JPH04283225A - Electronically conductive polymer - Google Patents

Electronically conductive polymer

Info

Publication number
JPH04283225A
JPH04283225A JP3069478A JP6947891A JPH04283225A JP H04283225 A JPH04283225 A JP H04283225A JP 3069478 A JP3069478 A JP 3069478A JP 6947891 A JP6947891 A JP 6947891A JP H04283225 A JPH04283225 A JP H04283225A
Authority
JP
Japan
Prior art keywords
group
conductive polymer
compound
polymer
electronically conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3069478A
Other languages
Japanese (ja)
Inventor
Tadahiko Kubota
忠彦 窪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP3069478A priority Critical patent/JPH04283225A/en
Publication of JPH04283225A publication Critical patent/JPH04283225A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To obtain an electronically conductive polymer which can give a secondary battery excellent in capacity, repeated charge/discharge performance, self-discharge characteristics, etc., by reacting an oxidizing agent comprising a cupric compound with a specified five-membered ring compound. CONSTITUTION:A compound of formula I (wherein L1 and L2 are each a bivalent bonding group; R1 and R2 are each a bivalent bonding group; R3 is H, alkyl, aryl, a cyclic ester group, an acyclic ester group or the like; R4 is a cyclic ester group, an acyclic ester group, a cyclic ether group or the like; n and n' are each an integer of 1 or greater; R5 and R5' are each H or alkyl; a, b and c are each 0 or 1; X is -NH-, -NR6-, -S-, -O-, -Te or -Se-; and R6 is alkyl or aryl), e.g. one represented by formula II, III or IV, is reacted with an oxidizing agent comprising a cupric compound, e.g. copper borofluoride, to produce an electronically conductive polymer. The obtained polymer can be desirably used as a positive electrode material of a battery, an antistatic material or the like.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、プラスチックフィルム
の帯電防止材料や、電気、電子工業の利用分野において
電池、コンデンサー、エレクトロクロミック素子等の導
電性材料として応用できるものである。
[Industrial Application Field] The present invention can be applied as an antistatic material for plastic films, and as a conductive material for batteries, capacitors, electrochromic devices, etc. in the electrical and electronic industries.

【0002】0002

【従来の技術】電子伝導性を有する有機高分子材料は、
近年バッテリーや種々の機能デバイスとしての応用が検
討されている。例えば、ポリアニリン(特開平2−63
8)、ポリピロール(特開昭62−226568)ポリ
アセン(特開昭63−301465)等が有望とされて
いる。これら電子伝導性高分子の製造は、電解重合法又
は化学的酸化重合法によっている。電解重合法は■生成
量が電極の大きさに制限される。■電極から重合生成物
をはがす工程が必要である、等の点から量産性、コスト
に問題があった。
[Prior Art] Organic polymer materials with electronic conductivity are
In recent years, applications as batteries and various functional devices have been considered. For example, polyaniline (Unexamined Japanese Patent Publication No. 2-63
8), polypyrrole (JP-A No. 62-226568), polyacene (JP-A No. 63-301465), etc. are considered promising. These electronically conductive polymers are produced by electrolytic polymerization or chemical oxidative polymerization. In the electrolytic polymerization method, the amount produced is limited by the size of the electrode. (2) A process of peeling off the polymerization product from the electrode is required, which poses problems in mass production and cost.

【0003】また、ポリアニリン、ポリピロールをバッ
テリー用の電極として用いた場合、その容量はポリアニ
リンで5.6wh/kg、ポリピロールで8.2wh/
kg(化学と工業、第42巻、第9号、1560頁、1
989年)と小さいものであった。この点に関し、ニト
リルブタジエンラバーを介してポリピロールの電解重合
を行ない、後にニトリルブタジエンラバーを洗浄するこ
とでポリピロール膜中の利用できる活性点を増やし、容
量の向上を検討している(逢坂ら、ジャーナル・オブ・
ザ・エレクトロケミカル・ソサイアティー、134巻、
2479頁、1987年)、また3位にポリエチレンオ
キサイド基を有するポリピロールを電解酸化重合によっ
て得ている(特開平2−274723)。いずれも容量
の向上が見られるが、電解酸化重合である為コストの面
で実用に供さないものであった。また、N位に3,6,
9−トリオキサデシル基を有するピロールを電解重合し
たものは、ポリエチレンオキサイドの高分子固体電解質
を用いた系で無置換のポリピロールより2倍から30倍
の容量を有するものであったが、くり返し特性に劣るも
のであった(エム・ジー・ミネットらシンセティックメ
タルズ、28巻、C211頁、1989年)。また、3
位にポリエチレンオキサイド基を有するポリピロール(
特開平2−274723)もくり返し特性に劣るもので
あった。また、特開昭63−215717に開示されて
いる化学的酸化重合法を用いると、従来の化学的酸化重
合法より容量に優れたポリピロール類が得られるが、ま
だ十分に容量を向上するには至らなかった。
[0003] When polyaniline and polypyrrole are used as electrodes for batteries, the capacity is 5.6wh/kg for polyaniline and 8.2wh/kg for polypyrrole.
kg (Chemistry and Industry, Vol. 42, No. 9, p. 1560, 1
989) and was small. In this regard, we are considering electrolytically polymerizing polypyrrole through nitrile-butadiene rubber and washing the nitrile-butadiene rubber afterwards to increase the available active sites in the polypyrrole film and improve its capacity (Aisaka et al., Journal ·of·
The Electrochemical Society, Volume 134,
2479, 1987), and polypyrrole having a polyethylene oxide group at the 3-position was obtained by electrolytic oxidation polymerization (JP-A-2-274723). Both methods showed an improvement in capacity, but because they involved electrolytic oxidation polymerization, they were not practical due to the cost. Also, 3, 6,
Electrolytically polymerized pyrrole containing 9-trioxadecyl group had a capacity 2 to 30 times that of unsubstituted polypyrrole in a system using polyethylene oxide polymer solid electrolyte, but the repeatability (M.G. Minet et al., Synthetic Metals, Vol. 28, p. C211, 1989). Also, 3
Polypyrrole with polyethylene oxide group in position (
JP-A-2-274723) also had poor repeatability. Furthermore, by using the chemical oxidation polymerization method disclosed in JP-A No. 63-215717, polypyrroles with superior capacity than the conventional chemical oxidation polymerization method can be obtained, but it is still difficult to sufficiently improve the capacity. It didn't work out.

【0004】0004

【発明が解決しようとする課題】本発明の目的は従来よ
りも容量が向上し、充放電くり返し特性に優れた電子伝
導性高分子及びその製造法を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide an electronically conductive polymer which has a higher capacity than conventional polymers and has excellent repeated charging and discharging characteristics, and a method for producing the same.

【0005】[0005]

【課題を解決するための手段】上記課題は、少なくとも
下記一般式(1) で表わされる化合物と酸化剤とを反
応させて得られる電子伝導性高分子において該酸化剤と
して第二銅系化合物を用いる事を特徴とする電子伝導性
高分子によって達成された。一般式(1)
[Means for Solving the Problems] The above problem is achieved by using a cupric compound as the oxidizing agent in an electron conductive polymer obtained by reacting at least a compound represented by the following general formula (1) with an oxidizing agent. This was achieved by using an electronically conductive polymer. General formula (1)

【0006】[0006]

【化2】[Case 2]

【0007】一般式(1) の化合物について更に詳し
く説明する。L1 は2価の連結基を表わし、好ましく
は−C(O)O−基、−C(O)CH2 O−、−C(
O)NR7 −基、−CH2 O−基、−CH2 CH
2 O−基、−C(O)−基、−(O)S(O)−基で
ある。R7 は水素原子、炭素数1〜3のアルキル基で
あり、好ましくは水素原子、メチル基である。L1 と
して特に好ましくは−C(O)O−基、−C(O)CH
2 O−、−CH2 O−基、−CH2 CH2 O−
基、−C(O)−基である。L2 はL1 と同義であ
る。R1 は2価の連結基を表わし、好ましくは炭素数
1〜10のアルキレン基、アリーレン基であり更に好ま
しくは炭素数1〜5のアルキレン基であり、特に好まし
くは炭素数1〜3のアルキレン基である。R2 はR1
 と同義である。R3 は環状エステル基、非環状エス
テル基、環状エーテル基、−(CH2CH2 O)n 
−R5 基、スルホニル基を表わし、nは1以上の整数
である。R5 は炭素数1〜3のアルキル基である。 R3 として好ましくは5〜7員環の環状炭酸エステル
基、5〜7員環のラクトン基、−C(O)OCH3 、
−C(O)OC2 H5 、−C(O)OC3 H7 
、−C(O)CH3 、−C(O)C2 H5 、−C
(O)C3 H7 、3〜12員環の環状エーテル、−
(O)S(O)CH3 であり、特に好ましくは
The compound of general formula (1) will be explained in more detail. L1 represents a divalent linking group, preferably -C(O)O- group, -C(O)CH2O-, -C(
O) NR7 - group, -CH2 O- group, -CH2 CH
2 O- group, -C(O)- group, -(O)S(O)- group. R7 is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, preferably a hydrogen atom or a methyl group. Particularly preferred as L1 are -C(O)O- group, -C(O)CH
2 O-, -CH2 O- group, -CH2 CH2 O-
group, -C(O)- group. L2 is synonymous with L1. R1 represents a divalent linking group, preferably an alkylene group or arylene group having 1 to 10 carbon atoms, more preferably an alkylene group having 1 to 5 carbon atoms, particularly preferably an alkylene group having 1 to 3 carbon atoms. It is. R2 is R1
is synonymous with R3 is a cyclic ester group, acyclic ester group, cyclic ether group, -(CH2CH2O)n
-R5 group represents a sulfonyl group, and n is an integer of 1 or more. R5 is an alkyl group having 1 to 3 carbon atoms. R3 is preferably a 5- to 7-membered cyclic carbonate group, a 5- to 7-membered lactone group, -C(O)OCH3,
-C(O)OC2 H5, -C(O)OC3 H7
, -C(O)CH3, -C(O)C2H5, -C
(O)C3H7, 3- to 12-membered cyclic ether, -
(O)S(O)CH3, particularly preferably

【0008】[0008]

【化3】[C3]

【0009】である。R4 は、水素原子、環状エステ
ル基、非環状エステル基、環状エーテル基、−(CH2
 CH2 O)n′−R5 ′基、スルホニル基、アル
キル基、アリール基を表わし、n′は1以上の整数、R
5 ′は炭素数1〜3のアルキル基である。R4 とし
て好ましくは水素原子、炭素数1〜5のアルキル基、フ
ェニル基又はR3 で好ましい基とした基と同義の基で
ある。R4 として特に好ましくは水素原子、炭素数1
〜3のアルキル基、フェニル基又はR3 で特に好まし
いとした基と同義の基である。Xは−NH−、−N(R
6 )−、−S−、−O−、−Te−、−Se−であり
、R6 はアルキル基、アリール基を表わす。Xとして
好ましくは−NH−、−N(C6 H5 )−NCH3
 −、−N(C2 H5 )−、−N(C3 H7 )
−、−S−、−O−であり、Xとして特に好ましくは−
NH−、−N(CH3 )、−N(C6 H5 )、−
S−、−O−である。a、b、cはそれぞれ独立に0又
は1である。以下に本発明の一般式(1) で表わされ
る化合物の具体例を示すが無論これらに限定されるもの
ではない。
[0009] R4 is a hydrogen atom, a cyclic ester group, an acyclic ester group, a cyclic ether group, -(CH2
CH2O)n'-R5' group, sulfonyl group, alkyl group, aryl group, n' is an integer of 1 or more, R
5' is an alkyl group having 1 to 3 carbon atoms. R4 is preferably a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a phenyl group, or a group having the same meaning as the preferred group for R3. Particularly preferred as R4 is a hydrogen atom, carbon number 1
It is a group having the same meaning as the alkyl group, phenyl group, or group particularly preferred in R3. X is -NH-, -N(R
6)-, -S-, -O-, -Te-, -Se-, and R6 represents an alkyl group or an aryl group. X is preferably -NH-, -N(C6H5)-NCH3
-, -N(C2H5)-, -N(C3H7)
-, -S-, -O-, particularly preferably as X -
NH-, -N(CH3), -N(C6H5), -
S-, -O-. a, b, and c are each independently 0 or 1. Specific examples of the compound represented by the general formula (1) of the present invention are shown below, but the invention is not limited thereto.

【0010】0010

【化4】[C4]

【0011】[0011]

【化5】[C5]

【0012】0012

【化6】[C6]

【0013】本発明の導電性高分子は、一般式(I)で
表わされる化合物を1種又は2種以上用いて酸化重合す
ることで得ることができるが、酸化重合の際一般式(I
)で表わされる化合物以外のモノマーを1種又は2種以
上用いても良い。用いることのできるモノマーとしては
、例えばヘテロ原子として酸素、窒素、イオウ、セレン
等を含有するヘテロ環化合物があげられ、好ましくは、
フラン、ピロール、チオフェンである。
The conductive polymer of the present invention can be obtained by oxidative polymerization using one or more compounds represented by the general formula (I).
) You may use one type or two or more types of monomers other than the compound represented by. Examples of monomers that can be used include heterocyclic compounds containing oxygen, nitrogen, sulfur, selenium, etc. as heteroatoms, and preferably,
These are furan, pyrrole, and thiophene.

【0014】本発明の一般式1とヘテロ環化合物を共重
合する場合、任意のモル比で共重合が可能であるが、好
ましくは一般式1の化合物がモル比で0.1%以上更に
好ましくは1%以上含まれることが好ましい。本発明の
化学的な酸化重合法は、一般に用いられている公知の化
学的な酸化重合法を用いることができる。例えば、前記
のモノマーを水又は任意の有機溶媒中(含水しても良い
)に溶解または分散し、60℃〜−20℃(好ましくは
20℃〜0℃)で触媒(酸化剤)溶液を徐々に滴下する
ことで得ることができる。本発明の化学的な酸化重合法
において、適当な分散剤や界面活性剤を用いることでポ
リマーの水分散液を得ることもでき、成形加工性に優れ
ているので好ましい。本発明の化合物を重合する際、酸
化剤として第二銅系化合物を用いる。第二銅化合物とし
て例えばCu(BF4 )2 、Cu(ClO4 )2
 、Cu(PF6 )2 、Cu(AsF6 )2 、
Cu(CH3 C6 H4 SO3 )2 、Cu(C
F3 SO3 )2 があげられるが、無論これらに限
定されるものではない。酸化剤の量は、本発明の化合物
の特性と使用される触媒により変化するが、触媒/本発
明の化合物のモル比率で0.01から10の範囲で使用
することができる。また、重合時に使用することのでき
る溶媒としては、有機溶媒(例えばアセトニトリル、ジ
メチル硫酸、N,N−ジメチルアセトアミド、N,N−
ジメチルホルムアミド、ジメチルスルホキサイド、スル
フォラン、ホルムアミド、ジメトキシエタン、プロピレ
ンカーボネート、γ−ブチルラクトン、ジオキサン、メ
タノール、エタノール、ニトロベンゼン、テトラヒドロ
フラン、ニトロメタン等が挙げられる)、水あるいは両
者の混合物を挙げることができる。また、化学的酸化重
合の際に、導電性化合物を加えて重合してもよい。導電
性化合物としては、無機酸(例えば、HCl、H2SO
4 、HClO4 、BF4 )、有機酸(例えば、ト
ルエンスルホン酸、トリフルオロメチルスルホン酸、ポ
リスチレンスルホン酸のようなスルホン酸、ギ酸、酢酸
、ポリアクリル酸のようなカルボン酸)、有機塩基(例
えば、ピリジン、トリエタノールアミン)、アルカリ金
属カチオン(Li+ 、Na+ 、K+ 等)、NO+
 、NO2 + 、カチオン、オニウムカチオン(Et
4 N+ 、Bu4 N+ 、Bu3 P+ 等)と負
イオン(BF4 − 、AsF6 − 、SbF6 −
 、SbCl6 − 、PF6 − 、ClO4 − 
、AlF4 − 、NiF4 2−、ZrF6 2−、
TiF6 2−、B10Cl102−、HSO4 − 
、SO4 2−、Cl− 、Br− 、F− 、I− 
)からなる塩、スルホン酸アニオン(CH3 C6 H
4 SO3 − 、C6 H5 SO3 − 、CF3
 SO3 − 、ポリスチレンスルホン酸等)を含む塩
、HCOOLi、ポリアクリル酸ソーダのようなカルボ
ン酸アニオンを含む塩、FeCl3 のような塩化物、
ピリジン酸塩のような有機アミン塩等が挙げられる。本
発明の高分子化合物の好ましい具体例を以下に示すが、
無論これらに限定されるものではない。各成分の割合は
重量百分率で表してある。
When copolymerizing the general formula 1 of the present invention with a heterocyclic compound, the copolymerization can be carried out in any molar ratio, but preferably the compound of general formula 1 is in a molar ratio of 0.1% or more. is preferably contained in an amount of 1% or more. As the chemical oxidative polymerization method of the present invention, any commonly used chemical oxidative polymerization method can be used. For example, the above monomers are dissolved or dispersed in water or any organic solvent (which may contain water), and the catalyst (oxidizing agent) solution is gradually added at 60°C to -20°C (preferably 20°C to 0°C). It can be obtained by dripping. In the chemical oxidative polymerization method of the present invention, an aqueous dispersion of the polymer can be obtained by using an appropriate dispersant or surfactant, which is preferable because it has excellent moldability. When polymerizing the compound of the present invention, a cupric compound is used as an oxidizing agent. Examples of cupric compounds include Cu(BF4)2, Cu(ClO4)2
, Cu(PF6)2, Cu(AsF6)2,
Cu(CH3 C6 H4 SO3)2, Cu(C
Examples include F3 SO3 )2, but the present invention is not limited thereto. The amount of oxidizing agent varies depending on the properties of the compound of the present invention and the catalyst used, but can be used in a molar ratio of catalyst/compound of the present invention ranging from 0.01 to 10. In addition, as a solvent that can be used during polymerization, organic solvents (such as acetonitrile, dimethyl sulfuric acid, N,N-dimethylacetamide, N,N-
Examples include dimethylformamide, dimethylsulfoxide, sulfolane, formamide, dimethoxyethane, propylene carbonate, γ-butyl lactone, dioxane, methanol, ethanol, nitrobenzene, tetrahydrofuran, nitromethane, etc.), water, or a mixture of both. . Further, during chemical oxidative polymerization, a conductive compound may be added and polymerized. Conductive compounds include inorganic acids (e.g. HCl, H2SO
4, HClO4, BF4), organic acids (e.g. sulfonic acids such as toluenesulfonic acid, trifluoromethylsulfonic acid, polystyrene sulfonic acid, carboxylic acids such as formic acid, acetic acid, polyacrylic acid), organic bases (e.g. pyridine, triethanolamine), alkali metal cations (Li+, Na+, K+, etc.), NO+
, NO2 + , cation, onium cation (Et
4 N+, Bu4 N+, Bu3 P+, etc.) and negative ions (BF4 −, AsF6 −, SbF6 −
, SbCl6 − , PF6 − , ClO4 −
, AlF4 − , NiF4 2−, ZrF6 2−,
TiF6 2-, B10Cl102-, HSO4-
, SO4 2-, Cl-, Br-, F-, I-
), sulfonic acid anion (CH3 C6 H
4 SO3 − , C6 H5 SO3 − , CF3
salts containing carboxylic acid anions such as HCOOLi and sodium polyacrylate, chlorides such as FeCl3,
Examples include organic amine salts such as pyridine salts. Preferred specific examples of the polymer compound of the present invention are shown below,
Of course, it is not limited to these. The proportions of each component are expressed as weight percentages.

