JPH04280873A - Production of firebrick - Google Patents

Production of firebrick

Info

Publication number
JPH04280873A
JPH04280873A JP3065375A JP6537591A JPH04280873A JP H04280873 A JPH04280873 A JP H04280873A JP 3065375 A JP3065375 A JP 3065375A JP 6537591 A JP6537591 A JP 6537591A JP H04280873 A JPH04280873 A JP H04280873A
Authority
JP
Japan
Prior art keywords
refractory
producing
refractory brick
firebricks
bricks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3065375A
Other languages
Japanese (ja)
Inventor
Kazuyuki Iida
飯田 一行
Akinori Samejima
鮫島 昭憲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP3065375A priority Critical patent/JPH04280873A/en
Publication of JPH04280873A publication Critical patent/JPH04280873A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To omit a drying process and save energy in processes for producing firebricks, especially unburned firebricks. CONSTITUTION:A refractory raw material comprising alumina or magnesium oxide is mixed with >=2wt.% of a raw material containing conductive particles and a binder, followed by molding the mixture. The molded product is brought into contact with two electrodes, and an electric current is directly applied to the electrodes to thermally cure and/or dry the molded product, thereby permitting to reduce the cost of energy into approximately a half thereof and to especially perfectly automatize the production processes of firebricks in the case of the firebricks or unburned firebricks.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は成形体の加熱硬化および
/または乾燥を迅速に効率よく行うようにした工程を含
む耐火煉瓦の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing firebricks, which includes a step of quickly and efficiently heat-curing and/or drying a molded body.

【0002】0002

【従来の技術】通常行われている耐火煉瓦の製造方法で
は、例えば結合剤を加えた混合坏土を油圧プレスやフリ
クションプレス等で成形し、湿った成形体を重油や灯油
をエネルギー源とする乾燥炉中あるいはトンネル窯の入
口側の一部分等において加熱して乾燥、さらには焼成す
る方法が採用されている。
[Prior Art] In the conventional method for manufacturing firebricks, for example, mixed clay to which a binder has been added is molded using a hydraulic press, friction press, etc., and the wet molded body is made of heavy oil or kerosene as an energy source. A method is used in which the material is heated in a drying oven or a portion on the entrance side of a tunnel kiln, dried, and then fired.

【0003】この場合、乾燥炉あるいは乾燥部分を設け
た長いトンネル窯を確保する必要があるのは勿論のこと
、湿った煉瓦の置き場の確保、湿った煉瓦を乾燥用のパ
レットに移す積み換え作業、乾燥炉への煉瓦の運搬作業
などが必要であり、肉厚のある煉瓦を乾燥する場合には
耐火煉瓦の内部まで熱が入るように相当長い時間乾燥炉
中に保持する必要があるため乾燥炉の炉壁などからの熱
ロスが多い他、炉から排出されるガスが多くの熱エネル
ギーを運び去るのでエネルギーの利用効率が小さく意外
に多くの燃料を消費している。
In this case, it is of course necessary to secure a drying oven or a long tunnel kiln with a drying section, as well as securing a place to store the wet bricks and reloading the wet bricks onto pallets for drying. , it is necessary to carry the bricks to the drying oven, and when drying thick bricks, it is necessary to hold them in the drying oven for a considerable length of time so that the heat penetrates to the inside of the refractory bricks. In addition to a lot of heat loss from the furnace walls, the gas discharged from the furnace carries away a lot of heat energy, so the efficiency of energy use is low and a surprisingly large amount of fuel is consumed.

【0004】煉瓦の乾燥方法としては、他にスチームを
利用したり、熱風を利用する方法もあるが、エネルギー
の利用効率は上記の乾燥炉と大同小異の範囲にある。ま
た、湿ったセラミックス素地の乾燥方法に関しては、特
公昭37−18690の「陶磁器素体の通電乾燥装置」
に、碍子素地の乾燥を行うのに通電加熱を利用すること
が開示されている。
[0004] There are other methods for drying bricks, such as using steam or hot air, but their energy efficiency is about the same as the drying oven described above. Regarding the drying method of wet ceramic bases, please refer to the ``Electric Drying Apparatus for Ceramic Bases'' published in Japanese Patent Publication No. 37-18690.
discloses the use of electrical heating to dry an insulator base.

【0005】このように被乾燥物に直接通電して加熱す
る場合には、肉圧の陶磁器素地の内部の温度を、他の方
法と比べて速やかに高くすることができ、陶磁器の一種
である碍子の素地の乾燥においても熱効率が良く、より
速やかに乾燥することができるという効果がある。
[0005] In this way, when the material to be dried is directly heated by electricity, the internal temperature of the ceramic material can be raised more quickly than in other methods, and it is a type of ceramic material. Thermal efficiency is also good in drying the insulator base, and it has the effect of being able to dry more quickly.

【0006】しかし、通電は解膠剤等として加えられて
いる比較的少量のアルカリイオンと水分の存在を利用し
たものであり、耐熱性と絶縁性の確保のためには多量の
アルカリイオンを加えることは好ましくなく、大抵は乾
燥が進むにつれて電気抵抗が非常に大きくなって100
0Vを越える高電圧を印加する必要があり、感電という
危険が伴うものであった。
[0006] However, energization takes advantage of the presence of a relatively small amount of alkali ions and water added as deflocculants, etc., and in order to ensure heat resistance and insulation, a large amount of alkali ions must be added. This is undesirable, and in most cases, as the drying progresses, the electrical resistance becomes very large, reaching 100%.
It was necessary to apply a high voltage exceeding 0V, and there was a risk of electric shock.

【0007】その他に、あまり肉厚の大きい品物の乾燥
には向いていないが、熱効率が良くある程度深くまで熱
が通り、速やかな乾燥も可能なマイクロ波加熱や遠赤外
線を利用する乾燥などが一部のセラミックスの製造工程
では利用されている。
[0007] Other methods include microwave heating and far-infrared rays, which are not suitable for drying very thick items, but have good thermal efficiency, can pass heat to a certain depth, and can dry quickly. It is used in the manufacturing process of ceramics.

【0008】[0008]

【発明が解決しようとする課題】本発明は、耐火煉瓦の
製造方法において、より少ない人手と少ない工程で行う
ことができ、安全でかつエネルギーの消費および設備費
を少なくできる乾燥工程を含む耐火煉瓦の製造方法を提
供しようとするものである。
Problem to be Solved by the Invention The present invention provides a process for manufacturing firebricks that includes a drying process that can be carried out with less manpower and fewer steps, is safe, and can reduce energy consumption and equipment costs. The present invention aims to provide a method for manufacturing.

【0009】[0009]

【課題を解決するための手段】本発明は前述の課題を達
成すべくなされたものであり、本発明の耐火煉瓦の製造
方法は、酸化物からなる耐火原料に2重量%以上の導電
性粒子を加え、さらに結合剤を加えて混合坏土とし、混
合坏土を成形した成形体に電極を接触せしめ、成形体中
に直接通電することにより成形体を加熱して硬化および
/または乾燥することを特徴とする。
[Means for Solving the Problems] The present invention has been made to achieve the above-mentioned problems, and the method for manufacturing a refractory brick of the present invention includes adding 2% by weight or more of conductive particles to a refractory raw material made of an oxide. and further add a binder to form a mixed clay, bring an electrode into contact with a molded body made of the mixed clay, and heat the molded body to harden and/or dry it by passing electricity directly into the molded body. It is characterized by

【0010】本発明の耐火煉瓦の製造方法の好ましい態
様では、結合剤が熱硬化性の樹脂を含むものである。本
発明の耐火煉瓦の製造方法の他の好ましい態様では、導
電性粒子が黒鉛であり、熱硬化性の樹脂がフェノール樹
脂である。
[0010] In a preferred embodiment of the method for producing a refractory brick of the present invention, the binder contains a thermosetting resin. In another preferred embodiment of the method for producing a refractory brick of the present invention, the conductive particles are graphite and the thermosetting resin is a phenol resin.

【0011】本発明の耐火煉瓦の製造方法の他の好まし
い態様では、耐火物原料がマグネシアクリンカーまたは
アルミナクリンカーである。本発明の耐火煉瓦の製造方
法の他の好ましい態様では、成形を機械プレスで行う。 本発明の耐火煉瓦の製造方法の他の好ましい態様では、
耐火物が不焼成耐火物である。
In another preferred embodiment of the method for producing refractory bricks of the present invention, the refractory raw material is magnesia clinker or alumina clinker. In another preferred embodiment of the method for producing a refractory brick of the present invention, the forming is performed using a mechanical press. In another preferred embodiment of the method for producing a refractory brick of the present invention,
The refractory is an unfired refractory.

