JPH0428287B2 - - Google Patents

Info

Publication number
JPH0428287B2
JPH0428287B2 JP59152115A JP15211584A JPH0428287B2 JP H0428287 B2 JPH0428287 B2 JP H0428287B2 JP 59152115 A JP59152115 A JP 59152115A JP 15211584 A JP15211584 A JP 15211584A JP H0428287 B2 JPH0428287 B2 JP H0428287B2
Authority
JP
Japan
Prior art keywords
image
group
prism
plane
facet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59152115A
Other languages
Japanese (ja)
Other versions
JPS6132002A (en
Inventor
Seizaburo Kimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP15211584A priority Critical patent/JPS6132002A/en
Publication of JPS6132002A publication Critical patent/JPS6132002A/en
Publication of JPH0428287B2 publication Critical patent/JPH0428287B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、平面画像を立体的に表示するための
立体表示用レンズに関するものである。 (従来の技術) 従来、平面画像を立体視するものとしては、人
の左右の眼と同じ程度に視覚を違えた二つの平面
画像を、両眼で別々に見ることで立体感が得られ
るようにしたものが一般的であつたが、このよう
な方法では二つの異なつた平面画像を必要とし、
一つの平面画像をもつて立体視することは不可能
であつた。 昨今、このような一つの平面画像をもつて立体
表示を可能とするものとしては、例えば、特公昭
59−2014等のようなレンチキユラー法を用いたも
のが種々提案されている。 (発明が解決しようとする問題点) しかしながら、この種のレンチキユラー法によ
る立体画像を用いたものは、微細なレンチキユラ
ー形状のレンズを連続的に配列したものであるた
め、見る位置によつては二重像に見えて立体視で
きなくなることがあるばかりか、微細レンズによ
つて画素単位で視差する構造であるため、視覚上
識別できる大きさのある画素群の立体視に必要な
視差を得ることがむずかしく、従つて、実用性の
高い大形画面用のものは望めなかつた。また、こ
れを製造するための金型も、微細なレンズ部分を
正確な曲率で形成するものであるため、その製作
は極めて困難なものであり、これによつてもその
利用範囲は小形画面用のものに限られてしまうば
かりか、コストアツプの要因ともなつていた。 本発明はこれらの点に着目してなされたもの
で、識別可能な大きさの画素群を立体視できる充
分に大きな視差をもたせ、金型の製作を容易化す
ることで実用性の高い大形画面の実現を可能にす
るとともに、比較的安価に供給できる立体視用プ
リズム板を提供せんとするものである。 (問題点を解決するための手段) そのため、本発明では、立体視用プリズム板を
識別できる大きさの方向転角子と平面部とを交互
に配置して単位屈折面群を形成し、この単位屈折
面群を透明平板より成る透視面体の少くとも一つ
の表面に繰返して連続的に配列して構成したもの
である。 (作用) このように構成することによつて、本発明の立
体視用プリズム板は、識別できる大きさの方向転
角子と平面部とが交互に配置された透視面体を介
して平面画像を視差するものであり、これによつ
て画素の集合である画素群を単位として視差する
構造とし、視覚上識別できる大きさのある画素群
を立体視できる充分に大きな視差を得ることを可
能とし、見る位置が遠近左右に移動しても、両眼
の視線がそれぞれに同一画素に著視点をおいて見
る構造であるので、同じ画像が連続して広範囲に
わたつて繰返して多人数で立体視観察可能とな
り、さらに、平面の組合せで方向転角子を形成す
ることで、金型の製造工程から曲面加工を排除
し、さらに、この方向転角子が識別できる比較的
大きなものとしたことで金型の製作を極めて容易
なものとしている。 (実施例) 第1図〜第7図は夫々の本発明に係る立体視用
プリズム板の実施の一例を示す斜視図である。各
図に於て1は透視面体であつて、夫々が透明平板
によつて形成され平行に配置された第1面体2と
第2面体3とによつて形成されている。 この第1面体2の上面には方向転角子5が平面
部6と交互に配列されている。第1図に示す第1
実施例の方向転角子5aは凹面プリズム形状であ
り、縦方向並列状に平行配列されている。 第2図に示す第2実施例の方向転角子5bは凸
面プリズム形状であり、モザイク形状に形成され
ており、第3図に示す第3実施例の方向転子5c
は凹面プリズム形状の頂角を小平面6′にした形
状で形成してこの上面に凹面プリズム形状の方向
転角子5′aを設けた複合方向転角子形状であり、
縦方向並列状に平行配列されている。また第4図
に示す第4実施例の方向転角子5dは底部が小平
面6′となつた有底小円孔で形成されており(孔
を穿つた形状でもよいものである)、複眼形状に
形成されている。 また第5図に示す第5実施例の方向転角子5e
は凸面プリズム形状の頂角を小平面6′で形成し
た形状であり、第6図に示す第6実施例の方向転
角子は第1実施例と同じ方向転角子5aを使用し
ており、第7図に示す第7実施例の方向転角子5
fは凹面プリズム形状の頂角を小平面6′とした
形状である。そしてこれら第5,第6,第7実施
例の方向転角子は縦方向並列形状に平行配列され
ている。これらの方向転角子は大きさを微細形状
ではなく、人の目で識別できる幅で形成されてい
る。 次に平面部6は人の目で識別できる大きさの形
状であり、第1図に示す第1実施例では、平面部
6は等しい大きさで等間隔により方向転角子5a
と交互に連続配置されており、第2図及び第4図
に示す夫々の実施例では右方および前方へ行くほ
ど漸次大きくなつてゆくものであり、第3図に示
す第3実施例では右方へ行くとその幅が一旦広が
つてから狭くなる如く漸次変化しているものであ
り第5図〜第7図に示す夫々の第5〜第7実施例
では右方へ行くと幅が漸次広がつてゆくものであ
る。更に第1図に示す第1実施例以外の各図に示
した平面部6の大きさの変化は各図に於て鎖線で
区切つて示す単位屈折面群7毎に完結しており第
1面体2にはこれがその上面全体に連続して配置
されている。 また、第2面体3の下面にも方向転角子8が平
面部9と交互に配置されており、第3図に示す第
3実施例の方向転角子8cだけは第1面体2の方
向転角子5cとは形状を異にして凹面プリズム形
状の頂角を小平面9′にした方向転角子8cの連
続配置形状であり、平面部9と交互連続配置に形
成して使用している。他の第2面体2の方向転角
子は夫々に8a,8b,8d,8e,8fは第1
面体2の方向転角子と同一形状に形成し、配列形
状も同一に形成されている。第7図に示す第7実
施例だけはピツチを第1面体2の方向転角子の配
列ピツチとは異にしているが他の実施例では全て
第1面体2の方向転角子と第2面体3の方向転角
子の配列ピツチは同一にしている。 次に、これらの立体視用プリズム板によつて一
つの平面画像の立体視について説明する。以下、
背面画像G上に於て、画素が複数以上集まつた画
素群を、画素群からの光線束をa′と記載して、
また光線束を一本の線で代表させて示すものとす
る。画素群の図形表示は−印で示す。 第8図は第1実施例の光学系を示す説明図であ
る。透明体1の対物面側の面より少し離して平面
画像Gがおかれる。この場合、少し離した間隙を
透明な平行平面板におき替えてもよいものであり
本発明の全ての実施についても適合させられるも
のである。さて、画像Gの各画素群P1〜P6から
光線束a′1〜a′6を立体視用プリズム板を通して眼
Aの視線a1〜a6で見る場合、第1面体2の接眼面
10に対応して形成した第2面体3を重ね合わ
せ、前記光線束a′1 a′6 をそれぞれ通過させると
光線束a′1 a′2 は第1面体2の平面部6のY1点、
Y2点と第2面体3の平面部9のY′1点、Y′2点を
通り、視線a1,a2で見ることになる。次に光線束
a′3は第1面体2の方向転角子5aの左側面Y4
と第2面体3の平面部9のY3点で2回の屈折に
より図中、S1の方向に出てゆくから視線a3には見
えないが、このとき画素群P1からの放散する拡
射光線束a″1 が第1面体2の平面部6のY3点に入
射して法線N1〜N′1から遠ざかり図に於て左下の
方向に向い、第2面体3の方向転角子8aの左側
面Y′4点に立てた法線N2〜N′2に近づき、Y′4点か
ら該法線N2〜N′2を遠ざかるようにし屈折して図
に於て左下へ曲るからY3点〜E点の方向に入射
してきた光線束a″1 は2回の屈折で方向転角は∠
E,Q,Oとなる。つまり光線束a″1 は平面部6
と方向転角子8aを通ると、Q〜Oの方向に進ん
でゆくから前記した視線a3で画素群P1を見ること
になる。 次に、画素群P4の光線群a′4 は第1面体2の方
向転角子5aの左側面Y5点で図に於て右下側に
屈折して進み第2面体3の平面部9のY′6点で更
に屈折してS2の方向に出てゆくから視線a4では見
えない。また画素群P5と画素群P6のそれぞれの
光線束a′5 a′6 は前記第1,第2の面体2,3の
各平面部6のY7点とY8点平面部9のY′7点,Y′8
を通り視線a5,a6で画素群P5,P6を見ることにな
る。 このとき前記した画素群P6から放散する拡射
光線束a″6 が第1面体2の平面部6のY6点と第2
面体3の方向転角子8aの右側面Y5点で屈折し
て図に於て右下側に方向転角するので、この光線
a″6 により画素群P6を視線a4で見ることになる。
これによつてもとの画像Gが画像群P1,P2,P3
P4,P5,P6の配列順位で形成されているとすれ
ば、眼Aには画素群P1,P2,P1,P6,P5,P6
配列順位で形成された別の画像G′を見ることに
なる。このように画素単位でなく画素群単位で相
違する配列順だからもとの画像Gとの形状の違い
は大きいものとなる。 次に第9図は第2実施例の光学系を示すもので
ある。この立体視用プリズム板を通して平面画像
Gの画素群P1〜P4を眼Aの視線a1〜a4で見ると、
各画素群からの光線束a′1 a′4 のうちa′2 a′3 は第
1面体2の方向転角子5bと第2面体3の方向転
角子8bを通り、2回の屈折で両画素群の位置が
入れ替るから各画素群の配列順がP1,P3,P2
P4となり、眼Aにはもとの画像Gは異なる別の
画像G′に見えることになる。また、第10図は
第3実施例の光学系を示すもので、このような立
体視用プリズム板を通して平面画像Gの画素群
P1〜P6を眼Aの視線a1〜a6をもつて見ると、各画
素群からの各光線束a′1 a′6 は、それぞれに第1
面体2の方向転角子5a′,5cと第2面体3の平
面9,9′の屈折作用により眼Aにはもとの画像
Gの画素群は配列順が変化して画素群P1,P1
P2,P5,P6,P6の配列で形成された別の画像
G′を見ることになる。 次に、第11図a〜cは第4実施例の光学系を
示すもので、いま平面画像Gを第1面体2、第2
面体3を通し眼Aの視線a1〜a4をもつてaの位置
で見ると、画素群P2の光線束a′2 だけでは第1面
体2の平面6に入射して進み、第2面体3の方向
転角子8dの左側の内側面Y1に大きい角度で入
射するから全反射して平面部9で同図に示すS1
方向に出てゆく。また画素群P3の放散する拡射
光線束a″3 は前記した第2面体3の方向転角子8
dの左側の外側面Y′1に大きい角度で入射するか
ら全反射して視線a2に向う。一方、画素群P1
P3,P4からの光線束a′1 a′3 a′4 はそれぞれ視線
a1,a3,a4に進むからこれによつて眼Aに見える
画像G′は画素群P1,P3,P3,P4で形成される。
次に眼Aをbの位置に移して前述と同じように画
像Gを見ると画素群P1,とP4からの光線束a′1
a′4はそれぞれ図のS1とS2の方向に出てゆくから
眼Aに見える画像G′は画素群P2,P2,P3,P3
形成される。更に眼Aをcの位置に移して前述と
同じように画像Gを見ると、画素群P3の光線束
a′3は図のS2の方向に出てゆくから眼Aに見える
画像G′は画素群がP2,P2,P4,P5で形成される
ことになる。 このように画像を形成している各画素を画素群
単位でその配列順を組替え別の画像にする視差現
象を更に平面部の大きさが順次変化する単位屈折
面群7の場合の光学系作用について第12図によ
り説明する。第12図は第6実施例の光学系を示
すものである。このような立体視用プリズム板を
使用して図に示すように平面画像Gを第1面体2
と第2面体3を通し眼Aの各視線a1〜a14をもつ
て見ると方向転角子5aと平面部6によつて、画
素群P1〜P14の光線束a′1 a′14 のうち、光線束
a′2a′4 a′7 a′12 はそれぞれ同図のS1〜S4の方
向に出てゆき、また、光線束a′4 a′5 a′8 a′13
はそれぞれ同図のS′1〜S′4の方向に出てゆくから
眼Aに見える画像G′は画素群P1,P3,P3,P3
P6,P6,P6,P9,P10,P9,P10,P11,P11,P14
で形成されこの配列順の組替り方は方向転角子5
aの配置が細かくなつて多い部分ほど顕著に現わ
れるものである。 このようにこれまで画素群単位で配列順を組替
えて視差することを更に拡大して単位屈折面群単
位で配列順を組替える視差が得られることにより
眼Aに見える画像G′はもとの画像Gとの形状相
違を大きくすることができるものである。かかる
視覚現象は透視面体1がモザイク形状、複眼形
状、2枚の縦方向並列形状を直交した、または表
裏面が縦方向並列形状の2面を直交した直交形状
等では、画像の上下方向にも生じるから画像の前
景、背景の区分が明確に現わせる視覚効果があ
る。 このように同じ画像でも見る角度の相違によ
り、画素群ごとにそして単位屈折面ごとに画素群
の配列順が組替り別々の画像に見える光学系の作
用を識別可能な大きさのある方向転角子と平面部
の交互配置により視差できることが本発明の特性
である。かかる視差現象を両眼視する場合につい
て次に説明する。 第13図は第5実施例の光学系を示すものであ
る。透視面体1の対物面側に少し離して平面画像
Gをおき、この画像Gが画素群P1〜P5で形成さ
れているとすれば両眼A,Bをもつて画像Gを見
ると、両眼の両視線a1〜a3,b1〜b3はそれぞれに
画素群P1,P3,P5に著視点をおくと、右眼Aの
視線には画像の結像位置を違えた三つの結像点
ap′2ap′3 ap′5 を見ることになるから、画素群
の配列順がもとの画像Gとは組替り、更に左側が
挾まつた別の画像G′を見ることになる。左眼B
の視線には画像の結像位置を違えた三つの結像点
bp′1bp′3 bp′4 を見ることになり、右側が挾ま
り、画素群の配列が組替えられた別の画像G′を
見ることになる。これによつて右目と左目は夫々
形状を左右違えた全く別々の画像を両眼で視差す
ることとなる。 このように両眼で一つの平面画像を画素群ごと
に単位屈折面群によつて左右に視差する現象を広
さのある画像面を見る両眼各視線について第14
図に示す第7実施例の光学系作用を用いて説明す
る。いま平面画像Gの表面に第15図に示す平面
画12が表わされているとすると、該平面画像G
を透視面体1を通して、両眼の各視線a1〜a7とb1
〜b7をもつて平面画12を構成する画素群の点
g,h,i,j,k,l,m部分に両眼の著視点
x1〜x7をおいて互いに傾斜角の異なる視線をもつ
て見るとき、右眼Aの著視点x1〜x7に於る各視線
a1〜a7は平面画12の各画素群の点g〜mのうち
h,i,i,j,k,l,mを見ることになり、
また左眼Bの著視点x1〜x7における各視線b1〜b7
は平面画12の画素群の点g〜mのうち、g,
h,i,j,k,k,lを見ることになる。また
両眼A,Bを著視点x1〜x7まで移動させると視線
a1,b1により透視される部分a2h,b1gが連続し
て右側に移り、部分a3i,b2hに到り同様にa7
m,b7mまで両眼により透視される画素群は部分
を違えて移動する。これにより右眼Aで見られる
連続画像は各画素群の点h,i,i,j,k,
l,mで形成されるから第16図aに示すように
平面画12は左側を狭くして現われる。また、左
眼Bに見られる連続画像は各画素群の点g,h,
i,j,k,k,lで形成されるから第16図b
に示したように平面画12は右側を狭くして現わ
れる。この二つの連続画像は各画素群単位で画素
群が組替り、また単位屈折面群ごとに両眼で視差
することとなり左右の目で大きく形状違えた画像
が別々に視差され、立体視効果の大きい立体感が
得られるものである。 次に本発明の立体視覚用プリズム板は方向転角
子が小平面を形成している第3図〜第7図に示し
た形状の場合、この小平面と平面部の厚さの違い
から夫々小さい視差効果が得られるものである。
即ち第17図に示すように、プリズム板の代りに
透明平面板1′を平面画像Gに面しておき両眼A,
Bで画像Gの画素P1,P2を見るとき、両視線a1
a2,とb1,b2は全て同じ厚さの面を通して見るか
ら画素P1,P2を光角θにより空間の点P′1,P′2
浮き上らせて見る。このとき前記透明平面板1′
の上面の一部に假想線で示した厚さの別の透明平
面板1″を設けて、視線a1だけが視線b1とは別に、
この平面1″を通るとすれば視線a1の屈折点の位
置が替り光角がθ′に変り視線a′1となりその延長線
上に画素Pの像P″を浮き上らせて見ることにな
る。この像P″は前記画素P′より浮き上り方が少
し大きい。このことは両眼全ての視線が立体視用
プリズム板を通して画像を見るときには目は常に
両眼から等距離にある視線(図ではa2,b2)だけ
は著視点xを結んで見ているが他の視線a′1,b1
のように厚さの違う平面と小平面を通して見てい
る場合、視線a′1は鎖線で示す方向を進むから、
厳密的に考えれば両視線a′1とb1は各々結像点x
がズレてP′,P″となり二重の像が生じるもので、
このズレを一つに合わす両眼の融合調節作用が自
律的に働き、著視点を移すことができ立体感は更
に助長される効果がある。 このように本発明は識別可能なる大きさにより
形成した方向転角子と平面部を交互に配置する関
係において平面部を等しい大きさに、もしくは平
面部の大きさが漸次変化する如く形成した単位屈
折面群に形成して連続配置したため一つの平面画
像を左右の眼で見る視覚の相違により左右両眼の
網膜に映ずる像に差異を生ぜしめることで立体感
が得られるものである。以上、図示の実施例に従
つて本発明を詳細に説明したが、本発明はこれら
のみに限定されるべきものではない。即ち、前記
各実施例に於ては第1面体と第2面体を別体とし
ているがこれらを一体的に形成してもよいもので
あり、また前述した第3実施例と略同じ光学系作
用により画素群の配列組替え効果がある第18図
及び第19図に示した如き立体視用プリズム板に
よつても本発明実施に用いることができるもので
ある。また本発明は等しい大きさの平面部と方向
転角子と交互に連続配置した、または平面と交互
に方向転角子の配列を順次変化させて形成する単
位屈折面群を連続配置した第1面体または第2面
体で、裏面が平面のみで形成された単体一枚でも
本発明の光学系作用は変ることなく本発明の実施
に使用できるものであり、また方向転角子の形状
を任意の面を用いて形成することができる。更に
縦方向並列形状、モザイク形状、複眼形状による
透視面体はそれぞれの方向転角子の形状に関係な
く互いに取り替え、または組合わせても本発明の
光学系作用は変ることなく本発明の実施に使用で
きる。例えば一方の面を縦方向並列形状に、他方
の面をモザイク形状にする等も考えられる。更に
縦方向並列形状の表裏各面を互いに直交させた形
状にしてモザイク形状同様の光学系でも本発明を
実施することができる。また、以上述べた第1面
体、第2面体はいづれの面を対物面、接眼面にし
ても使用できるものである。本発明の立体視用プ
リズム板は第1面体または第2面体の表面上に形
成される方向転角子は各方向転角子の形成する幅
または平面部との厚みの差等が交互もしくは順次
に必要とする程度に若干の相違をもつて形成され
ていても本発明の実施に使用することができる。 (発明の効果) 本願発明に係る立体視用プリズム板は、透明平
板より成る透視面体の少なくとも一つの表面に、
識別できる大きさの方向転角子と平面部とを交互
に配置して形成された単位屈折面群が繰返して配
列され、前記方向転角子は、凹面プリズム形状の
頂角を小平面と成し、該小平面に凹面プリズム形
状の方向転角子を設けて複合方向転角子としたこ
とにより平面画像を視差するものであるため、視
覚上識別できる大きさのある画素群を立体視する
に充分な視差を得ることが可能となる。つまり、
画素群単位で視差を生じるもので方向転角面によ
つて方向転角する画素群を画素群単位で配列順を
組替えて、その差異を両眼で大きな視差として視
覚できるものである。 また、見る位置が移動しても両眼の視線はそれ
ぞれ同一画素に著視点をおいて見ているので、同
じ画像を連続して広範囲にわたつて、繰り返して
多人数で立体視できる効果がある。 更に、複合方向転角子は、小平面と平面部との
形成厚みの段差を利用して相対的な結像点の相違
により奥行き感を視覚させる効果を有する。 また、複合方向転角子が比較的大きな平面の組
合せで構成されているため、製造用金型の製造工
程に曲線加工が不要となり、金型の製造が容易と
なる。このため、大型画面の実現が可能となる上
にコストダウンに有効である。 また、本願発明の立体視用プリズム板は、平面
画像の動画に応用すると、画像の動きにより隠れ
た部分が現れ、立体感を更に増すことができる。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a stereoscopic display lens for displaying a two-dimensional image three-dimensionally. (Prior art) Conventionally, a method for stereoscopically viewing a planar image has been to obtain a three-dimensional effect by viewing two planar images with the same degree of visual difference as the left and right eyes of a person separately with both eyes. However, this method requires two different plane images,
It has been impossible to achieve stereoscopic viewing using a single flat image. Recently, there are some devices that enable stereoscopic display using a single planar image, such as the
Various methods using the lenticular method have been proposed, such as 59-2014. (Problems to be Solved by the Invention) However, since this type of stereoscopic image using the lenticular method uses a continuous array of fine lenticular shaped lenses, there may be two problems depending on the viewing position. Not only can it appear as a superimposed image, making it impossible to view stereoscopically, but since the structure uses fine lenses to create parallax on a pixel-by-pixel basis, it is difficult to obtain the parallax necessary for stereoscopic viewing of groups of pixels that are large enough to be visually discernible. Therefore, it was difficult to create a highly practical one for large screens. In addition, the mold used to manufacture this lens is extremely difficult to manufacture because it forms the minute lens part with a precise curvature. Not only was this limited to limited quantities, but it was also a factor in increasing costs. The present invention has been made with attention to these points, and it provides a large enough parallax to enable stereoscopic viewing of a group of pixels of a discernible size, and facilitates the production of a mold, thereby creating a large and highly practical mold. It is an object of the present invention to provide a stereoscopic prism plate that enables the realization of a screen and can be supplied at a relatively low cost. (Means for Solving the Problems) Therefore, in the present invention, a unit refracting surface group is formed by alternately arranging direction angle elements and flat parts of a size that allows the stereoscopic viewing prism plate to be identified, and this unit A group of refractive surfaces is repeatedly and continuously arranged on at least one surface of a see-through surface made of a transparent flat plate. (Function) By configuring as described above, the stereoscopic prism plate of the present invention displays a planar image with parallax through a transparent face piece in which direction anglers and planar portions of a discernible size are alternately arranged. This makes it possible to create a structure in which parallax is created