JPH04280887A - Boron nitride(bn) composite material - Google Patents

Boron nitride(bn) composite material

Info

Publication number
JPH04280887A
JPH04280887A JP3043853A JP4385391A JPH04280887A JP H04280887 A JPH04280887 A JP H04280887A JP 3043853 A JP3043853 A JP 3043853A JP 4385391 A JP4385391 A JP 4385391A JP H04280887 A JPH04280887 A JP H04280887A
Authority
JP
Japan
Prior art keywords
boron nitride
sintered body
composite sintered
molten steel
surface layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3043853A
Other languages
Japanese (ja)
Inventor
Hiromichi Ota
太田 広道
Seijiro Tanaka
征二郎 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Refractories Corp
Original Assignee
Kawasaki Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Refractories Co Ltd filed Critical Kawasaki Refractories Co Ltd
Priority to JP3043853A priority Critical patent/JPH04280887A/en
Publication of JPH04280887A publication Critical patent/JPH04280887A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the corrosion resistance of a boron nitride (BN) composite material to molten steel without lowering the thermal shock resistance. CONSTITUTION:A silicon nitride (Si3N4)-boron nitride(BN) composite sintered material or a sialon-boron nitride(BN) composite sintered material is covered with a surface layer produced by sintering one or more substances selected from alumina(Al2O3), zirconia(ZrO2), magnesia(MgO) and spinel(MgAl2O4).

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、例えば溶鋼等侵食性の
高い溶融金属の処理に用いる窒化ホウ素(BN)系複合
材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a boron nitride (BN) composite material used for treating highly corrosive molten metals such as molten steel.

【0002】0002

【従来の技術】従来より水平連続鋳造用の鋳型とタンデ
ィシュを接続する耐火物(いわゆるブレークリング)や
、タンディシュの溶鋼温度測定用の熱電対保護管の構成
材料として、例えば窒化ケイ素(以下、Si3 N4 
と記載する)−窒化ホウ素(以下、BNと記載する)系
複合焼結体あるいはサイアロン−BN系複合焼結体等の
反応焼結法ないしは常圧焼結法によって得られるBN系
複合材が使用されてきた。このようなBN系複合材は、
1500℃前後の温度下で溶鋼に曝される結果、溶鋼と
の化学的な反応によって損耗することに加えて、ほぼ気
孔率25〜35%の割合で存在する該BN系複合材の気
孔中に溶鋼が侵入して凝固し、溶鋼の動きによって物理
的に摩耗除去される等の、激しい摩耗作用を受ける条件
下で使用される。
[Prior Art] Conventionally, silicon nitride (hereinafter referred to as Si3 N4
)-boron nitride (hereinafter referred to as BN)-based composite sintered body or sialon-BN-based composite sintered body, etc. BN-based composite material obtained by reaction sintering method or pressureless sintering method is used. It has been. Such a BN-based composite material is
As a result of being exposed to molten steel at a temperature of around 1500°C, in addition to being damaged by chemical reactions with the molten steel, the pores of the BN-based composite, which exist at a porosity of approximately 25 to 35%, It is used under conditions where it is subjected to severe abrasion, such as when molten steel enters and solidifies and is physically worn away by the movement of the molten steel.

【0003】このため、耐侵食性の向上を図るために、
組織の緻密化を図る目的で、例えば特開昭56−120
575号公報では、組織の緻密化を図るために原料に窒
化アルミニウム(AlN)を添加したSi3 N4 −
BN系複合焼結体が開示され、また特願昭58−158
783号では、同じく原料にアルミナ(Al2 O3 
)を添加したSi3 N4 −BN系複合焼結体等が提
案されている。
[0003] Therefore, in order to improve the erosion resistance,
For the purpose of making the organization more detailed, for example,
Publication No. 575 discloses Si3 N4 - in which aluminum nitride (AlN) is added to the raw material in order to make the structure denser.
A BN-based composite sintered body was disclosed, and patent application No. 58-158
No. 783 also uses alumina (Al2O3) as a raw material.
) has been proposed, such as a Si3N4-BN composite sintered body.

【0004】0004

【発明が解決しようとする課題】しかしながら、上記特
開昭56−120575号公報記載の、および特願昭5
8−158783号のSi3 N4−BN系複合焼結体
はいずれも溶鋼に対する耐侵食性の向上に一定の効果は
認められるものの、依然として10%程度の気孔率を有
するために、特に侵食性の高いステンレス鋼に対する場
合には上述した気孔中に溶鋼が侵入して凝固し、溶鋼の
動きによって物理的に摩耗される損耗メカニズムを解消
するには至らず、長時間の使用では問題があった。
[Problems to be Solved by the Invention] However, the above-mentioned Japanese Patent Application Laid-open No. 56-120575 and Japanese Patent Application No. 1983
Although the Si3N4-BN composite sintered body of No. 8-158783 has a certain effect on improving the corrosion resistance against molten steel, it still has a porosity of about 10%, so it is particularly erodible. In the case of stainless steel, the wear mechanism in which molten steel enters the pores and solidifies, and is physically worn away by the movement of the molten steel cannot be solved, and this poses a problem in long-term use.

【0005】さらに上記AlN及びAl2 O3 を原
料中に配合することによって耐熱衝撃性が低下すること
が指摘されている。本発明は上記従来の事情に鑑み、提
案されたものであって、耐熱衝撃性を損なうことなく、
溶鋼に対する耐侵食性を向上させたBN系複合材を提供
することを目的とするものである。
Furthermore, it has been pointed out that the thermal shock resistance is lowered by blending the above-mentioned AlN and Al2 O3 into the raw materials. The present invention has been proposed in view of the above-mentioned conventional circumstances, and the present invention has been proposed without impairing thermal shock resistance.
The object of the present invention is to provide a BN-based composite material with improved corrosion resistance against molten steel.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に本発明は以下の手段を採用する。すなわち、窒化ケイ
素(Si3 N4 )−窒化ホウ素(BN)系複合焼結
体あるいはサイアロン−窒化ホウ素(BN)系複合焼結
体を、アルミナ(Al2 O3 )、ジルコニア(Zr
O2 )、マグネシア(MgO)、スピネル(MgAl
2 O4)のうちから選ばれる1種以上の物質を焼結さ
せた表面層で被覆した窒化ホウ素(BN)系複合材であ
る。
[Means for Solving the Problems] In order to achieve the above object, the present invention employs the following means. That is, a silicon nitride (Si3 N4)-boron nitride (BN)-based composite sintered body or a sialon-boron nitride (BN)-based composite sintered body is replaced with alumina (Al2 O3), zirconia (Zr
O2 ), magnesia (MgO), spinel (MgAl
This is a boron nitride (BN)-based composite material coated with a surface layer made by sintering one or more substances selected from the group consisting of 2 O4).

【0007】[0007]

【作用】上記の構成によれば、いずれも溶鋼等に対する
耐侵食性に優れた材料であるAl2 O3 、ZrO2
 、MgO、MgAl2 O4 の内から選ばれる1種
以上の物質を焼結して得られた表面層は、該BN系複合
材の表面から侵入しようとする溶鋼等に対して防御する
機能を有するとともに、基材であるBN系複合材の熱伝
導率を大幅に変化させることがないので耐熱衝撃性が低
下することはない。
[Operation] According to the above structure, Al2O3 and ZrO2, both of which are materials with excellent corrosion resistance against molten steel, etc.
The surface layer obtained by sintering one or more substances selected from the group consisting of Since the thermal conductivity of the BN-based composite material, which is the base material, is not significantly changed, the thermal shock resistance does not deteriorate.

【0008】上記表面層は、含浸法や塗布法、CVDな
どの形成方法があるが、基材であるBN系複合材との密
着性が高く、高温使用下でも基材との剥離が生じない方
法として含浸法等が好ましい。また、表面層の厚みは溶
融金属の侵食を防止する目的のためには、10μm 以
上が要求され、逆に該表面層が厚すぎると熱伝導率の低
い表面層との膨張率の差から耐熱衝撃性が低下し、表面
層の剥離を生ずることがあり、好ましくは30〜300
μm が好適と確認できた。このような表面層の厚みは
含浸時間、塗布作業手段の選択、コーティング時間等、
各形成方法でのファクターを調節することで任意にコン
トロールすることができる。
[0008] The above-mentioned surface layer can be formed by impregnation, coating, CVD, or other methods, but it has high adhesion to the BN composite material that is the base material, and does not peel off from the base material even when used at high temperatures. As a method, an impregnation method or the like is preferable. In addition, the thickness of the surface layer is required to be 10 μm or more for the purpose of preventing erosion of molten metal, and conversely, if the surface layer is too thick, it will resist heat due to the difference in expansion coefficient with the surface layer, which has low thermal conductivity. The impact strength may decrease and the surface layer may peel off, so preferably 30 to 300
It was confirmed that μm is suitable. The thickness of this surface layer depends on the impregnation time, selection of application method, coating time, etc.
It can be arbitrarily controlled by adjusting the factors in each formation method.

【0009】[0009]

【実施例】以下、実施例を基に、本発明を具体的に説明
する。 ○実施例1 気孔率25%のサイアロン−BN系複合焼結体の一面を
アルミナ(Al2 O3 )ゾル中に浸漬し、他面より
真空吸引してアルミナゾルを含浸させた。その後、この
サイアロン−BN系複合焼結体を乾燥させた後、N2 
雰囲気中、1600℃で焼成し、150μmの厚み(E
PMA Electron probe microa
nalyser による線分析で測定)をもつ、Al2
 O3 の表面層を形成させ、実施例1を得た。
[Examples] The present invention will be specifically explained below based on Examples. Example 1 One side of a Sialon-BN composite sintered body having a porosity of 25% was immersed in alumina (Al2O3) sol, and vacuum suction was applied from the other side to impregnate the alumina sol. Thereafter, after drying this sialon-BN composite sintered body, N2
It was fired at 1600°C in an atmosphere to a thickness of 150 μm (E
PMA Electron probe microa
(measured by line analysis using a analyzer)
A surface layer of O3 was formed to obtain Example 1.

【0010】このようにして得られたサイアロン−BN
系複合焼結体を溶融したステンレス鋼(SUS304)
中に1550℃で5時間浸漬し、侵食量を調べた。尚、
比較材として上記処理を施さない気孔率25%のサイア
ロン−BN系複合焼結体も同条件で溶融したステンレス
鋼(SUS304)中に浸漬し、侵食量を調べた。その
結果、比較材のサイアロン−BN系複合焼結体は、表面
より4.5mmの深さまで溶鋼による侵食が進み、試料
が損耗していたのに対して、上記実施例では溶鋼による
侵食が全く認められず、損耗量は0であった。
Sialon-BN thus obtained
Stainless steel (SUS304) with fused composite sintered body
The specimens were immersed for 5 hours at 1550°C and the amount of corrosion was examined. still,
As a comparison material, a Sialon-BN composite sintered body having a porosity of 25% and not subjected to the above treatment was also immersed in molten stainless steel (SUS304) under the same conditions, and the amount of erosion was examined. As a result, the comparison material Sialon-BN composite sintered body was eroded by molten steel to a depth of 4.5 mm from the surface, and the sample was worn out, whereas in the above example, there was no erosion by molten steel. No damage was observed, and the amount of wear was 0.

【0011】また、上記実施例1の熱伝導率は0.02
cal/cm・sec ・℃であり、比較材の熱伝導率
と殆ど変わらない値を示し、耐熱衝撃性も従来と同等の
性能を有するものと判断できる。 ○実施例2 気孔率32%のSi3 N4 −BN系複合焼結体をジ
ルコニア(ZrO2 )ゾル中に浸漬し、他面より真空
吸引してジルコニアゾルを含浸させた。その後、このS
i3 N4 −BN系複合焼結体を乾燥させた後、N2
 雰囲気中、1500℃で焼成し、40μmの厚み(E
PMAによる線分析で測定)をもつ、ZrO2 の表面
層を形成させ、実施例2を得た。
[0011] Also, the thermal conductivity of Example 1 is 0.02
cal/cm·sec·°C, which is almost the same as the thermal conductivity of the comparative material, and it can be judged that the thermal shock resistance is equivalent to that of the conventional material. Example 2 A Si3N4-BN composite sintered body having a porosity of 32% was immersed in zirconia (ZrO2) sol, and vacuum suction was applied from the other side to impregnate the zirconia sol. Then this S
After drying the i3 N4 -BN composite sintered body, N2
Sintered at 1500°C in an atmosphere to a thickness of 40 μm (E
Example 2 was obtained by forming a surface layer of ZrO2, which had a surface layer of ZrO2 (as measured by line analysis using PMA).

