-10

Family

ID=17134198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24547488A Granted JPH0292413A (en) 1988-09-29 1988-09-29 Forced cooling method for shape

Country Status (1)

Country Link
JP (1) JPH0292413A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04284914A (en) * 1991-03-11 1992-10-09 Sumitomo Metal Ind Ltd Flow rate setting method for flange water-cooling device
JP2000190016A (en) * 1998-12-24 2000-07-11 Nkk Corp Wide-flange shape steel flange cooling equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04284914A (en) * 1991-03-11 1992-10-09 Sumitomo Metal Ind Ltd Flow rate setting method for flange water-cooling device
JP2508927B2 (en) * 1991-03-11 1996-06-19 住友金属工業株式会社 Flange water cooling device flow rate setting method
JP2000190016A (en) * 1998-12-24 2000-07-11 Nkk Corp Wide-flange shape steel flange cooling equipment

Also Published As

Publication number Publication date
JPH0530523B2 (en) 1993-05-10

Similar Documents

Publication Publication Date Title
EP1944099B1 (en) Cooling method of steel plate
CN100404154C (en) Controllable cooling method for thick steel plate, thick steel plate manufactured by the controllable cooling method, and cooling device for the thick steel plate
JPS6347775B2 (en)
JPS60174833A (en) Cooling method of hot steel sheet
JP4604564B2 (en) Method and apparatus for controlling cooling of thick steel plate
JP3117590B2 (en) Method and apparatus for cooling H-section steel
JP5515483B2 (en) Thick steel plate cooling equipment and cooling method
US3347076A (en) Method and apparatus for manufacturing h-shaped steel
JPH0292413A (en) Forced cooling method for shape
JP4337157B2 (en) Steel plate cooling method and apparatus
US4582114A (en) Continuous casting apparatus for the production of cast sheets
JP6515362B1 (en) Steel material cooling device and method
JP2541213B2 (en) Shaped steel manufacturing equipment
JP3747546B2 (en) Method and apparatus for cooling high temperature steel sheet
JPH0679333A (en) Method for cooling h-shape steel and its device and its line of mills
JPS62174326A (en) Flange cooler for shape material
JP2508927B2 (en) Flange water cooling device flow rate setting method
JP3463614B2 (en) Manufacturing method of H-section steel
JP3190239B2 (en) Nozzle top cooling header tube for steel strip cooling
JPH09285810A (en) Method for manufacturing h-steel with satisfactory shape
JP3794085B2 (en) High temperature steel plate cooling device
JPH10314803A (en) Method for straightening bend of rail
JP2903988B2 (en) Cooling water control device for H-section steel inner surface
JP2755905B2 (en) Method and apparatus for online cooling of H-section steel
JP3327223B2 (en) Method and apparatus for cooling U-shaped sheet pile

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees