JPH0428228A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0428228A
JPH0428228A JP13293490A JP13293490A JPH0428228A JP H0428228 A JPH0428228 A JP H0428228A JP 13293490 A JP13293490 A JP 13293490A JP 13293490 A JP13293490 A JP 13293490A JP H0428228 A JPH0428228 A JP H0428228A
Authority
JP
Japan
Prior art keywords
oxide film
silicon oxide
semiconductor device
manufacturing
implanted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13293490A
Other languages
Japanese (ja)
Other versions
JP2831805B2 (en
Inventor
Toshiro Nakanishi
俊郎 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2132934A priority Critical patent/JP2831805B2/en
Publication of JPH0428228A publication Critical patent/JPH0428228A/en
Application granted granted Critical
Publication of JP2831805B2 publication Critical patent/JP2831805B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28185Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation with a treatment, e.g. annealing, after the formation of the gate insulator and before the formation of the definitive gate conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/518Insulating materials associated therewith the insulating material containing nitrogen, e.g. nitride, oxynitride, nitrogen-doped material

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Formation Of Insulating Films (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To restrain the insulation breakdown due to the hole accumulation regardless of the high field impression by a method wherein nitrogen ions are implanted at a specific angle into an oxide film containing at least Si, before a heat treatment. CONSTITUTION:An Si oxide film 2 is formed on a p type Si(100) substrate 1. Next, nitrogen ions are implanted at an angle of 5-10 deg. into the film 2 to form another Si oxide film 2a containing N. Finally, the whole body is heat- treated.

Description

【発明の詳細な説明】 〔概要] 半導体装置の製造方法に関し、 シリコン酸化膜に高電界を加えても正孔蓄積による絶縁
破壊を生じ難くすることができる半導体装置及びその製
造方法を提供することを目的とし、少なくともシリコン
を含有する酸化膜に該酸化膜耐圧を向上させるために窒
素イオンを注入角度5度以上10度以下の範囲でイオン
注入し、次いで熱処理する工程を含むように構成する。
[Detailed Description of the Invention] [Summary] Regarding a method for manufacturing a semiconductor device, it is an object of the present invention to provide a semiconductor device and a method for manufacturing the same that can make it difficult to cause dielectric breakdown due to hole accumulation even when a high electric field is applied to a silicon oxide film. In order to improve the withstand voltage of the oxide film, the method includes the steps of implanting nitrogen ions into an oxide film containing at least silicon at an implantation angle of 5 degrees or more and 10 degrees or less, and then performing heat treatment.

〔産業上の利用分野〕[Industrial application field]

本発明は、シリコン酸化膜を有する半導体装置の製造方
法において、電界を加えたときの歩留まりを向上させる
ためにシリコン酸化膜に窒素を注入した絶縁膜に関する
The present invention relates to an insulating film in which nitrogen is implanted into a silicon oxide film in order to improve the yield when an electric field is applied in a method of manufacturing a semiconductor device having a silicon oxide film.

近年のLSIの高集積化に伴い、ゲート酸化膜や蓄積キ
ャパシター酸化膜に用いられるシリコン酸化膜は増々薄
くなってきている。一方電源電圧はスケールダウンに比
べて下げることができず、シリコン酸化膜にかかる電界
強度は増加する傾向にある。高電界ではシリコン酸化膜
は絶縁破壊を起こし易く、歩留まりも低下する。このた
め、歩留まりを向上させるため、容易に絶縁破壊を起こ
さないシリコン酸化膜を形成する技術が要求されている
With the recent trend toward higher integration of LSIs, silicon oxide films used for gate oxide films and storage capacitor oxide films are becoming increasingly thinner. On the other hand, the power supply voltage cannot be lowered compared to scaling down, and the electric field strength applied to the silicon oxide film tends to increase. In high electric fields, silicon oxide films are prone to dielectric breakdown, and yields are also reduced. Therefore, in order to improve yield, there is a need for a technique for forming a silicon oxide film that does not easily cause dielectric breakdown.