【0012】このようにして得られたSi3 N4 −
BN系複合焼結体を溶融したステンレス鋼(SUS30
4)中に1550℃で5時間浸漬し、侵食量を調べた。 尚、比較材として上記処理を施さない気孔率25%のS
i3 N4 −BN系複合焼結体も同条件で溶融したス
テンレス鋼(SUS304)中に浸漬し、侵食量を調べ
た。その結果、比較材のサイアロン−BN系複合焼結体
は、表面より7.0mmの深さまで溶鋼による侵食が進
み、試料が損耗していたのに対して、上記実施例では溶
鋼による侵食深さは僅かに0.3mmであった。
[0012] The thus obtained Si3 N4 −
Stainless steel (SUS30
4) for 5 hours at 1550°C, and the amount of corrosion was examined. In addition, as a comparison material, S with a porosity of 25% without the above treatment was used.
The i3 N4 -BN composite sintered body was also immersed in molten stainless steel (SUS304) under the same conditions to examine the amount of corrosion. As a result, the comparison material, the Sialon-BN composite sintered body, was eroded by molten steel to a depth of 7.0 mm from the surface, and the sample was worn out, whereas in the above example, the erosion depth by molten steel was was only 0.3 mm.

【0013】また、上記実施例2の熱伝導率も0.02
cal/cm・sec ・℃であり、比較材の熱伝導率
と殆ど変わらない値を示し、耐熱衝撃性も従来と同等の
性能を有するものと判断できる。本発明は上記2例の実
施例に限定されるものではなく、本発明の趣旨を逸脱し
ない範囲で該窒化ホウ素系複合材の使用条件に則して種
々の応用が可能があることはいうまでもない。
[0013] Furthermore, the thermal conductivity of Example 2 was also 0.02.
cal/cm·sec·°C, which is almost the same as the thermal conductivity of the comparative material, and it can be judged that the thermal shock resistance is equivalent to that of the conventional material. It goes without saying that the present invention is not limited to the above two examples, and that various applications are possible according to the conditions of use of the boron nitride composite material without departing from the spirit of the present invention. Nor.

【0014】[0014]

【発明の効果】以上のように本発明によるBN系複合材
は、Si3 N4 −BNあるいはサイアロン−BN系
複合焼結体の表面に高耐侵食性のAl2 O3 、Zr
O2 、MgO、MgAl2 O4 を焼結させた表面
層により、耐熱衝撃性を低下させることなくステンレス
鋼のような侵食性の高い溶鋼に対しても優れた耐侵食性
を有するものであり、また例えば水平連続鋳造用の鋳型
とタンディシュを接続する耐火物(いわゆるブレークリ
ング)や、タンディシュの溶鋼温度測定用の熱電対保護
管の構成材料として使用した場合には、長時間安定鋳造
や連続測温等を可能にする効果がある。
As described above, the BN-based composite material according to the present invention has highly corrosion-resistant Al2O3 and Zr on the surface of the Si3N4-BN or Sialon-BN-based composite sintered body.
Due to the surface layer made of sintered O2, MgO, and MgAl2 O4, it has excellent corrosion resistance against highly corrosive molten steel such as stainless steel without reducing thermal shock resistance. When used as a refractory (so-called break ring) that connects the mold and tundish for horizontal continuous casting, or as a component of a thermocouple protection tube for measuring the temperature of molten steel in the tundish, it can be used for long-term stable casting, continuous temperature measurement, etc. It has the effect of making it possible.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  窒化ケイ素(Si3 N4 )−窒化
ホウ素(BN)系複合焼結体あるいはサイアロン−窒化
ホウ素(BN)系複合焼結体を、アルミナ(Al2 O
3 )、ジルコニア(ZrO2 )、マグネシア(Mg
O)、スピネル(MgAl2 O4 )のうちから選ば
れる1種以上の物質を焼結させた表面層で被覆すること
を特徴とするBN系複合材。
Claim 1: A silicon nitride (Si3N4)-boron nitride (BN)-based composite sintered body or a sialon-boron nitride (BN)-based composite sintered body is combined with alumina (Al2O
3), zirconia (ZrO2), magnesia (Mg
A BN-based composite material characterized by being coated with a surface layer formed by sintering one or more substances selected from O), spinel (MgAl2O4).
JP3043853A 1991-03-08 1991-03-08 Boron nitride(bn) composite material Pending JPH04280887A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3043853A JPH04280887A (en) 1991-03-08 1991-03-08 Boron nitride(bn) composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3043853A JPH04280887A (en) 1991-03-08 1991-03-08 Boron nitride(bn) composite material