using a pixel group, which is a collection of pixels, as a unit, and to obtain a sufficiently large parallax for stereoscopic viewing of a pixel group that is large enough to be visually discernible. Even if the position moves from perspective to near or to the left or to the right, each eye's line of sight focuses on the same pixel, so the same image can be viewed continuously over a wide area and viewed stereoscopically by many people. Furthermore, by forming a turning angle element by a combination of flat surfaces, curved surface machining is eliminated from the mold manufacturing process, and furthermore, this turning angle element is made relatively large so that it can be identified, making it easier to manufacture molds. This makes it extremely easy. (Example) FIGS. 1 to 7 are perspective views showing examples of implementations of stereoscopic prism plates according to the present invention. In each figure, reference numeral 1 denotes a see-through face piece, which is formed by a first face piece 2 and a second face piece 3, each of which is made of a transparent flat plate and arranged in parallel. On the upper surface of the first face piece 2, direction changers 5 and flat parts 6 are arranged alternately. 1 shown in Figure 1.
The turning elements 5a of the embodiment have a concave prism shape and are arranged in parallel in the vertical direction. The turning element 5b of the second embodiment shown in FIG. 2 has a convex prism shape and is formed in a mosaic shape, and the turning element 5c of the third embodiment shown in FIG.
is a compound direction turner shape in which the apex angle of a concave prism shape is formed into a small plane 6', and a concave prism-shaped direction turner 5'a is provided on the upper surface of the concave prism shape;
They are arranged in parallel in the vertical direction. Further, the direction changer 5d of the fourth embodiment shown in FIG. 4 is formed of a small circular hole with a bottom whose bottom part is a small plane 6' (a shape with a hole may also be used), and has a compound eye shape. is formed. Further, the direction changer 5e of the fifth embodiment shown in FIG.
is a shape in which the apex angle of a convex prism shape is formed by a small plane 6', and the turning element of the sixth embodiment shown in FIG. 6 uses the same turning element 5a as the first embodiment. Direction angle element 5 of the seventh embodiment shown in FIG.
f is a shape in which the apex angle of the concave prism shape is a small plane 6'. The direction changers of these fifth, sixth, and seventh embodiments are arranged in parallel in the vertical direction. The size of these direction anglers is not a minute shape, but is formed with a width that can be discerned by the human eye. Next, the flat portion 6 has a shape that is large enough to be discerned by the human eye, and in the first embodiment shown in FIG.
In the embodiments shown in FIGS. 2 and 4, they gradually become larger toward the right and forward, and in the third embodiment shown in FIG. As you move towards the right side, the width gradually changes such that it once widens and then narrows. In the fifth to seventh embodiments shown in Figs. It is something that continues to spread. Furthermore, the change in the size of the plane portion 6 shown in each figure other than the first embodiment shown in FIG. 2, this is arranged continuously over its entire upper surface. Also, the direction changer 8 is arranged alternately with the flat part 9 on the lower surface of the second face 3, and only the direction changer 8c of the third embodiment shown in FIG. 5c has a different shape, and the apex angle of the concave prism shape is a small plane 9', which is a continuous arrangement of direction turning elements 8c. The direction anglers 8a, 8b, 8d, 8e, and 8f of the other second face pieces 2 are the first
It is formed in the same shape as the direction angle element of the face piece 2, and the arrangement shape is also formed in the same manner. Only in the seventh embodiment shown in FIG. 7, the pitch is different from the arrangement pitch of the deflector of the first face 2, but in all other embodiments, the pitch of the deflector of the first face 2 and the deflector of the second face 3 are different. The arrangement pitch of the direction angle elements is the same. Next, stereoscopic viewing of one planar image using these stereoscopic viewing prism plates will be explained. below,
On the back image G, a pixel group in which multiple or more pixels are gathered is written as P , and a ray flux from the pixel group is written as a' ,
In addition, a beam of light is represented by a single line. A graphical representation of a pixel group is indicated by a - mark. FIG. 8 is an explanatory diagram showing the optical system of the first embodiment. A plane image G is placed a little apart from the surface of the transparent body 1 on the object plane side. In this case, the slightly spaced gap may be replaced with a transparent parallel plane plate, which is applicable to all implementations of the present invention. Now, when viewing the ray bundles a' 1 to a ' 6 from each pixel group P 1 to P 6 of the image G through the stereoscopic prism plate with the line of sight a 1 to a 6 of the eye A, the eyepiece surface of the first face piece 2 When the second face pieces 3 formed corresponding to 10 are superimposed and the ray bundles a' 1 to a' 6 are passed through, the ray bundles a' 1 to a' 2 become Y of the flat part 6 of the first face piece 2. 1point ,
It passes through the Y2 point and the Y'1 point and Y'2 point of the plane part 9 of the second face 3, and is seen with lines of sight a1 and a2 . Then the ray bundle
Since a′ 3 is refracted twice at the Y4 point on the left side of the direction changer 5a of the first facet 2 and at the Y3 point of the flat part 9 of the second facet 3, it exits in the direction S1 in the figure. Although it cannot be seen from the line of sight a3 , at this time, the diffused beam a''1 from the pixel group P1 is incident on the Y3 point of the plane part 6 of the first surface body 2, and the normal line N1 to N'1 It moves away from , faces toward the lower left in the figure, approaches the normal line N 2 to N' 2 set at the 4 points Y' on the left side of the direction changer 8a of the second face 3, and from the 4 point Y' Since N 2 to N' 2 are moved away and refracted and bent to the lower left in the figure, the ray bundle a'' 1 incident in the direction of points Y 3 to E points is refracted twice and the direction angle is ∠