【0015】[0015]

【化7】[C7]

【0016】[0016]

【化8】[Chemical formula 8]

【0017】[0017]

【化9】[Chemical formula 9]

【0018】[0018]

【化10】[Chemical formula 10]

【0019】[0019]

【化11】[Chemical formula 11]

【0020】本発明で得られた電子伝導性化合物は、平
均粒子径で1μm〜250μmであることが、自己放電
性の点から好ましく、更に好ましくは1〜200μm、
特に好ましくは1〜150μmである。
The electron conductive compound obtained in the present invention preferably has an average particle diameter of 1 μm to 250 μm from the viewpoint of self-discharge properties, more preferably 1 to 200 μm,
Particularly preferably, it is 1 to 150 μm.

【0021】また、本発明の製造法で得られた電子伝導
性高分子を用いて電池用正極活物質を構成する際、電子
伝導性高分子を粉砕して用いることができる。粉砕の方
法については、公知の粉砕法を用いることができる。例
えば、ボールミル、ロールミル、回転粉砕機、乳ばちに
よる粉砕等である。この電子伝導性高分子の比表面積は
0.1m2/g〜1,000m2/gが好ましく更に好
ましくは0.5m2/g/1,000m2/gであり、
特に好ましくは1m2/g〜1,000m2/gである
。また本発明の電子伝導性高分子はカーボン等の導電性
材料やテフロン等の接合剤を含ませることができる。
[0021] Furthermore, when constructing a positive electrode active material for a battery using the electron conductive polymer obtained by the production method of the present invention, the electron conductive polymer can be used after being pulverized. As for the pulverization method, a known pulverization method can be used. For example, grinding with a ball mill, roll mill, rotary grinder, mortar, etc. The specific surface area of this electron conductive polymer is preferably 0.1 m2/g to 1,000 m2/g, and more preferably 0.5 m2/g/1,000 m2/g.
Particularly preferred is 1 m2/g to 1,000 m2/g. Further, the electron conductive polymer of the present invention can contain a conductive material such as carbon or a bonding agent such as Teflon.

【0022】本発明の製造法で得られた電子伝導性高分
子は、高分子固体電解質と積層してポリマー電池のよう
な導電性材料として使用できる。本発明の製造法で得ら
れた電子伝導性高分子は複数層を形成してもよく、また
公知の電子伝導性高分子とで複数層を形成してもよい。 また、周期律表Ia族又はIIa族の金属イオンの塩と
の積層を更に有してもよい。しかし、高分子固体電解質
と本発明の製造法で得られた電子伝導性高分子が直接接
触しているものが好ましい。本発明の製造法で得られた
電子伝導性高分子との積層導電性材料を得る高分子固体
電解質は、カチオンポリマー、アニオンポリマー、ポリ
アクリロニトリル、ポリアルキレンオキシドポリマー(
PEO、PPOやPEOを含むケイ素化合物及びフォス
ファゼン等)、ポリビニルアルコール等と塩を組み合わ
せたものが挙げられる。これらの具体例は、特開昭61
−256573号、同61−124001号、同62−
20263号、同62−139266号、同63−24
1066号、同63−241026号、同63−135
477号、同63−142061号、同63−1306
13号、同60−23974号、同63−136409
号、同63−193954号、同63−186766号
、同63−205364号、マクロモレキュールス21
巻648頁に記載されている。高分子固体電解質を構成
する塩としては、前記の化学的酸化重合法における重合
時に用いられる導電性の塩を挙げることができる。好ま
しくは、周期律表Ia又はIIa族の金属イオンの塩で
あり、更に好ましくは、Li塩であり、例えば
The electronically conductive polymer obtained by the production method of the present invention can be laminated with a solid polymer electrolyte and used as a conductive material such as a polymer battery. The electron conductive polymer obtained by the production method of the present invention may form a plurality of layers, or may form a plurality of layers with a known electron conductive polymer. Further, it may further include a layer with a salt of a metal ion of group Ia or group IIa of the periodic table. However, it is preferable that the solid polymer electrolyte and the electronically conductive polymer obtained by the production method of the present invention are in direct contact with each other. Polymer solid electrolytes for obtaining laminated conductive materials with electronic conductive polymers obtained by the production method of the present invention include cationic polymers, anionic polymers, polyacrylonitrile, polyalkylene oxide polymers (
PEO, PPO, silicon compounds containing PEO, phosphazene, etc.), polyvinyl alcohol, etc., in combination with salts. Specific examples of these are disclosed in Japanese Patent Application Laid-open No. 1983
-256573, 61-124001, 62-
No. 20263, No. 62-139266, No. 63-24
No. 1066, No. 63-241026, No. 63-135
No. 477, No. 63-142061, No. 63-1306
No. 13, No. 60-23974, No. 63-136409
No. 63-193954, No. 63-186766, No. 63-205364, Macromolecules 21
It is described on page 648 of Vol. Examples of the salt constituting the solid polymer electrolyte include conductive salts used during polymerization in the chemical oxidative polymerization method described above. Preferably, it is a salt of a metal ion of group Ia or IIa of the periodic table, more preferably a Li salt, for example

【002
3】LiBF4 、LiClO4 、LiCF3SO3
 、LiPF6 、トルエンスルホン酸リチウム塩等で
ある。また高分子固体電解質中には、負極材料のイオン
が拡散しやすいよう、任意の有機溶媒(例えばプロピレ
ンカーボネート、エチレンカーボネート、γ−ブチロラ
クトン、ジメトキシエタン、メチルテトラヒドロフラン
、テトラヒドロフラン、アセトニトリル、1,3−ジオ
キソラン、ニトロメタン、ジメチルホルムアミド、ジメ
チルスルホキシド等を単独で、あるいは混合して含浸し
てもよい。
002
3] LiBF4, LiClO4, LiCF3SO3
, LiPF6, toluenesulfonic acid lithium salt, and the like. In addition, any organic solvent (e.g. propylene carbonate, ethylene carbonate, γ-butyrolactone, dimethoxyethane, methyltetrahydrofuran, tetrahydrofuran, acetonitrile, 1,3-dioxolane) may be used in the solid polymer electrolyte to facilitate the diffusion of ions of the negative electrode material. , nitromethane, dimethylformamide, dimethyl sulfoxide, etc. may be impregnated alone or in combination.