Publications (1)

Publication Number Publication Date
JPH04280887A true JPH04280887A (en) 1992-10-06

Family

ID=12675273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3043853A Pending JPH04280887A (en) 1991-03-08 1991-03-08 Boron nitride(bn) composite material

Country Status (1)

Country Link
JP (1) JPH04280887A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002156286A (en) * 2000-11-16 2002-05-31 Isuzu Ceramics Res Inst Co Ltd Thermocouple
JP4535306B2 (en) * 2000-10-27 2010-09-01 いすゞ自動車株式会社 Temperature measuring instrument
CN104761271A (en) * 2015-04-02 2015-07-08 安徽纽亚达科技有限责任公司 Magnesium-aluminum spinel-BN-Sialon multiphase refractory raw material and preparation method thereof
CN111069579A (en) * 2019-12-31 2020-04-28 浙江红鹰铭德高温材料科技有限公司 Long-life tundish integral impact barrel, formula and manufacturing process thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4535306B2 (en) * 2000-10-27 2010-09-01 いすゞ自動車株式会社 Temperature measuring instrument
JP2002156286A (en) * 2000-11-16 2002-05-31 Isuzu Ceramics Res Inst Co Ltd Thermocouple
JP4484129B2 (en) * 2000-11-16 2010-06-16 いすゞ自動車株式会社 thermocouple
CN104761271A (en) * 2015-04-02 2015-07-08 安徽纽亚达科技有限责任公司 Magnesium-aluminum spinel-BN-Sialon multiphase refractory raw material and preparation method thereof
CN111069579A (en) * 2019-12-31 2020-04-28 浙江红鹰铭德高温材料科技有限公司 Long-life tundish integral impact barrel, formula and manufacturing process thereof
CN111069579B (en) * 2019-12-31 2021-10-15 浙江红鹰铭德高温材料科技有限公司 Long-life tundish integral impact barrel, formula and manufacturing process thereof

Similar Documents

Publication Publication Date Title
KR102149166B1 (en) Coating liquid and method for producing refractory material having coating layer
JP2002502462A (en) Gradient material of metal and ceramic, product thereof, and method of manufacturing gradient material of metal and ceramic
JPH0789779A (en) Self-recovery function coating material and its production
JPS6311574A (en) Thermocouple protection tube and manufacture
JPH04280887A (en) Boron nitride(bn) composite material
Koh et al. Improvement in oxidation resistance of carbon by formation of a protective SiO2 layer on the surface
JPH05501850A (en) Method for producing rigid insulating fire-resistant material and material obtained thereby
Riu et al. Oxidation behaviour and strength of B 4 C-30 wt% SiC composite materials
Hnatko et al. Corrosion of engineering ceramic materials by molten iron Part II: Alumina
JPS6050750B2 (en) Silicon nitride composite sintered body
JP2005213081A (en) Silicon nitride sintered body and member for molten metal using the same
Abreal et al. Effect of Y2O3 addition on alumina-hex boron nitride composites
KR20040082399A (en) Articles for casting applications comprising ceramic composite and methods for making articles thereof
Koh et al. Strengthening and prevention of oxidation of aluminum nitride by formation of a silica layer on the surface
JP2613086B2 (en) Thermocouple protection tube and its manufacturing method
JP2698186B2 (en) Manufacturing method of casting nozzle member
JP2938098B2 (en) BN-SiC composite sintered body
Wu et al. The effect of boron additive on the oxidation resistance of SiC-protected graphite
JP2971824B2 (en) High corrosion resistance refractory
JP3255353B2 (en) Ceramic structure
JP3255354B2 (en) Ceramic structure
JP3520998B2 (en) Heat-resistant silicon nitride sintered body and method for producing the same
RU2243955C2 (en) Composite
JPS637358A (en) Formation of coating layer by water plasma thermal spraying having excellent erosion resistance
Yi et al. Enhanced High Temperature Corrosion Resistance of Al2O3/Al Composite Coating on γ-TiAl Alloy