【0012】耐火煉瓦の主な構成要素である酸化物から
なる耐火原料は、大抵の場合絶縁性の物質であり、この
ため酸化物の耐火原料のみを結合する耐火物では本発明
の耐火煉瓦の製造方法を適用することができない。
[0012] Refractory raw materials made of oxides, which are the main constituents of refractory bricks, are insulating materials in most cases, and for this reason, the refractory materials of the present invention that combine only oxide refractory raw materials cannot be used. Manufacturing methods cannot be applied.

【0013】本発明は黒鉛質粒子や非酸化物系化合物粒
子などの導電性粒子を含む耐火煉瓦を対象とする製造方
法であって、耐火性原料と導電性粒子の合量中2重量%
以上の導電性粒子を含むことによって、少なくとも成形
体とされた後には直接通電による加熱ができる比較的低
い電気抵抗を有する成形体とされ、加熱するための設備
としてはトランスと電極板以外に特別な設備を特に必要
とせず、トランスによる電圧切り替えのみで対応できる
数百V以下の電源が使用できることになる。
[0013] The present invention is a method for producing a refractory brick containing conductive particles such as graphite particles and non-oxide compound particles, in which 2% by weight of the total amount of refractory raw material and conductive particles is used.
By containing the above-mentioned conductive particles, at least after being formed into a molded product, the molded product has a relatively low electrical resistance and can be heated by direct current supply. This means that a power supply of several hundred volts or less can be used, which does not require any special equipment and can be handled by simply switching the voltage using a transformer.

【0014】導電性粒子の配合量は、黒鉛の場合には耐
火煉瓦の特性を適切なものとするため通常30重量%以
下とするが、劈開性が顕著でない粒状の導電性粒子を使
用する場合には30〜90重量%という場合もあり得る
[0014] In the case of graphite, the blending amount of the conductive particles is usually 30% by weight or less in order to obtain appropriate properties for the refractory brick, but when using granular conductive particles that do not exhibit significant cleavage. In some cases, the content may be 30 to 90% by weight.

【0015】非酸化物系化合物からなる導電性粒子とし
ては、例えば炭化珪素(SiC)、炭化硼素(B4C)
 、硼化ジルコニウム(ZrB2)などを主成分とする
粒子が挙げられ、他に高温下で耐火性のあるアルミナに
変わるアルミニウム金属粉なども導電性粒子として使用
できる。
[0015] Examples of conductive particles made of non-oxide compounds include silicon carbide (SiC) and boron carbide (B4C).
, particles containing zirconium boride (ZrB2) as a main component, and aluminum metal powder, which turns into fire-resistant alumina at high temperatures, can also be used as conductive particles.

【0016】結合剤としては、通常耐火煉瓦の製造に使
われるものであれば、水ガラスやポリビニルアルコール
などの水溶性のものであっても、アクリル系結合剤のよ
うに有機溶媒を含むものであっても使用が可能である。
[0016] As a binder, if it is normally used in the manufacture of firebricks, it may be water-soluble such as water glass or polyvinyl alcohol, or it may be a binder containing an organic solvent such as an acrylic binder. It can be used even if there is.

【0017】耐火煉瓦の成形は流し込み成形、突き固め
成形、手打ち成形、プレス成形等各種の方法が使用でき
るが、通常煉瓦の製造では乾燥が必要であることから添
加水分が少なくて済む成形方法、特にプレス成形法を用
いるのが好ましい。また、プレス成形法を用いる場合に
は、成形した耐火煉瓦に電極を当てて通電が行える平ら
な表面が容易に確保できる。
[0017] Various methods can be used to form firebricks, such as pour molding, compaction molding, hand molding, press molding, etc. However, since drying is normally required in the production of bricks, there are molding methods that require less added moisture; In particular, it is preferable to use a press molding method. Moreover, when using the press molding method, it is possible to easily secure a flat surface on which electricity can be applied by applying an electrode to the molded refractory brick.

【0018】成形した耐火煉瓦に電気を直接通電する場
合には、電極と耐火煉瓦との間の電気的接触を良好なら
しめる必要があり、接触面積を広くとるために板状の電
極を使うのが好ましい。電極の材質としては金属材料で
あればいずれも使用でき、導電性が良い銅は特に好まし
い材料である。
[0018] When electricity is applied directly to the formed refractory brick, it is necessary to make good electrical contact between the electrode and the refractory brick, and it is recommended to use a plate-shaped electrode to increase the contact area. is preferred. Any metal material can be used as the material for the electrode, and copper, which has good conductivity, is particularly preferred.

【0019】通電方法としては、例えば成形型の内部に
板状の電極板を仕込んでおき、その状態で成形を行って
、成形型から取り出してから、あるいは成形型を電気が
ショートしないように絶縁すれば成形型中において通電
することも可能である。通電加熱では被加熱物のみを加
熱するので、外部に熱を放散する表面が小さく、周囲へ
の熱損失が少ないので、電気エネルギーから転化した熱
エネルギーはほとんどすべて耐火煉瓦の加熱に有効利用
される。また、印加する電圧はそれほど高くなくて済む
ので、感電の危険も少なくて済む。
As a method of applying electricity, for example, a plate-shaped electrode plate is placed inside the mold, the molding is performed in that state, and the mold is removed from the mold, or the mold is insulated to prevent electrical short-circuiting. Then, it is also possible to conduct electricity inside the mold. Since current heating only heats the object to be heated, the surface that radiates heat to the outside is small and there is little heat loss to the surroundings, so almost all of the thermal energy converted from electrical energy is effectively used to heat the refractory bricks. . Furthermore, since the applied voltage does not need to be very high, there is less risk of electric shock.

【0020】本発明の耐火煉瓦の製造方法では、混入す
る導電性粒子が耐火煉瓦の導電性のほとんどを受け持つ
ため、アルカリイオンを含む結合剤や解膠剤を添加する
必要はなく、有機溶媒に溶かした有機質結合剤を利用す
る場合にも好ましく応用できる。
In the method for producing refractory bricks of the present invention, since the conductive particles mixed in take charge of most of the conductivity of the refractory brick, there is no need to add a binder or peptizer containing alkali ions, and it is not necessary to add a binder or peptizer containing an alkali ion. It can also be preferably applied when using a dissolved organic binder.

【0021】結合剤として熱硬化性樹脂を利用すれば、
不焼成煉瓦の製造の際には加熱して硬化せしめれば最終
製品が得られ、エネルギーの消費がさらに少なくできる
。熱硬化性樹脂としては、比較的値段が安く、熱分解後
の残炭量が多く、残留炭素が結合強度を発現することと
、高温での使用時に放出される熱分解有機物の量が少な
いことからフェノール樹脂を使用するのが好ましい。
[0021] If a thermosetting resin is used as a binder,
When producing unfired bricks, the final product can be obtained by heating and hardening, which further reduces energy consumption. As a thermosetting resin, it is relatively cheap, has a large amount of residual carbon after pyrolysis, and the residual carbon develops bond strength, and the amount of pyrolyzed organic matter released when used at high temperatures is small. It is preferred to use phenolic resins from.

【0022】導電性粒子が黒鉛である場合には、黒鉛の
粒子がその劈開性によって平板状の粒子形状を有してい
て、平板に平行な方向についての導電性が良好であるこ
とによって、耐火煉瓦中に比較的少量しか導電性粒子が
含まれていない場合にも、耐火煉瓦に直接通電するのに
充分な導電性を付与するので都合が良い。
When the conductive particles are graphite, the graphite particles have a flat particle shape due to their cleavage property, and have good conductivity in the direction parallel to the flat plates, which makes them fire resistant. Even if the brick contains only a relatively small amount of conductive particles, it is advantageous because it provides sufficient conductivity to directly energize the refractory brick.

【0023】黒鉛や熱硬化性樹脂から転化する炭素成分
と共存する酸化物からなる耐火原料としては、高温まで
炭素成分と反応せず、耐熱性の高いマグネシアクリンカ
ーまたはアルミナクリンカーが好適である。
As the refractory raw material consisting of an oxide coexisting with the carbon component converted from graphite or thermosetting resin, magnesia clinker or alumina clinker, which does not react with the carbon component up to high temperatures and has high heat resistance, is suitable.

【0024】本発明の耐火煉瓦の製造方法は焼成煉瓦お
よび不焼成煉瓦の製造のいずれにも使用できるが、不焼
成煉瓦の製造では、直接に通電加熱を行うだけで最終製
品とすることが可能であり、例えばプレス成形した煉瓦
の間に板状の電極を挟み込んで、ライン上で次々に通電
加熱(並列につないで通電することによって多数の煉瓦
を同時に加熱、硬化せしめることも可能)することがで
き、通常バッチ式の工程しか組むことのできなかった煉
瓦の製造工程中における乾燥工程を、連続の自動化され
た工程に変えるのが可能になり、不焼成煉瓦では製造工
程をすべて自動化することが可能である。
[0024] The method for producing refractory bricks of the present invention can be used for producing both fired and unfired bricks, but in the production of unfired bricks, the final product can be obtained by simply heating with electricity directly. For example, a plate-shaped electrode is sandwiched between press-formed bricks, and they are heated and energized one after another on a line (it is also possible to heat and harden many bricks at the same time by connecting them in parallel and energizing them). This makes it possible to change the drying process in the brick manufacturing process, which normally could only be done in a batch process, to a continuous automated process, and for unfired bricks, the entire manufacturing process can be automated. is possible.

【0025】使用する結合剤の種類によっては、加熱し
た状態でプレス成形したほうが好ましい場合もあり、プ
レス機に適宜絶縁材を組み込むことによってプレス時に
直接通電加熱を行なうことも可能である。また、成形し
た煉瓦を乾燥炉に移す際に必要な煉瓦を乾燥用のパレッ
トに積み換える作業が省略でき、乾燥炉中で乾燥する場
合のように乾燥炉中の位置による熱の通り具合のバラツ
キが起こらず、敷地と設備費とを必要とする乾燥炉が省
略でき、さらにエネルギーの節約分と工程時間の短縮を
含めて考慮すると本発明の耐火煉瓦の製造方法の産業上
の利用効果は非常に顕著である。
[0025]Depending on the type of binder used, it may be preferable to perform press molding in a heated state, and by incorporating an appropriate insulating material into the press, it is also possible to perform direct electrical heating during pressing. In addition, when transferring the formed bricks to the drying oven, the work of transferring the bricks to a drying pallet can be omitted, and unlike when drying in a drying oven, the degree of heat distribution depending on the position in the drying oven can be eliminated. Considering that the drying oven which requires land and equipment costs can be omitted, and the energy savings and process time are also taken into account, the industrial application effect of the method for manufacturing refractory bricks of the present invention is extremely high. This is noticeable.

【0026】[0026]

【実施例】以下本発明を実施例によって更に詳しく説明
する。 実施例1 代表的な不焼成耐火煉瓦であるマグネシアカーボン煉瓦
の製造に本発明の耐火煉瓦の製造方法を適用した。
EXAMPLES The present invention will now be explained in more detail by way of examples. Example 1 The method for producing a refractory brick of the present invention was applied to the production of a magnesia carbon brick, which is a typical unfired refractory brick.

【0027】すなわち、粒径3mm以下の粒度調整され
たマグネシアクリンカー80重量%と粒径1.5mm 
以下の鱗片状黒鉛20重量%とを万能ミキサーに入れ、
これにレゾール系フェノール樹脂の不揮発分75重量%
のメタノール溶液を外掛けで3重量%加えて混合し、6
5mm×114mm ×230mm の並型煉瓦を圧力
250kg/cm2 でプレス成形した。
[0027] That is, 80% by weight of magnesia clinker with a particle size of 3 mm or less and a particle size of 1.5 mm.
Put the following 20% by weight of flaky graphite into a universal mixer,
In addition to this, the non-volatile content of resol-based phenolic resin is 75% by weight.
Add 3% by weight of methanol solution and mix.
Standard bricks measuring 5 mm x 114 mm x 230 mm were press-molded at a pressure of 250 kg/cm2.

【0028】このようにして成形した煉瓦の65mm×
114mm の面に銅の電極板を当て、絶縁を施したバ
イス上に65mm×230mm の面を下にして置き、
さらに電極板が煉瓦に良く接触するように平らな面を有
する木板の間に挟んでバイスにより約20kgの荷重が
かかるように締め付けた。 また、耐火煉瓦の表面には熱電対を予め取り付けておい
た。
[0028] The brick formed in this way has a size of 65 mm×
Place a copper electrode plate on the 114 mm surface and place it with the 65 mm x 230 mm surface facing down on an insulated vise.
Further, the electrode plate was sandwiched between wooden boards having flat surfaces so as to make good contact with the bricks, and then tightened with a vise so that a load of about 20 kg was applied. In addition, a thermocouple was previously attached to the surface of the refractory brick.