E, Q, O. In other words, the ray bundle a″ 1 is the plane part 6
When it passes through the direction changer 8a, it advances in the direction of Q to O, so that the pixel group P1 is seen from the aforementioned line of sight a3 . Next, the ray group a ' 4 of the pixel group P 4 is refracted toward the lower right side in the figure at point Y 5 on the left side of the direction changer 5 a of the first surface 2 and proceeds to the flat part 9 of the second surface 3. It is further refracted at the Y′ 6 point and exits in the direction of S 2 , so it cannot be seen from the line of sight a 4 . In addition, the ray bundles a' 5 and a ' 6 of the pixel group P 5 and the pixel group P 6 are the Y 7 point and Y 8 point plane portion 9 of each plane portion 6 of the first and second face pieces 2 and 3, respectively. Y′ 7 points, Y′ 8
The pixel groups P 5 and P 6 are seen through the line of sight a 5 and a 6 . At this time, the diffused ray bundle a″ 6 radiating from the pixel group P6 mentioned above is located between the point Y6 of the plane part 6 of the first surface body 2 and the second
It is refracted at 5 points on the right side Y of the direction angle element 8a of the facepiece 3 and is deflected to the lower right side in the figure, so that the pixel group P 6 is viewed from the line of sight a 4 by this ray bundle a″ 6 . Become.
As a result, the original image G becomes the image group P 1 , P 2 , P 3 ,
If it is formed in the order of arrangement of pixel groups P 4 , P 5 , P 6 , then in eye A, it is formed in the order of arrangement of pixel groups P 1 , P 2 , P 1 , P 6 , P 5 , P 6 We will see another image G'. In this way, since the arrangement order differs not in units of pixels but in units of pixel groups, the difference in shape from the original image G is large. Next, FIG. 9 shows the optical system of the second embodiment. When the pixel groups P 1 to P 4 of the planar image G are viewed from the line of sight a 1 to a 4 of the eye A through this stereoscopic prism plate,
Of the ray bundles a' 1 to a' 4 from each pixel group, a' 2 and a' 3 pass through the deflector 5b of the first facet 2 and the deflector 8b of the second facet 3, and are refracted twice. Since the positions of both pixel groups are swapped, the arrangement order of each pixel group is P 1 , P 3 , P 2 ,
P 4 , and the original image G appears to eye A as a different image G'. Moreover, FIG. 10 shows the optical system of the third embodiment, in which the pixel group of the planar image G is transmitted through such a stereoscopic prism plate.
When viewing P 1 to P 6 from the line of sight a 1 to a 6 of eye A, each ray bundle a' 1 to a' 6 from each pixel group is
Due to the refractive action of the direction angle elements 5a' and 5c of the facepiece 2 and the planes 9 and 9' of the second facepiece 3, the arrangement order of the pixel groups of the original image G changes to the eye A, and the pixel groups P 1 , P 1 ,
Another image formed by the array P 2 , P 5 , P 6 , P 6
We will see G′. Next, FIGS. 11 a to 11 c show the optical system of the fourth embodiment.
When viewed at position a with the lines of sight a 1 to a 4 of eye A passing through the face piece 3, the ray bundle a′ 2 of the pixel group P 2 alone enters the plane 6 of the first face piece 2 and travels to the second face piece. Since the light is incident at a large angle on the left inner surface Y1 of the direction changer 8d of the facepiece 3, it is totally reflected and exits in the direction of S1 shown in the figure at the plane part 9 . In addition, the diffused ray bundle a'' 3 of the pixel group P 3 is the direction angler 8 of the second surface 3 described above.
Since it is incident at a large angle on the left outer surface Y′ 1 of d, it is totally reflected and directed toward the line of sight a 2 . On the other hand, pixel group P 1 ,
The ray bundles a′ 1 , a′ 3 , and a′ 4 from P 3 and P 4 are the line of sight, respectively.
The image G' seen by the eye A is formed by the pixel groups P 1 , P 3 , P 3 , and P 4 as the image moves to a 1 , a 3 , and a 4 .
Next, when the eye A is moved to the position b and the image G is viewed in the same manner as described above, the ray bundle a′ 1 from the pixel group P 1 and P 4 is
Since a′ 4 exits in the directions of S 1 and S 2 in the figure, the image G′ seen by eye A is formed by pixel groups P 2 , P 2 , P 3 , and P 3 . Furthermore, when eye A is moved to position c and image G is viewed in the same way as described above, the ray flux of pixel group P 3 is
Since a′ 3 exits in the direction of S 2 in the figure, the image G′ seen by eye A is formed by pixel groups P 2 , P 2 , P 4 , and P 5 . The parallax phenomenon in which each pixel that forms an image is rearranged in pixel group units to create a separate image is further explained by the optical system operation in the case of a unit refractive surface group 7 in which the size of the plane part changes sequentially. This will be explained with reference to FIG. FIG. 12 shows the optical system of the sixth embodiment. Using such a stereoscopic prism plate, a plane image G is displayed on the first facet 2 as shown in the figure.
When viewed from each line of sight a 1 to a 14 of the eye A through the second faceted body 3, the ray bundles a' 1 to a' of the pixel groups P 1 to P 14 are Of 14 , the ray flux
a′ 2 , a′ 4 , a′ 7 , a′ 12 go out in the directions of S 1 to S 4 in the figure, respectively, and the ray bundles a′ 4 , a′ 5 , a′ 8 , a′ 13
appear in the directions S' 1 to S' 4 in the figure, respectively, so the image G' seen by eye A consists of pixel groups P 1 , P 3 , P 3 , P 3 ,
P 6 , P 6 , P 6 , P 9 , P 10 , P 9 , P 10 , P 11 , P 11 , P 14
The way to rearrange this arrangement order is to change the direction angle element 5.
It appears more conspicuously in areas where the arrangement of a is finer and more numerous. In this way, by further expanding the parallax that has been achieved by rearranging the arrangement order in units of pixel groups and obtaining the parallax in which the arrangement order is rearranged in units of unit refractive surface groups, the image G′ seen by eye A becomes the original image. This makes it possible to increase the difference in shape from image G. Such visual phenomena occur when the transparent face piece 1 has a mosaic shape, a compound eye shape, two vertically parallel shapes perpendicular to each other, or an orthogonal shape where the front and back surfaces are perpendicular to two vertically parallel shapes, etc. This creates a visual effect that clearly distinguishes the foreground and background of the image. In this way, due to differences in viewing angles even for the same image, the arrangement order of pixel groups is rearranged for each pixel group and for each unit refracting surface, and the direction angle is large enough to distinguish the effects of the optical system that appear as separate images. A feature of the present invention is that parallax can be created by alternately arranging plane parts. A case in which such a parallax phenomenon is viewed with both eyes will be described next. FIG. 13 shows the optical system of the fifth embodiment. If a planar image G is placed a little apart from the object plane side of the perspective facet 1, and this image G is formed by pixel groups P1 to P5 , then when viewing the image G with both eyes A and B, If the visual lines a 1 to a 3 and b 1 to b 3 of both eyes are focused on the pixel groups P 1 , P 3 , and P 5 , respectively, the image focusing position will be different for the visual line of the right eye A. three imaging points
Since we will see ap′ 2 , ap′ 3 , and ap′ 5 , the arrangement order of the pixel groups will be changed from the original image G, and we will see another image G′ with the left side intersected. . left eye B
There are three image forming points with different image forming positions in the line of sight.
You will see bp′ 1 , bp′ 3 , bp′ 4 , and you will see another image G′ in which the right side is sandwiched and the arrangement of the pixel groups has been rearranged. As a result, the right eye and left eye see completely separate images with different shapes on both sides. In this way, the phenomenon of horizontal parallax when viewing a single plane image with both eyes using unit refracting surface groups for each pixel group can be explained using the
The operation of the optical system of the seventh embodiment shown in the figure will be explained. Assuming that the plane image 12 shown in FIG. 15 is now displayed on the surface of the plane image G, the plane image G
Through the perspective facet 1, each line of sight of both eyes a 1 to a 7 and b 1
Binocular visual points are located at the points g, h, i, j, k, l, and m of the pixel group constituting the plane image 12 with ~b 7
When looking at lines x 1 to x 7 with different inclination angles, each line of sight at the points of view x 1 to x 7 of right eye A
a 1 to a 7 will look at h, i, i, j, k, l, m among the points g to m of each pixel group of the plane image 12,
In addition, each line of sight b 1 to b 7 at the focal points x 1 to x 7 of the left eye B
out of the points g to m of the pixel group of the plane image 12, g,
You will see h, i, j, k, k, l. Also, when you move both eyes A and B to the points of interest x 1 to x 7 , the line of sight changes.
The parts a 2 h, b 1 g seen through a 1 and b 1 continuously move to the right, reaching parts a 3 i , b 2 h, and similarly a 7
m, b The pixel group seen by both eyes up to 7 m moves to different parts. As a result, the continuous image seen by the right eye A consists of points h, i, i, j, k,
1 and m, the plane image 12 appears narrower on the left side, as shown in FIG. 16a. Also, the continuous images seen in the left eye B are the points g, h,
It is formed by i, j, k, k, l, so Figure 16b
As shown in , the plane image 12 appears narrower on the right side. In these two consecutive images, the pixel groups are rearranged for each pixel group, and the binocular disparity occurs for each unit refractive surface group, and the images with greatly different shapes are disparaged for the left and right eyes separately, resulting in a stereoscopic effect. This gives a great three-dimensional effect. Next, when the prism plate for stereoscopic vision of the present invention has the shape shown in FIGS. 3 to 7, in which the direction angle element forms a small plane, each of the prism plates is small due to the difference in thickness between the small plane and the plane part. This provides a parallax effect.
That is, as shown in FIG. 17, instead of the prism plate, a transparent plane plate 1' is placed facing the plane image G so that both eyes A,
When viewing pixels P 1 and P 2 of image G at B, both lines of sight a 1 ,
Since a 2 , b 1 , and b 2 are all viewed through a plane of the same thickness, pixels P 1 and P 2 are viewed as being raised to points P' 1 and P' 2 in space by the light angle θ. At this time, the transparent flat plate 1'
Another transparent flat plate 1'' with the thickness shown by the phantom line is provided on a part of the upper surface, so that only the line of sight A1 is separate from the line of sight B1 .
If it passes through this plane 1'', the position of the refraction point of the line of sight a1 changes, the light angle changes to θ', the line of sight becomes a'1 , and the image P'' of the pixel P appears on the extension line. Become. This image P'' stands out a little more than the pixel P'. This means that when the line of sight of both eyes is viewed through a stereoscopic prism plate, the line of sight of the eyes is always equidistant from both eyes (in the figure). a 2 , b 2 ) is seen connecting the writing point x, but other lines of sight a′ 1 , b 1
When looking through a plane and a small plane with different thicknesses, the line of sight a′ 1 moves in the direction shown by the dashed line, so
Strictly speaking, both lines of sight a′ 1 and b 1 are each the image point x
are shifted and become P′, P″, resulting in a double image.
The fusion adjustment action of the binoculars that brings these discrepancies together works autonomously, allowing the viewing point to be shifted, which has the effect of further enhancing the three-dimensional effect. In this way, the present invention provides a unit refractor in which the flat parts are formed to have the same size or the size of the flat parts gradually changes in a relationship in which direction anglers formed with discernible sizes and flat parts are arranged alternately. Since they are formed into a group of planes and arranged continuously, the difference in visual perception between the left and right eyes when viewing a single plane image creates a difference in the images reflected on the retinas of the left and right eyes, resulting in a three-dimensional effect. Although the present invention has been described above in detail according to the illustrated embodiments, the present invention should not be limited to these only. That is, in each of the embodiments described above, the first facet and the second facet are separate bodies, but they may be formed integrally, and the optical system functions substantially the same as in the third embodiment described above. Therefore, stereoscopic prism plates as shown in FIGS. 18 and 19, which have the effect of rearranging the arrangement of pixel groups, can also be used to implement the present invention. In addition, the present invention provides a first facet or a first facet in which unit refractive surfaces formed by sequentially arranging flat parts and refracting elements of equal size, or by sequentially changing the arrangement of refractive angle elements alternately with flat surfaces, or Even if it is a dihedron with only a flat back surface, it can be used in the practice of the present invention without changing the optical system function of the present invention. It can be formed by Further, the viewing facets having a vertically parallel shape, a mosaic shape, and a compound eye shape can be used to implement the present invention without changing the function of the optical system of the present invention even if they are replaced or combined with each other regardless of the shape of the respective direction angle elements. . For example, it is conceivable to form one surface into a vertically parallel shape and the other surface into a mosaic shape. Furthermore, the present invention can be practiced with an optical system similar to a mosaic shape in which the front and back surfaces of the vertically parallel shape are orthogonal to each other. Furthermore, either of the first and second facets described above can be used as the object surface or the eyepiece surface. In the stereoscopic prism plate of the present invention, the direction changer formed on the surface of the first facet or the second facet needs to have a width formed by each direction changer or a difference in thickness from the flat part, etc., alternately or sequentially. Even if they are formed with slight differences to the extent that they are, they can be used to implement the present invention. (Effects of the Invention) The stereoscopic prism plate according to the present invention has at least one surface of a transparent face piece made of a transparent flat plate.
A group of unit refractive surfaces formed by alternately arranging diversion angle elements and flat parts of discernible size are arranged repeatedly, and the diversion angle elements form an apex angle of a concave prism shape as a small plane, Since the planar image is parallaxed by providing a concave prism-shaped turning element on the small plane to form a compound turning element, the parallax is sufficient to stereoscopically view a group of pixels of a size that can be visually distinguished. It becomes possible to obtain. In other words,
Parallax is generated in units of pixel groups, and the arrangement order of pixel groups whose direction is turned by a direction angle plane is rearranged in units of pixel groups, and the difference can be seen as a large parallax with both eyes. In addition, even if the viewing position moves, both eyes are focused on the same pixel, making it possible for many people to see the same image repeatedly over a wide area. . Furthermore, the compound direction turner has the effect of making the user perceive a sense of depth by utilizing the difference in the thickness of the small plane and the plane part to create a visual sense of depth due to the difference in relative imaging points. Further, since the compound direction rotator is composed of a combination of relatively large planes, curve machining is not necessary in the manufacturing process of the manufacturing mold, and manufacturing of the mold becomes easy. Therefore, it is possible to realize a large screen and is effective in reducing costs. Further, when the stereoscopic prism plate of the present invention is applied to a moving image of a flat image, hidden parts appear due to the movement of the image, and the three-dimensional effect can be further increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第7図は夫々本発明に係る立体視覚用
プリズム板の実施の一例を示す斜視図、第8図〜
第14図はこれらの各実施例の光学系を示す説明
図であり、第15図は平面画像に描かれた平面画
の一例を示す平面図、第16図は左右夫々の眼で
見られる画像を示す説明図、第17図はプリズム
に代えて透明平板を用いた場合の光学系を示す説
明図、第18図、第19図はさらに他の実施例の
立体視用プリズム板の斜視図および光学系を示す
説明図である。 1……透視面体、2……第1面体、3……第2
面体、5a〜5f,8a〜8f……方向転角子、
6,9……平面部、7……単体屈折面群、G……
平面画像。
FIGS. 1 to 7 are perspective views showing an example of implementation of a prism plate for stereoscopic vision according to the present invention, and FIGS.
FIG. 14 is an explanatory diagram showing the optical system of each of these embodiments, FIG. 15 is a plan view showing an example of a planar image drawn on a planar image, and FIG. 16 is an image seen by the left and right eyes, respectively. FIG. 17 is an explanatory diagram showing an optical system when a transparent flat plate is used instead of a prism, and FIGS. 18 and 19 are perspective views of stereoscopic prism plates of other embodiments. It is an explanatory diagram showing an optical system. 1... Perspective face piece, 2... First face piece, 3... Second face piece
Face piece, 5a to 5f, 8a to 8f...direction angle element,
6, 9...Plane portion, 7...Single refractive surface group, G...
Planar image.

Claims (1)

【特許請求の範囲】 1 透明平板より成る透視面体の少なくとも一つ
の表面に、識別できる大きさの方向転角子と平面
部とを交互に配置して形成された単位屈折面群が
繰返して配列され、前記方向転角子は、凹面プリ
ズム形状の頂角を小平面と成し、該小平面に凹面
プリズム形状の方向転角子を設けて複合方向転角
子としたことを特徴とする立体視用プリズム板。 2 単位屈折面群の平面部の大きさが漸次変化す
るように形成されていることを特徴とする特許請
求の範囲第1項記載の立体視用プリズム板。 3 透視面体を透明平板よりなる第1面体と第2
面体とを略平行に配置して形成し、第1面体の一
方の表面に前記単位屈折面群を連続的に配置した
ことを特徴とする特許請求の範囲第1項又は第2
項記載の立体視用プリズム板。 4 第2面体の一方の表面に、識別できる大きさ
の方向転角子と平面部とを交互に配置して形成さ
れた単位屈折面群が繰り返して配列されているこ
とを特徴とする特許請求の範囲第3項記載の立体
視用プリズム板。 5 第2面体の一方の表面に形成された単位屈折
面群の平面部は大きさが漸次変化する如く形成さ
れていることを特徴とする特許請求の範囲第4項
記載の立体視用プリズム板。 6 第1面体の単位屈折面群と第2面体の単位屈
折面群とで、方向転角子の配列ピツチを対応させ
たことを特徴とする特許請求の範囲第4項記載の
立体視用プリズム板。
[Scope of Claims] 1. On at least one surface of a see-through face piece made of a transparent flat plate, a group of unit refractive surfaces formed by alternately arranging diversion angle elements and flat parts of discernible size are repeatedly arranged. , a prism plate for stereoscopic vision, characterized in that the direction turning element has a concave prism shape whose apex angle is a small plane, and a concave prism-shaped direction turning element is provided on the small plane to form a compound direction turning element. . 2. The prism plate for stereoscopic vision according to claim 1, characterized in that the size of the plane portion of the unit refracting surface group is formed so as to gradually change. 3 The transparent face piece is made of a first face piece made of a transparent flat plate and a second face piece made of a transparent flat plate.
Claims 1 or 2 are characterized in that the unit refractive surface group is continuously arranged on one surface of the first facet and is formed by arranging the facets substantially parallel to each other.
A prism plate for stereoscopic vision as described in Section 1. 4. A patent claim characterized in that on one surface of the dihedron, a group of unit refractive surfaces formed by alternately arranging diversion angle elements and flat parts of discernible size are repeatedly arranged. A prism plate for stereoscopic viewing according to scope 3. 5. The prism plate for stereoscopic vision according to claim 4, wherein the planar portion of the unit refractive surface group formed on one surface of the dihedron is formed such that the size thereof gradually changes. . 6. A prism plate for stereoscopic viewing according to claim 4, characterized in that the arrangement pitch of the direction angle elements is made to correspond between the unit refractive surface group of the first facet and the unit refractive facet group of the second facet. .
JP15211584A 1984-07-24 1984-07-24 Prism plate for stereoscopic view Granted JPS6132002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15211584A JPS6132002A (en) 1984-07-24 1984-07-24 Prism plate for stereoscopic view

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15211584A JPS6132002A (en) 1984-07-24 1984-07-24 Prism plate for stereoscopic view

Publications (2)

Publication Number Publication Date
JPS6132002A JPS6132002A (en) 1986-02-14
JPH0428287B2 true JPH0428287B2 (en) 1992-05-14

Family

ID=15533382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15211584A Granted JPS6132002A (en) 1984-07-24 1984-07-24 Prism plate for stereoscopic view

Country Status (1)

Country Link
JP (1) JPS6132002A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57210337A (en) * 1981-06-22 1982-12-23 Seizaburo Kimura Lens for stereoscopy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57210337A (en) * 1981-06-22 1982-12-23 Seizaburo Kimura Lens for stereoscopy

Also Published As

Publication number Publication date
JPS6132002A (en) 1986-02-14

Similar Documents

Publication Publication Date Title
KR101318024B1 (en) Autqstereoscopic display with increased sharpness for non-primary viewing zones
KR100416548B1 (en) Three dimensional image displaying apparatus
JP3966830B2 (en) 3D display device
JP3980685B2 (en) Private stereoscope display using lenticular lens sheet
US20020008674A1 (en) Multi-view image display system
US9715117B2 (en) Autostereoscopic three dimensional display
JPH03113412A (en) Head-up display device
CA2556363A1 (en) Three-dimensional display using variable focusing lens
KR100616558B1 (en) Three-dimensional display device with background image display
CN106257322A (en) Image display
US20120105805A1 (en) Image viewing systems with curved screens
JP2006243732A (en) Two dimensional/three dimensional image switchable display
US4333707A (en) Method of image enhancement
JP2017187707A (en) Three-dimensional image display device and three-dimensional image display method
JP2004226928A (en) Stereoscopic picture display device
JP2842073B2 (en) Lenticular screen for stereoscopic vision
JPH0428287B2 (en)
JPS592014B2 (en) Stereoscopic lens
JPH11119154A (en) Virtual screen type three-dimentional display device
KR102530284B1 (en) Three-dimensional image projection apparatus
JP3418729B2 (en) Screen display device
JPH01102449A (en) Plane prism for stereoscopic vision
JPH0145049B2 (en)
JPS5933449A (en) Transmission plate for stereoscopic vision
JP2000338605A (en) Directive reflection screen and picture display device