【0024】積層体導電性材料は、得られた電子伝導性
高分子が粉末又は塊状であるときには、圧縮形成で加工
したフィルムを高分子固体電解質膜に圧着せしめて作成
することができる。また得られた電子伝導性高分子が分
散物であるときには、ローラーコート、スピンコート、
ギーサーコート、ディップコート、スプレーによるコー
ト、押出成形等の公知の塗布方法、及び公知の乾燥方法
を用いることができる。
[0024] When the electron conductive polymer obtained is in the form of a powder or a lump, the laminate conductive material can be produced by pressing a film processed by compression molding onto a solid polymer electrolyte membrane. In addition, when the obtained electron conductive polymer is a dispersion, roller coating, spin coating,
Known coating methods such as Giesser coating, dip coating, spray coating, and extrusion molding, and known drying methods can be used.

【0025】また、本発明の製造法で得られた電子伝導
性高分子は、周期律表Ia族又はIIa族の金属イオン
の塩を有する電解質層と積層して、電池として用いるこ
ともできる。該積層材料はそれぞれのコンポーネントを
独自に作成した後積層させても良いし、またセパレータ
ー上に正極材料を塗布あるいは圧着した後負極を積層さ
せてもよい。セパレーターは負極材料のイオン(例えば
Li+ )が拡散しやすい様任意の有機溶媒(例えばプ
ロピレンカーボネート、エチレンカーボネート、γ−ブ
チロラクトン、ジメトキシエタン、メチルテトラヒドロ
フラン、アセトニトリル、1,3−ジオキソラン、ニト
ロメタン、ジメチルホルムアミド、ジメチルスルホキシ
ド等)を単独であるいは混合して含浸させておくのが好
ましい。上記有機溶媒にはリチウム塩を入れても良い。 リチウム塩の例としては、LiBF4 、LiClO4
 、LiCF3 SO3 、LiPF6 、トルエンス
ルホン酸リチウム塩等である。セパレーター材料として
は、ポリオレフィン、ポリエステル、塩化ビニル、フッ
素樹脂、ポリアミド、ポリスルホン、セルロース、ポリ
ウレタン、ガラス繊維等任意の材料を用いることができ
る。またこれらにプラズマ処理、グロー処理、放射線処
理、プラズマ重合、プラズマ開始重合、放射線重合、放
射線開始重合等の処理をしても良い。
[0025] Furthermore, the electronically conductive polymer obtained by the production method of the present invention can also be used as a battery by laminating it with an electrolyte layer containing a salt of a metal ion of Group Ia or Group IIa of the periodic table. The laminated material may be formed by individually creating each component and then laminating them, or by applying or pressing a positive electrode material onto a separator and then laminating the negative electrode. The separator may be made of any organic solvent (e.g. propylene carbonate, ethylene carbonate, γ-butyrolactone, dimethoxyethane, methyltetrahydrofuran, acetonitrile, 1,3-dioxolane, nitromethane, dimethylformamide, Dimethyl sulfoxide, etc.) is preferably impregnated singly or in combination. A lithium salt may be added to the organic solvent. Examples of lithium salts include LiBF4, LiClO4
, LiCF3SO3, LiPF6, lithium toluenesulfonate, and the like. As the separator material, any material such as polyolefin, polyester, vinyl chloride, fluororesin, polyamide, polysulfone, cellulose, polyurethane, glass fiber, etc. can be used. Further, these may be subjected to treatments such as plasma treatment, glow treatment, radiation treatment, plasma polymerization, plasma initiated polymerization, radiation polymerization, and radiation initiated polymerization.

【0026】また本発明の製造法で得られた電子伝導性
高分子を電池として用いる場合、正極活物質として、マ
ンガン、モリブデン、バナジウム、チタン、クロム、ニ
オブ、コバルト、ニッケルなどの酸化物、硫化物やセレ
ン化物、活性炭(特開昭60−167,280記載)、
炭素繊維(特開昭61−10,882記載)、ポリアニ
リン、アミノ基置換芳香族ポリマー、複素環ポリマー、
ポリアセン、ポリイン化合物などを併用することができ
る。なかでも、活性炭、γ−MnO2 (特開昭62−
108,455、同62−108,457に記載)、γ
−β−MnO2 とLi2 MnO3 の混合物(米国
特許4,758,484)、アモルファス状V2 O5
 (特開昭61−200,667)、V6 O13、L
ix Niy Co(1−y) O2 (0.05≦x
≦1.10、0≦y≦1)(特開平1−294372号
)、MoS2 (特開昭61−64,083)、TiS
2 (特開昭62−222,578)、ポリアニリン(
特開昭60−65,031、同60−149,628、
同61−281,128、同61−258,831、同
62−90,878、同62−93,868、同62−
119,231、同62−181,334、同63−4
6,223)、ポリアセチレン(特開昭57−121,
168、同57−123,659、同58−40,78
1、同58−40,781、同60−124,370、
同60−127,669、同61−285,678)、
ポリフェニレンが特に有効である。電極活物質には、通
常、カーボン、銀(特開昭63−148,554)ある
いはポリフェニレン誘導体(特開昭59−20,971
)などの導電性材料やテフロンなどの接合剤を含ませる
ことができる。
When the electron conductive polymer obtained by the production method of the present invention is used as a battery, oxides such as manganese, molybdenum, vanadium, titanium, chromium, niobium, cobalt, nickel, etc., and sulfides can be used as the positive electrode active material. substances, selenides, activated carbon (described in JP-A-60-167,280),
Carbon fiber (described in JP-A-61-10,882), polyaniline, amino group-substituted aromatic polymer, heterocyclic polymer,
Polyacene, polyyne compounds, etc. can be used in combination. Among them, activated carbon, γ-MnO2 (Japanese Patent Application Laid-open No. 1983-
108,455, 62-108,457), γ
-Mixture of β-MnO2 and Li2MnO3 (U.S. Pat. No. 4,758,484), amorphous V2O5
(JP-A-61-200,667), V6 O13, L
ix Niy Co(1-y) O2 (0.05≦x
≦1.10, 0≦y≦1) (JP-A-1-294372), MoS2 (JP-A-61-64,083), TiS
2 (Japanese Unexamined Patent Publication No. 62-222,578), polyaniline (
JP-A-60-65,031, JP-A No. 60-149,628,
61-281,128, 61-258,831, 62-90,878, 62-93,868, 62-
119,231, 62-181,334, 63-4
6,223), polyacetylene (JP-A-57-121,
168, 57-123,659, 58-40,78
1, 58-40,781, 60-124,370,
60-127,669, 61-285,678),
Polyphenylene is particularly effective. The electrode active material is usually carbon, silver (Japanese Patent Application Laid-Open No. 63-148,554) or polyphenylene derivatives (Japanese Patent Application Laid-open No. 59-20,971).
) or a bonding agent such as Teflon.