【0029】この状態の生の耐火煉瓦(成形体)にトラ
ンス経由で交流電圧を通電したところ、39.4Vの電
圧で約 430Aの電流が流れ(約17kW)、約1分
で表面温度が104℃になった。このあと同じ条件で更
に1分間通電した後(表面温度は170 ℃になってい
た)通電を止めた。
When AC voltage was applied to the raw refractory brick (molded body) in this state via a transformer, a current of approximately 430 A (approximately 17 kW) flowed at a voltage of 39.4 V, and the surface temperature rose to 104 kW in approximately 1 minute. It has become ℃. Thereafter, electricity was applied for another minute under the same conditions (the surface temperature had reached 170°C), and then the electricity was turned off.

【0030】この耐火煉瓦の通電加熱前後の室温におけ
る圧縮強度を、切り取った65mm×50mm×50m
mの試験片で調べたところ、生の煉瓦の試験片で11.
5kg/cm2であったものが加熱硬化後の試験片では
131.4 kg/cm2となっていた。
[0030] The compressive strength of this refractory brick at room temperature before and after electric heating is measured in a cut-out piece of 65 mm x 50 mm x 50 m.
When examined using a test piece of green brick, the result was 11.
The weight of the test piece after heat curing was 131.4 kg/cm2, which was 5 kg/cm2.

【0031】実施例2 不焼成煉瓦の他の例として、3重量%の鱗片状黒鉛を含
むアルミナ質煉瓦について同様の試験を行った。すなわ
ち、粒径3.33mm以下の粒度調整されたアルミナク
リンカー87重量%と10重量%のマグネシア微粉末と
粒径1.5 mm以下の鱗片状黒鉛3重量%とを万能ミ
キサー中に入れ、これにレゾール系フェノール樹脂の不
揮発分75重量%メタノール溶液を外掛けで3重量%加
えて混合し、65mm×114mm ×230mm の
並型煉瓦を250kg/cm2 でプレス成形した。
Example 2 As another example of an unfired brick, a similar test was conducted on an alumina brick containing 3% by weight of flaky graphite. That is, 87% by weight of alumina clinker with a particle size of 3.33 mm or less, 10% by weight of fine magnesia powder, and 3% by weight of flaky graphite with a particle size of 1.5 mm or less were placed in a universal mixer. 3% by weight of a methanol solution of resol type phenol resin with a nonvolatile content of 75% by weight was added to the mixture and mixed, and a regular brick of 65 mm x 114 mm x 230 mm was press-molded at 250 kg/cm2.

【0032】次ぎに、成形した生煉瓦の230mm ×
114mm の面に電極板を当て、絶縁を施したバイス
上に65mm×230mm の面を下にして置き、さら
に電極板が煉瓦に良く接触するように木板の間に挟んで
バイスで約60kgの荷重がかかるように締め付けた。 この状態の生の煉瓦にトランス経由で交流電圧を通電し
たところ、278 Vの電圧で約 19.1 Aの電流
が流れ(約5.3kW )、約5分で煉瓦の表面温度が
100 ℃になった。このあとすぐに通電を止めた。
[0032] Next, 230 mm x
Place the electrode plate on a 114 mm surface, place it with the 65 mm x 230 mm surface facing down on an insulated vise, then sandwich it between wooden boards so that the electrode plate is in good contact with the brick, and apply a load of approximately 60 kg in the vise. I tightened it so that it would fit. When AC voltage was applied to the raw brick in this state via a transformer, a current of approximately 19.1 A (approximately 5.3 kW) flowed at a voltage of 278 V, and the surface temperature of the brick rose to 100 °C in approximately 5 minutes. became. Immediately after that, the power was turned off.

【0033】この耐火煉瓦の通電加熱前後の室温の圧縮
強度を、切り取った65mm×50mm×50mmの試
験片で調べたところ、生の煉瓦の試験片で8.2kg/
cm2 であったものが加熱硬化後の試験片では131
.1 kg/cm2となっていた。以上の実験を基にし
てエネルギーの効率を試算したところ、以下のような結
果が得られた。
[0033] The compressive strength of this refractory brick at room temperature before and after electrical heating was examined using a cut-out 65 mm x 50 mm x 50 mm test piece, and it was found that the raw brick test piece had a compression strength of 8.2 kg/
cm2, but the test piece after heat curing was 131
.. It was 1 kg/cm2. When we calculated the energy efficiency based on the above experiments, we obtained the following results.