〔従来の技術〕[Conventional technology]

従来の半導体装置においては、ゲート酸化膜(シリコン
酸化膜)や蓄積キャパシター酸化膜(シリコン酸化膜)
を酸素雰囲気中で熱処理あるいはCVD法により形成し
、そのシリコン酸化膜上部にポリSi等の電極を堆積す
る等してMO3構造を得ていた。
In conventional semiconductor devices, gate oxide film (silicon oxide film) and storage capacitor oxide film (silicon oxide film)
The MO3 structure was obtained by forming a silicon oxide film by heat treatment or CVD in an oxygen atmosphere, and depositing an electrode such as poly-Si on top of the silicon oxide film.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、」二層した半導体装置の製造方法では、素子
が微細化されるとスケーリングの法則により設計上シリ
コン酸化膜の膜厚を薄くしなければならず、このため、
シリコン酸化膜に加わる電界強度が大きくなりトンネル
電流が流れ易くなる。以下、これについては第4図に示
すシリコン酸化膜のエネルギーバンドを用いて具体的に
説明する。
However, in the manufacturing method of two-layer semiconductor devices, as the elements become smaller, the design of the silicon oxide film must be made thinner due to the law of scaling.
The electric field strength applied to the silicon oxide film increases, making it easier for tunnel current to flow. This will be specifically explained below using the energy band of the silicon oxide film shown in FIG.

まず、ポリSiから電子を注入する場合を考える。シリ
コン酸化膜膜厚が厚い場合は、第4図(a)に示すバリ
ア幅H1が大きくなり電界強度が小さいためトンネル電
流はほとんど流れない。
First, consider the case where electrons are injected from poly-Si. When the silicon oxide film is thick, the barrier width H1 shown in FIG. 4(a) becomes large and the electric field strength is small, so that almost no tunnel current flows.

ところが、シリコン酸化膜膜厚が薄くなると、第4図(
b)に示すバリア幅H2が小さくなり電界強度が大きく
なるため、シリコン酸化膜に注入された電子は高いエネ
ルギーを持つので、インパクト・アイオニゼーションを
引き起こし電子と正孔が発生ずる。この時、シリコン酸
化膜中の移動度が高い電子は抜けるが正孔は酸化膜中に
残る。そして、時間とともに正札は酸化膜中に蓄積され
、それに伴い電子のトンネル確率が増加してトンネル電
流が増加する(第4図(C))。トンネル電流が増加す
ると蓄積される正孔も増えて電流増加に加速がつき、遂
には絶縁破壊に到る。
However, as the silicon oxide film becomes thinner, as shown in Figure 4 (
As the barrier width H2 shown in b) becomes smaller and the electric field strength becomes larger, the electrons injected into the silicon oxide film have high energy, causing impact ionization and generating electrons and holes. At this time, electrons with high mobility in the silicon oxide film escape, but holes remain in the oxide film. Then, over time, the genuine tags are accumulated in the oxide film, and accordingly, the probability of electron tunneling increases and the tunneling current increases (FIG. 4(C)). As the tunneling current increases, the number of accumulated holes also increases, accelerating the increase in current, and eventually leading to dielectric breakdown.

したがって、初期不良の少ない酸化膜が得られたとして
も、高電界を印加すると正孔が蓄積され絶縁破壊すると
いった問題を生じていた。
Therefore, even if an oxide film with few initial defects is obtained, a problem arises in that holes are accumulated and dielectric breakdown occurs when a high electric field is applied.

そこで本発明は、シリコン酸化膜に高電界を加えても正
孔蓄積による絶縁破壊を生じ難くすることができる半導
体装置の製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a method for manufacturing a semiconductor device that makes it difficult to cause dielectric breakdown due to hole accumulation even when a high electric field is applied to a silicon oxide film.

〔課題を解決するための手段〕[Means to solve the problem]

本発明による半導体装置の製造方法は上記目的達成のた
め、少なくともシリコンを含有する酸化膜に該酸化膜耐
圧を向上させるために窒素イオンを注入角度5度以上1
0度以下の範囲でイオン注入し、次いで熱処理する工程
を含むものである。
In order to achieve the above object, the method of manufacturing a semiconductor device according to the present invention implants nitrogen ions into an oxide film containing at least silicon at an angle of 5 degrees or more to improve the breakdown voltage of the oxide film.
This process includes a step of implanting ions at a temperature of 0 degrees or less and then performing heat treatment.

本発明において、窒素イオンの注入角度の下限を5度と
したのは、注入角度が5度より小さくなると酸化膜表面
で反射され、イオン種が酸化膜中に取り込まれなくなっ
てしまうからである。また、注入角度の上限を10度と
したのは、注入角度が10度より大きくなると酸化膜を
突き抜けてSiノ<ルクに達してしまうので、イオン種
が酸化膜中に取り込まれなくなり、また、注入加速電圧
を低く制御することが困難となってしまうからである。
In the present invention, the lower limit of the implantation angle of nitrogen ions is set to 5 degrees because if the implantation angle is smaller than 5 degrees, the ion species will be reflected from the oxide film surface and will not be incorporated into the oxide film. In addition, the upper limit of the implantation angle was set to 10 degrees because if the implantation angle was greater than 10 degrees, the ion species would penetrate the oxide film and reach the Si nozzle, so the ion species would not be incorporated into the oxide film. This is because it becomes difficult to control the injection acceleration voltage to a low level.

本発明においては、前記酸化膜はリンが含有されている
PSG膜、リン及びボロンが含有されているBPSG膜
であってもよい。
In the present invention, the oxide film may be a PSG film containing phosphorus or a BPSG film containing phosphorus and boron.

〔作用〕[Effect]

本発明では、第3図(b)に示す如くシリコン酸化膜中
にNを位置するようにし、シリコン酸化膜の禁制帯中に
1−ラップを形成する。このため、シリコン酸化膜に高
電界を印加して電子をトンネルさせても、キャリアはト
ラップを介してシリコン酸化膜から抜けるためシリコン
酸化膜中に電荷が溜まることはない(j+、jz)。そ
のため、従来の第3図(a)に示す何もイオン注入して
いない場合化じるようなエネルギー・バンドがベンディ
ングすることもなく 、]、OMV / cm以上の高
電界がかかるまで容易に絶縁破壊しない。
In the present invention, as shown in FIG. 3(b), N is located in the silicon oxide film to form a 1-wrap in the forbidden band of the silicon oxide film. Therefore, even if a high electric field is applied to the silicon oxide film to cause electrons to tunnel, carriers escape from the silicon oxide film via traps, so no charges are accumulated in the silicon oxide film (j+, jz). Therefore, there is no bending of the energy band, which would occur if no ions were implanted as shown in Fig. 3(a), and the insulation can be easily maintained until a high electric field of more than OMV/cm is applied. Do not destroy.

したがって、このシリコン酸化膜をMOSゲトやキャパ
シターの絶縁膜に用いた場合には、高電界に対し絶縁破
壊し難くすることができるため、信顛性の高いLSIを
構成することができる。
Therefore, when this silicon oxide film is used as an insulating film for a MOS gate or a capacitor, it can be made difficult to cause dielectric breakdown in response to a high electric field, so that an LSI with high reliability can be constructed.

〔実施例〕〔Example〕

以下、本発明を図面に基づいて説明する。 Hereinafter, the present invention will be explained based on the drawings.

第1図及び第2図は本発明に係る半導体装置の製造方法
の一実施例を説明する図であり、第1図は一実施例の製
造方法を説明する図、第2図は一実施例の効果を説明す
る図である。図示例の製造方法はMO3I−ランジスク
等の製造方法に適用することができる。第1図において
、lはSi等からなる基板、2はS i 02等からな
るシリコン酸化膜、2a!i′Nが含有されたシリコン
酸化膜である。
1 and 2 are diagrams for explaining one embodiment of the method for manufacturing a semiconductor device according to the present invention, FIG. 1 is a diagram for explaining the method for manufacturing one embodiment, and FIG. 2 is a diagram for explaining one embodiment. It is a figure explaining the effect of. The manufacturing method of the illustrated example can be applied to a manufacturing method of MO3I-Landisc, etc. In FIG. 1, l is a substrate made of Si or the like, 2 is a silicon oxide film made of S i 02 or the like, and 2a! This is a silicon oxide film containing i'N.