【0027】負極活物質としては、金属リチウム、ポリ
アセン、ポリアセチレン、ポリフェニレン、カーボン(
特開平1−204361号)の他、リチウム合金として
、アルミニウムやマグネシウムなどの合金(特開昭57
−65,670、同57−98,977)、水銀合金(
特開昭58−111,265)、Ptなどの合金(特開
昭60−79,670)、Sn−Ni合金(特開昭60
−86,759)やウッド合金(特開昭60−167,
279)、導電性ポリマーとの合金(特開昭60−26
2,351)、Pd−Cd−Bi合金(特開昭61−2
9,069)、Ga−In合金(特開昭61−66,3
68)、Pb−Mgなどの合金(特開昭61−66,3
70)、Znなどの合金(特開昭61−68,864)
、Al−Agなどの合金(特開昭61−74,258)
、Cd−Snなどの合金(特開昭61−91,864)
、Al−Niなどの合金(特開昭62−119,865
、同62−119,866)、Al−Mnなどの合金(
米国特許4,820,599号)などが用いられている
。なかでも、リチウム金属あるいはそのAl合金、カー
ボンを用いることが有効である。
Examples of negative electrode active materials include metallic lithium, polyacene, polyacetylene, polyphenylene, and carbon (
In addition to lithium alloys, alloys such as aluminum and magnesium (Japanese Patent Application Laid-open No. 1-204361)
-65,670, 57-98,977), mercury alloy (
JP-A-58-111,265), alloys such as Pt (JP-A-60-79,670), Sn-Ni alloys (JP-A-60-79,670);
-86,759) and wood alloy (JP-A-60-167,
279), alloy with conductive polymer (JP-A-60-26
2,351), Pd-Cd-Bi alloy (JP-A-61-2
9,069), Ga-In alloy (JP-A-61-66,3
68), alloys such as Pb-Mg (JP-A-61-66,3
70), alloys such as Zn (Japanese Patent Application Laid-Open No. 61-68, 864)
, alloys such as Al-Ag (Japanese Patent Application Laid-Open No. 61-74, 258)
, alloys such as Cd-Sn (Japanese Patent Application Laid-Open No. 1986-91,864)
, Al-Ni and other alloys (JP-A-62-119,865
, 62-119,866), alloys such as Al-Mn (
U.S. Pat. No. 4,820,599) and the like are used. Among these, it is effective to use lithium metal, its Al alloy, and carbon.

【0028】[0028]

【実施例】以下、実施例により更に本発明を詳細に説明
するが無論これらに限定されるものではない。 実施例1 (化合物例I−1合成法)(2−オキソ−1,3−ジオ
キソラン−4−イル)メチルアクリレート40gとトシ
ルメチルイソシアニド45gをエチルエーテル/ジメチ
ルスルホキシド(体積比2/1)の溶液500mlに溶
かし、窒素雰囲気下15℃で60%水素化ナトリウム1
2gとエチルエーテル100mlの混合液中に攪拌しな
がら15分で滴下した。さらに反応温度を40℃に上げ
15min 攪拌した。その後エチルエーテル700m
lを追加し、200mlの水で洗浄を3回くり返した。 硫酸マグネシウムでエーテル層を乾燥した後、エーテル
を減圧留去し、シリカゲルカラムクロマトグラフで精製
し、液体状化合物I−1を17g得た。元素分析及び 
1H−NMRでI−1である事を確認した。C9 H9
 O5 N、C;51.26%、H;4.44%、N;
6.51%(計算値C;51.18%、H;4.30%
、N;6.63%) 1H−NMR溶媒CDCl3  
 4.20〜4.70ppm(4H、m)、4.90〜
5.10ppm(1H、m)、6.55〜6.65pp
m(1H、m)、6.75〜6.85ppm(1H、m
)、7.35〜7.45ppm(1H、m) 実施例2 化合物I−1  6gとピロール1.8gをアセトニト
リル500mlに溶かし、氷冷した。この溶液を激しく
攪拌しながら、45%ホウフッ化銅水溶液27gとアセ
トニトリル25mlに溶解した溶液を、5℃以下に保ち
ながら1時間かけて滴下した。5℃以下を保ちつつ4時
間攪拌を続けた後生成した黒色沈殿物を濾別した。この
黒色固体をプロピレンカーボネート100ml、アセト
ニトリル500mlで洗浄し生成物4.8g(P−1ポ
リマー)を得た。組成比は元素分析値により決定した。 BET法を用い表面積を測定したところ8.5m2/g
であった。またレーザー回折式粒度分布測定機で粒径を
測定したところ、粒径は1μmから860μmであり平
均粒径は110μmであった。またP−1ポリマーを用
い、ペレットを作製し四端子法で電導度を測定したとこ
ろ1.9×10−1s/cmであった。
EXAMPLES The present invention will be explained in more detail with reference to Examples below, but the present invention is of course not limited to these. Example 1 (Compound Example I-1 Synthesis method) 40 g of (2-oxo-1,3-dioxolan-4-yl) methyl acrylate and 45 g of tosylmethyl isocyanide were added to a solution of ethyl ether/dimethyl sulfoxide (volume ratio 2/1). Dissolve in 500 ml of 60% sodium hydride at 15°C under nitrogen atmosphere.
It was added dropwise over 15 minutes to a mixed solution of 2 g and 100 ml of ethyl ether with stirring. Furthermore, the reaction temperature was raised to 40° C. and stirred for 15 minutes. Then ethyl ether 700m
1 was added and the washing was repeated three times with 200 ml of water. After drying the ether layer with magnesium sulfate, the ether was distilled off under reduced pressure and purified by silica gel column chromatography to obtain 17 g of liquid compound I-1. Elemental analysis and
It was confirmed to be I-1 by 1H-NMR. C9 H9
O5 N, C; 51.26%, H; 4.44%, N;
6.51% (calculated value C; 51.18%, H; 4.30%
, N; 6.63%) 1H-NMR solvent CDCl3
4.20~4.70ppm (4H, m), 4.90~
5.10ppm (1H, m), 6.55-6.65pp
m (1H, m), 6.75-6.85 ppm (1H, m
), 7.35-7.45 ppm (1H, m) Example 2 6 g of compound I-1 and 1.8 g of pyrrole were dissolved in 500 ml of acetonitrile and cooled on ice. While vigorously stirring this solution, a solution prepared by dissolving 27 g of a 45% copper borofluoride aqueous solution and 25 ml of acetonitrile was added dropwise over 1 hour while keeping the temperature below 5°C. After stirring was continued for 4 hours while maintaining the temperature at 5° C. or lower, a black precipitate formed was filtered off. This black solid was washed with 100 ml of propylene carbonate and 500 ml of acetonitrile to obtain 4.8 g of product (P-1 polymer). The composition ratio was determined by elemental analysis values. The surface area was measured using the BET method and was 8.5m2/g.
Met. Further, when the particle size was measured using a laser diffraction type particle size distribution analyzer, the particle size was 1 μm to 860 μm, and the average particle size was 110 μm. Further, when pellets were prepared using P-1 polymer and the electrical conductivity was measured by the four-terminal method, it was found to be 1.9 x 10-1 s/cm.

【0029】実施例3〜14 実施例2と同様にしてポリマー例中のP−2、3、4、
5、6、8、11、12、19、20、21、23、2
4を合成し比表面積、平均粒径、電導度を測定した。結
果を表1に示す。
Examples 3 to 14 In the same manner as in Example 2, P-2, 3, 4,
5, 6, 8, 11, 12, 19, 20, 21, 23, 2
4 was synthesized and its specific surface area, average particle size, and electrical conductivity were measured. The results are shown in Table 1.

【0030】[0030]

【表1】[Table 1]

【0031】実施例15 ポリマーP−2を乳ばちを用いてすりつぶし、ポリマー
P−Sを得た。比表面積、電導度を表1に示す。
Example 15 Polymer P-2 was ground using a mortar to obtain polymer P-S. Table 1 shows the specific surface area and electrical conductivity.

【0032】実施例16 P−1ポリマー300mg、アセチレンブラック20m
g、テフロン20mgを混合し、加圧成形し、ペレット
を形成した。この時のペレットの密度は1.39g/c
m3 であった。このペレットを正極として、負極にリ
チウム金属、電解液に1mol /lのLiBF4 を
含むプロピレンカーボネート/ジメトキシエタン=1/
1(体積比)を用い、図1に示す電池を作成し、2.5
V〜3.5Vの間で充放電を行なった。10サイクル目
と200サイクル目の放電容量を表2に示す。
Example 16 P-1 polymer 300mg, acetylene black 20m
g and 20 mg of Teflon were mixed and pressure molded to form pellets. The density of the pellet at this time is 1.39g/c
It was m3. This pellet was used as a positive electrode, lithium metal was used as a negative electrode, and propylene carbonate/dimethoxyethane containing 1 mol/l LiBF4 was used as an electrolyte = 1/
1 (volume ratio), the battery shown in Figure 1 was created, and 2.5
Charging and discharging were performed between V and 3.5V. Table 2 shows the discharge capacity at the 10th cycle and the 200th cycle.

【0033】[0033]

【表2】[Table 2]

【0034】実施例17〜23 P−1を変更する以外は実施例16と同様にして実験を
行なった。用いた化合物と結果を表2に示す。
Examples 17 to 23 Experiments were conducted in the same manner as in Example 16 except that P-1 was changed. Table 2 shows the compounds used and the results.

【0035】比較例1 ピロール10gを用い実施例−2と同様にして重合を行
ない、黒色生成物C−1を得た。C−1の平均粒径、比
表面積、電導度を表1に示す。C−1を用い実施例16
と同様にして実験を行なった。結果を表2に示す。
Comparative Example 1 Polymerization was carried out in the same manner as in Example 2 using 10 g of pyrrole to obtain a black product C-1. Table 1 shows the average particle size, specific surface area, and electrical conductivity of C-1. Example 16 using C-1
An experiment was conducted in the same manner. The results are shown in Table 2.

【0036】比較例2 N位PEOポリマー(化合物A)10gを用い、実施例
−2と同様にして重合を行ない、黒色生成物C−2を得
た。C−2の平均粒径、比表面積、電導度を表1に示す
。C−2を用い、実施例16と同様にして実験を行なっ
た。結果を表2に示す。 化合物A
Comparative Example 2 Using 10 g of N-position PEO polymer (Compound A), polymerization was carried out in the same manner as in Example-2 to obtain a black product C-2. Table 1 shows the average particle size, specific surface area, and electrical conductivity of C-2. An experiment was conducted in the same manner as in Example 16 using C-2. The results are shown in Table 2. Compound A

【0037】[0037]

【化12】[Chemical formula 12]

【0038】比較例3 化合物I−1  4.0gとピロール5gをアセトニト
リル−水(体積比1:1)500mlに溶かし5℃に保
った。この溶液を激しく攪拌しながら塩化第二鉄80g
をアセトニトリル200mlにとかした溶液を徐々に滴
下した。生成した黒色沈殿を実施例1と同様に洗浄し生
成物(C−3)2.9gを得た。C−3の比表面積及び
電導度を表1に示す。C−3を用い、実施例16と同様
にして実験を行なった。結果を表2に示す。
Comparative Example 3 4.0 g of Compound I-1 and 5 g of pyrrole were dissolved in 500 ml of acetonitrile-water (volume ratio 1:1) and kept at 5°C. While stirring this solution vigorously, add 80 g of ferric chloride.
A solution prepared by dissolving this in 200 ml of acetonitrile was gradually added dropwise. The produced black precipitate was washed in the same manner as in Example 1 to obtain 2.9 g of product (C-3). Table 1 shows the specific surface area and electrical conductivity of C-3. An experiment was conducted in the same manner as in Example 16 using C-3. The results are shown in Table 2.

【0039】実施例24 実施例16で作成した電池を65℃で200日間放置し
、容量を測定したところ、自己放電率は13.2%であ
った。
Example 24 The battery prepared in Example 16 was left at 65° C. for 200 days and its capacity was measured, and the self-discharge rate was 13.2%.

【0040】比較例1 比較例1で作成した電池を用い、実施例24と同様に自
己放電率を測定したところ、自己放電率は28%であっ
た。本発明の電子伝導性高分子は、表2中比較例1に示
した無置換のポリピロールよりも容量が大きい。又、表
2中比較例2に示すようにN位にポリエチレンオキサイ
ド基を有するポリピロールは、容量は比較的高いものの
繰り返し特性で本発明に劣る。更に表2中比較例3に示
すように酸化剤として第2銅化合物以外のものを用いた
場合、第2銅系で酸化したものに比べ容量が劣る。また
、本発明の化合物は、実施例24に示すように自己放電
率においても従来のものより優れている。以上のことよ
り本発明の電子伝導性高分子が従来の技術より優れてい
ることは明白である。
Comparative Example 1 Using the battery prepared in Comparative Example 1, the self-discharge rate was measured in the same manner as in Example 24, and the self-discharge rate was 28%. The electron conductive polymer of the present invention has a larger capacity than the unsubstituted polypyrrole shown in Comparative Example 1 in Table 2. Further, as shown in Comparative Example 2 in Table 2, polypyrrole having a polyethylene oxide group at the N position has a relatively high capacity but is inferior to the present invention in terms of repeatability. Furthermore, as shown in Comparative Example 3 in Table 2, when an oxidizing agent other than a cupric compound is used, the capacity is inferior to that oxidized with a cupric compound. Further, as shown in Example 24, the compound of the present invention is also superior to the conventional compound in terms of self-discharge rate. From the above, it is clear that the electron conductive polymer of the present invention is superior to the conventional technology.

【0041】[0041]

【発明の効果】本発明により、容量及びくり返し特性、
自己放電特性に優れた電子伝導性高分子を得る事ができ
る。
[Effect of the invention] According to the present invention, the capacity and repeatability characteristics,
An electronically conductive polymer with excellent self-discharge properties can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】実施例16〜27、比較例1、2で用いたコイ
ン型電池の断面図である。
FIG. 1 is a cross-sectional view of a coin-shaped battery used in Examples 16 to 27 and Comparative Examples 1 and 2.

【符号の説明】[Explanation of symbols]

1.本発明の化合物が含まれる正極活物質を示す。 2.電解質溶液を含浸した不織布を示す。 3.負極活物質(リチウム)を示す。 4.ステンレスケースを示す。 5.絶縁性合成ゴムを示す。 1. A positive electrode active material containing the compound of the present invention is shown. 2. A nonwoven fabric impregnated with an electrolyte solution is shown. 3. Indicates the negative electrode active material (lithium). 4. The stainless steel case is shown. 5. Indicates insulating synthetic rubber.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  酸化剤と少なくとも一種の下記一般式
(1) で表わされる化合物とを反応させて得られる電
子伝導性高分子の製造法において、該酸化剤として第二
銅系化合物を用いる事を特徴とする電子伝導性高分子。 一般式(1) 【化1】
[Claim 1] In a method for producing an electron-conductive polymer obtained by reacting an oxidizing agent with at least one compound represented by the following general formula (1), a cupric compound is used as the oxidizing agent. An electronically conductive polymer characterized by General formula (1) [Chemical formula 1]
【請求項2】  共重合くり返し単位がヘテロ環化合物
である事を特徴とする請求項1記載の電子伝導性高分子
2. The electron conductive polymer according to claim 1, wherein the copolymerized repeating unit is a heterocyclic compound.
【請求項3】  該高分子化合物の平均粒子径が1μm
以上200μm以下である事を特徴とする請求項1もし
くは2に記載の電子伝導性高分子。
[Claim 3] The average particle diameter of the polymer compound is 1 μm.
The electron conductive polymer according to claim 1 or 2, wherein the electron conductive polymer has a diameter of 200 μm or more.
【請求項4】  請求項1、2もしくは3に記載の電子
伝導性高分子を用いることを特徴とする電池用正極材料
4. A positive electrode material for a battery, characterized in that the electron conductive polymer according to claim 1, 2 or 3 is used.
JP3069478A 1991-03-11 1991-03-11 Electronically conductive polymer Pending JPH04283225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3069478A JPH04283225A (en) 1991-03-11 1991-03-11 Electronically conductive polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3069478A JPH04283225A (en) 1991-03-11 1991-03-11 Electronically conductive polymer

Publications (1)

Publication Number Publication Date
JPH04283225A true JPH04283225A (en) 1992-10-08

Family

ID=13403844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3069478A Pending JPH04283225A (en) 1991-03-11 1991-03-11 Electronically conductive polymer

Country Status (1)

Country Link
JP (1) JPH04283225A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008135371A (en) * 2006-10-27 2008-06-12 Denso Corp Secondary battery active substance and secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008135371A (en) * 2006-10-27 2008-06-12 Denso Corp Secondary battery active substance and secondary battery

Similar Documents

Publication Publication Date Title
US9466839B2 (en) Electrode active material for electricity storage device, and electricity storage device using same
KR100861916B1 (en) Ionic liquid, electrolyte salt for storage device, electrolytic solution for storage device, electric double layer capacitor, and secondary battery
JP4939679B2 (en) Ionic compounds with delocalized anionic charge and their use as ion-conducting components or catalysts
US8242213B2 (en) Method for manufacturing polyradical compound and battery
US9099746B2 (en) Electricity storage device
US20150194665A1 (en) Electrode active material for power storage device and power storage device, and electronic equipment and transport equipment
KR101828731B1 (en) New tetracyano-anthraquino-dimethane polymers and use thereof
WO2005036573A1 (en) Electrode composite body, electrolyte, and redox capacitor
JP2958576B2 (en) Cathode material for battery
JP5126570B2 (en) Method for manufacturing lithium secondary battery
WO2020084828A1 (en) Polymer, electrode active substance and secondary battery
US10301424B2 (en) Polythiophene derivative, secondary cell positive electrode active material, and secondary cell
JP5425694B2 (en) Positive electrode active material for lithium ion secondary battery obtained by performing overcharge / discharge treatment, positive electrode for lithium ion secondary battery comprising the positive electrode active material, and lithium ion secondary battery comprising the positive electrode as components
JPH04283225A (en) Electronically conductive polymer
JP5401389B2 (en) A positive electrode active material for a lithium ion secondary battery containing an aniline derivative, a positive electrode for a lithium ion secondary battery comprising the positive electrode active material, and a lithium ion secondary battery comprising the positive electrode as components
JPH04239020A (en) Production of electronically conductive polymer
JP2581338B2 (en) Polymer solid electrolyte and battery using the same
JP4752218B2 (en) Electrode active material, battery and polyradical compound
KR100337394B1 (en) Method For Manufacturing Polyaniline Including Partially Bonded Disulfide Function And Cathode Including The Same
JP4752217B2 (en) Active materials, batteries and polymers
JP2767721B2 (en) Conductive polymer and method for producing the same
JPH04239523A (en) Production of electrically conductive polymer
JPH04292623A (en) Production of electrically conductive polymer
JPH04214726A (en) Production of electrically conductive high polymer
JPH04324247A (en) Lithium secondary battery