【0034】乾燥硬化に要するエネルギーの量は、従来
の重油を燃料とする乾燥炉の場合に耐火煉瓦1トン当た
り、いずれの不焼成耐火煉瓦についても約90リットル
の重油が必要で、これは約850500kcalの熱量
に相当する。
The amount of energy required for drying and curing is approximately 90 liters of heavy oil per 1 ton of refractory brick for any unfired refractory brick in the case of a conventional drying oven that uses heavy oil as fuel, which is approximately This corresponds to a calorific value of 850,500 kcal.

【0035】実施例1のマグネシアカーボン不焼成煉瓦
については、100 ℃の加熱で硬化が完了したと仮定
して、1トン当たり32kWh で、力率70%の場合
45.7kWh の電力が消費される。この電力量は3
9302kcal の熱量に相当する。
Regarding the magnesia carbon unfired brick of Example 1, assuming that curing is completed by heating at 100° C., power consumption is 32 kWh per ton, and 45.7 kWh at a power factor of 70%. . This amount of electricity is 3
This corresponds to a calorific value of 9302 kcal.

【0036】すなわち、化石燃料を電気エネルギーに変
換するときの効率(通常40%程度)を考慮しても大幅
な省エネルギーが可能である。一方、アルミナ質不焼成
煉瓦について同じ試算を行ったところ、71.4kWh
 の電力が消費され、この電力量は61404 kca
lの熱量に相当するので、やはり同じ結論が得られた。
That is, even if the efficiency (usually about 40%) of converting fossil fuels into electrical energy is taken into account, significant energy savings are possible. On the other hand, when the same calculation was made for alumina unfired bricks, it was found that 71.4kWh
of electricity is consumed, and this electricity amount is 61404 kca
Since it corresponds to the amount of heat of 1, the same conclusion was reached.

【0037】重油の値段を1リットル当たり31.35
 円とし、電気の値段を1kWh 当たり22円として
計算すると、およそ半分のエネルギー費で済むという計
算結果を得た。
[0037] The price of heavy oil is 31.35 per liter.
If we calculate the price in Japanese yen and assume that the price of electricity is 22 yen per kWh, we have calculated that the energy cost will be about half that.

【0038】[0038]

【発明の効果】本発明の耐火煉瓦の製造方法を実施する
ことによって、耐火煉瓦の製造工程のうちの乾燥工程で
乾燥時間が短縮されると同時に、成形した耐火煉瓦をパ
レットに移したり運んだりする作業が減り、乾燥に消費
していたエネルギー量あるいはエネルギー費を大幅に節
減できることが確かめられた。
[Effects of the Invention] By carrying out the method for manufacturing refractory bricks of the present invention, the drying time in the drying step of the refractory brick manufacturing process can be shortened, and at the same time, the molded refractory bricks can be transferred to pallets or transported. It has been confirmed that the amount of work required for drying can be reduced, and the amount of energy and energy costs used for drying can be significantly reduced.

【0039】また、敷地と設備費を必要とする乾燥炉が
よりコンパクトで安価なトランスに置き換えられ、電気
エネルギーを利用することでSOX やNOX の排出
量を減らすことができる。さらに耐火煉瓦が不焼成煉瓦
である場合には、耐火煉瓦の製造工程を検査も含めて連
続かつ自動化することが可能になった。
[0039] Furthermore, the drying oven, which requires land and equipment costs, can be replaced with a more compact and inexpensive transformer, and by using electrical energy, it is possible to reduce the amount of SOX and NOX emissions. Furthermore, when the refractory bricks are unfired bricks, it has become possible to continuously and automate the refractory brick manufacturing process, including inspection.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】酸化物からなる耐火原料に2重量%以上の
導電性粒子を加え、さらに結合剤を加えて混合坏土とし
、混合坏土を成形して得られた成形体に電極を接触せし
め、成形体中に直接通電することにより成形体を加熱し
て硬化および/または乾燥することを特徴とする耐火煉
瓦の製造方法。
Claim 1: Adding 2% by weight or more of conductive particles to a refractory raw material made of an oxide, and further adding a binder to form a mixed clay, molding the mixed clay, and contacting an electrode to the obtained molded body. 1. A method for producing a refractory brick, which comprises curing and/or drying the molded product by heating the molded product by applying electricity directly to the molded product.
【請求項2】請求項1において、結合剤が熱硬化性の樹
脂を含むものである、耐火煉瓦の製造方法。
2. The method for producing a firebrick according to claim 1, wherein the binder contains a thermosetting resin.
【請求項3】請求項2において、導電性粒子が黒鉛であ
り、熱硬化性の樹脂がフェノール樹脂である、耐火煉瓦
の製造方法。
3. The method for producing a firebrick according to claim 2, wherein the conductive particles are graphite and the thermosetting resin is a phenolic resin.
【請求項4】請求項1〜3のいずれか1つにおいて、酸
化物からなる耐火原料がマグネシアクリンカーまたはア
ルミナクリンカーである、耐火煉瓦の製造方法。
4. The method for producing a refractory brick according to claim 1, wherein the refractory raw material made of an oxide is magnesia clinker or alumina clinker.
【請求項5】請求項1〜4のいずれか1つにおいて、成
形を機械プレスで行う、耐火煉瓦の製造方法。
5. The method for producing a refractory brick according to claim 1, wherein the forming is performed using a mechanical press.
【請求項6】請求項2〜5のいずれか1つにおいて、耐
火煉瓦が不焼成耐火煉瓦である、耐火煉瓦の製造方法。
6. The method for producing a refractory brick according to claim 2, wherein the refractory brick is an unfired refractory brick.
JP3065375A 1991-03-07 1991-03-07 Production of firebrick Withdrawn JPH04280873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3065375A JPH04280873A (en) 1991-03-07 1991-03-07 Production of firebrick