次に、その製造方法について説明する。Next, the manufacturing method will be explained.

まず、第1図(a)に示す例えばp型S i (100
)からなる基板lを用い、第1図(b)に示すように、
例えば1000℃の乾燥酸素雰囲気中で基板1上にシリ
コン酸化膜2を膜厚が例えば20nmで形成する。
First, for example, p-type Si (100
), as shown in FIG. 1(b),
For example, a silicon oxide film 2 having a thickness of 20 nm, for example, is formed on a substrate 1 in a dry oxygen atmosphere at 1000°C.

次に、第1図(C)に示すように、Nを7°の角度、エ
ネルギー10 KeVでシリコン酸化膜2にイオン注入
することにより、第1図(d)に示すような中央にRP
  (分布のピーク)を持つNが含有されたシリコン酸
化膜2aを得ることができる。
Next, as shown in FIG. 1(C), N is ion-implanted into the silicon oxide film 2 at an angle of 7° with an energy of 10 KeV to form a RP in the center as shown in FIG. 1(d).
A silicon oxide film 2a containing N having a distribution peak can be obtained.

そして、このシリコン酸化膜2aをゲート酸化膜や蓄積
キ、ドパジター酸化膜として用い、半導体装置を構成す
る。
Then, a semiconductor device is constructed using this silicon oxide film 2a as a gate oxide film, a storage layer, and a dopant oxide film.

すなわち、」二層実施例では、第2図(a)、(b)に
示すように、MOSダイオードの酸化膜耐圧が向上して
いるかどうかの効果を示すヒストグラムを調べたところ
、Nを注入した第2図(b)に示す場合では何も注入し
ていない第2図(a)に示す従来の場合(レファレンス
)と比較して分布が高耐圧側に鋭いピークをもつように
なり、10MV/cm以上の耐圧をもつ良品率は従来の
レファレンスでは69%であるが、Nを注入すると92
%になっているのが判った。
In other words, in the two-layer embodiment, as shown in FIGS. 2(a) and 2(b), when examining the histogram showing the effect of improving the oxide film breakdown voltage of the MOS diode, it was found that N was implanted. In the case shown in Fig. 2(b), compared to the conventional case (reference) shown in Fig. 2(a) in which nothing is injected, the distribution has a sharp peak on the high breakdown voltage side, and 10 MV/ The rate of non-defective products with a breakdown voltage of cm or more is 69% with conventional references, but when N is injected, it increases to 92%.
I found that it was %.

なお、上記実施例ではシリコン酸化膜1にNをイオン注
入して耐圧特性が優れている場合について説明したが、
本発明は、これに限定されるものではなく、イオン注入
後熱処理(例えば、1000”10分、Nガス雰囲中)
する場合であってもよく、この場合もNをシリコン酸化
膜にイオン注入する場合と同様耐圧特性が優れている。
Incidentally, in the above embodiment, a case was explained in which N was ion-implanted into the silicon oxide film 1 to obtain excellent breakdown voltage characteristics.
The present invention is not limited to this, and the heat treatment after ion implantation (for example, 1000" for 10 minutes in an N gas atmosphere)
In this case as well, the withstand voltage characteristics are excellent as in the case where N is ion-implanted into the silicon oxide film.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、シリコン酸化膜に高電界を加えても正
孔蓄積による絶縁破壊を生じ難くすることができるとい
う効果がある。
According to the present invention, there is an effect that dielectric breakdown due to hole accumulation can be made difficult to occur even when a high electric field is applied to a silicon oxide film.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明に係る半導体装置の製造方法
の一実施例を説明する図であり、第1図は一実施例の製
造方法を説明する図、第2図は一実施例の効果を説明す
る図、第3図は本発明の詳細な説明する図、 第4′図は従来例の課題を説明する図である。 1・・・・・・基板、 2.2a・・・・・・シリコン酸化膜。 班1 2/−−へ\、 誼■
1 and 2 are diagrams for explaining one embodiment of the method for manufacturing a semiconductor device according to the present invention, FIG. 1 is a diagram for explaining the method for manufacturing one embodiment, and FIG. 2 is a diagram for explaining one embodiment. FIG. 3 is a diagram explaining the present invention in detail, and FIG. 4' is a diagram explaining the problems of the conventional example. 1...Substrate, 2.2a...Silicon oxide film. Group 1 2/--to\, 誼■