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3065375A JPH04280873A (en) 1991-03-07 1991-03-07 Production of firebrick

Publications (1)

Publication Number Publication Date
JPH04280873A true JPH04280873A (en) 1992-10-06

Family

ID=13285160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3065375A Withdrawn JPH04280873A (en) 1991-03-07 1991-03-07 Production of firebrick

Country Status (1)

Country Link
JP (1) JPH04280873A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10164231A1 (en) * 2001-12-31 2003-07-17 Sgl Carbon Ag Process for the production of molded articles from fiber-reinforced ceramic materials

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10164231A1 (en) * 2001-12-31 2003-07-17 Sgl Carbon Ag Process for the production of molded articles from fiber-reinforced ceramic materials
DE10164231B4 (en) * 2001-12-31 2005-11-10 Sgl Carbon Ag Process for the production of molded articles from fiber-reinforced ceramic materials and their use
US7011786B2 (en) 2001-12-31 2006-03-14 Sgl Carbon Ag Process for producing shaped bodies comprising fiber-reinforced ceramic materials

Similar Documents

Publication Publication Date Title
CN102815951B (en) Flame-resistant corrosion-resistant coating
RU2587194C2 (en) Method of making lining in industrial furnace of large volume, as well as industrial furnace with lining, refractory brick for such lining
CN103234346A (en) Low-heat-conduction multi-layer mullite brick and preparation method thereof
JPS5823349B2 (en) Tai Kabutunoshiyouketsuhouhou
JP2000510434A (en) Method and apparatus for producing thick wall ceramic products
CN105418098A (en) Heat-conductive and energy-saving refractory brick used for fire path wall in carbon roasting furnace and preparation method thereof
CN103833365A (en) High-temperature-resistant energy-saving silicon carbide plate and preparation method thereof
JPH05194040A (en) Method for induction heating of ceramic molding
CN105517212A (en) Embedded heating plate and preparation method thereof
CN105218116B (en) A kind of chromium-free brick and preparation method thereof
JPH04280873A (en) Production of firebrick
CN101508588B (en) Composite high-temperature deck of high-performance mullite and spinel, and method of producing the same
US5646079A (en) Refractory ceramic mass and its use
CN105152668B (en) A kind of RH liners chromium-free brick and preparation method thereof
CN104553164B (en) A kind of high-strength nano ceramic fibers antiradiation heat-insulating shield and preparation method thereof
CN2073876U (en) Heavy lepton long-range infrared refractory brick
CN102942367B (en) Method for preparing heat resisting plate for processing of soft magnetic ferrite
CN106282635B (en) A kind of alloyed oxide complex phase thermal storage refractory and preparation method thereof
CN114031373A (en) Electric furnace bottom ramming material
CN103172394B (en) Refractory brick and preparation method thereof
KR20130015707A (en) Ceramic welding composition
CN1111145C (en) Electrically conductive graphiee ceramics
JPS5886A (en) Method of drying amorphous refractory
JPH01286974A (en) Electrically energizable ceramic structure and production thereof
JP2723903B2 (en) Induction electric furnace

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514