Claims (1)

【特許請求の範囲】[Claims]  少なくともシリコンを含有する酸化膜に該酸化膜耐圧
を向上させるために窒素イオンを注入角度5度以上10
度以下の範囲でイオン注入し、次いで熱処理する工程を
含むことを特徴とする半導体装置の製造方法。
Nitrogen ions are implanted into an oxide film containing at least silicon at an angle of 5 degrees or more to improve the breakdown voltage of the oxide film.
1. A method for manufacturing a semiconductor device, the method comprising the steps of implanting ions at a temperature below 100° C. and then performing heat treatment.
JP2132934A 1990-05-23 1990-05-23 Method for manufacturing semiconductor device Expired - Fee Related JP2831805B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2132934A JP2831805B2 (en) 1990-05-23 1990-05-23 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2132934A JP2831805B2 (en) 1990-05-23 1990-05-23 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH0428228A true JPH0428228A (en) 1992-01-30
JP2831805B2 JP2831805B2 (en) 1998-12-02

Family

ID=15092917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2132934A Expired - Fee Related JP2831805B2 (en) 1990-05-23 1990-05-23 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2831805B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11204793A (en) * 1997-10-24 1999-07-30 Lsi Logic Corp Electronic device gate oxide hardening method and semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11204793A (en) * 1997-10-24 1999-07-30 Lsi Logic Corp Electronic device gate oxide hardening method and semiconductor device

Also Published As

Publication number Publication date
JP2831805B2 (en) 1998-12-02

Similar Documents

Publication Publication Date Title
US5567638A (en) Method for suppressing boron penetration in PMOS with nitridized polysilicon gate
US4502202A (en) Method for fabricating overlaid device in stacked CMOS
US4078947A (en) Method for forming a narrow channel length MOS field effect transistor
US3849204A (en) Process for the elimination of interface states in mios structures
US5661335A (en) Semicondutor having selectively enhanced field oxide areas and method for producing same
CN100524654C (en) Drain/source extension structure of a field effect transistor including doped high-k sidewall spacers
US6413881B1 (en) Process for forming thin gate oxide with enhanced reliability by nitridation of upper surface of gate of oxide to form barrier of nitrogen atoms in upper surface region of gate oxide, and resulting product
JPS5932172A (en) Integrated circuit made of schottky barrier mos device and method of producing same
US20020000628A1 (en) Semiconductor device and production method thereof
JPH0691183B2 (en) How to form a capacitor
US6376875B1 (en) Semiconductor component with compensation implantation
US6759296B2 (en) Method of manufacturing a flash memory cell
JPH0428228A (en) Manufacture of semiconductor device
JP2551681B2 (en) Method for manufacturing semiconductor device
US6518149B1 (en) Semiconductor device and method of manufacturing the same
JP2703883B2 (en) MIS transistor and method of manufacturing the same
RU2235388C2 (en) Method for manufacturing mis transistor with local sections of buried insulator
JP2000208526A (en) Manufacture of silicon integrated circuit
JPH04124834A (en) Semiconductor device and manufacture thereof
KR100315018B1 (en) Method for forming charge storage electrode of DRAM device
KR960003756B1 (en) Forming method of passivation film
JPH077748B2 (en) Method for manufacturing semiconductor device
JPH0443649A (en) Semiconductor device and its preparation
Alvi et al. Thin polyoxide films grown by rapid thermal processing
JP2001102571A (en) Semiconductor device and manufacturing method therefor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees