JPH04280308A - Earthquake isolation and vibration proof control method - Google Patents

Earthquake isolation and vibration proof control method

Info

Publication number
JPH04280308A
JPH04280308A JP6911591A JP6911591A JPH04280308A JP H04280308 A JPH04280308 A JP H04280308A JP 6911591 A JP6911591 A JP 6911591A JP 6911591 A JP6911591 A JP 6911591A JP H04280308 A JPH04280308 A JP H04280308A
Authority
JP
Japan
Prior art keywords
damper
controller
absolute
vibration
velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6911591A
Other languages
Japanese (ja)
Other versions
JP2899843B2 (en
Inventor
Yoshihiro Kida
義弘 来田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP6911591A priority Critical patent/JP2899843B2/en
Publication of JPH04280308A publication Critical patent/JPH04280308A/en
Application granted granted Critical
Publication of JP2899843B2 publication Critical patent/JP2899843B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Auxiliary Devices For Machine Tools (AREA)
  • Vibration Prevention Devices (AREA)
  • Feedback Control In General (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

PURPOSE:To obtain an ideal attenuation characteristic by controlling the attenuation force of a variable attenuation damper from the relative speed of a substrate and an earthquake isolation or vibration proof object and the absolute speed of the earthquake proof or vibration proof object through the use of fuzzy inference. CONSTITUTION:An output signal from a sensor 8 measuring the absolute speed of a structure 2 is inputted to a controller for fuzzy controller 6. Simultaneously, the value of the sensor 8, and that of a sensor 9 measuring the absolute velocity of a foundation 1 itself are inputted to the controller 6 and a signal from a computing element 10 showing the relative velocity of the foundation 1 and the structure 2 is inputted to the controller 6. The controller 6 controls the attenuation coefficiency of the variable attenuation damper 4 through a power amplifier 7. The variable attenuation damper 4 gives the structure 2 control force in the horizontal direction between the foundation 1 and the structure 2. Thus, the variable attenuation damper 4 is fuzzy controlled and attenuation force which is proportional to the absolute velocity is given to a vibration system by adding not only the absolute velocity but the relative velocity.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は構造物や工作機械等を免
震あるいは防振制御する場合に用いる制御方法に関する
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control method used for seismic isolation or vibration isolation control of structures, machine tools, etc.

【0002】0002

【従来の技術】近年、地震の影響を抑制するため、建物
を例えば積層ゴムや各種ダンパーで支持するいわゆる免
震構造の建物が構築されている。この種の免震構造の建
物で用いられる従来のダンパーは、主に地盤と建物との
相対速度に比例した減衰力を建物に与える構造のもので
あった。
BACKGROUND OF THE INVENTION In recent years, in order to suppress the effects of earthquakes, buildings with so-called seismic isolation structures have been constructed in which buildings are supported by, for example, laminated rubber or various dampers. Conventional dampers used in buildings with this type of seismic isolation structure have a structure that provides the building with a damping force that is mainly proportional to the relative velocity between the ground and the building.

【0003】0003

【発明が解決しようとする課題】上記した減衰ダンパー
による従来の免震あるいは防振制御方法にあっては、ダ
ンパーが構造物と地盤との絶対速度に比例した減衰力を
与えることができず、理想的な減衰特性を得ることがで
きない欠点があった。
[Problems to be Solved by the Invention] In the conventional seismic isolation or vibration isolation control method using the above-mentioned damping damper, the damper cannot provide a damping force proportional to the absolute velocity between the structure and the ground. There was a drawback that ideal damping characteristics could not be obtained.

【0004】すなわち、これを図8に示す一般的な加速
度応答倍率特性を参照しながら説明すると、図からわか
るように与える減衰力が小さい場合には高振動数域での
応答は小さくなるが、共振点での応答は大きくなる。逆
に、与える減衰力を大きくすると共振点での応答は小さ
くなるが、高振動数域での応答が大きくなる。図中破線
で示す曲線が理想的な減衰特性であるが、これは絶対速
度に比例した減衰力を振動系に与えることによって得ら
れるものである。前記したように構造物と地盤との相対
速度に応じた減衰力のみ一義的に与える場合には、破線
で示すような理想的な減衰特性を得ることはできない。
That is, to explain this with reference to the general acceleration response magnification characteristic shown in FIG. 8, as can be seen from the figure, when the applied damping force is small, the response in the high frequency range becomes small; The response at the resonance point becomes larger. Conversely, when the applied damping force is increased, the response at the resonance point becomes smaller, but the response in the high frequency range becomes larger. The curve shown by the broken line in the figure is the ideal damping characteristic, which is obtained by applying a damping force proportional to the absolute speed to the vibration system. As described above, if only a damping force corresponding to the relative velocity between the structure and the ground is uniquely applied, it is not possible to obtain the ideal damping characteristics as shown by the broken line.

【0005】なお、アクチュエータを用いて能動的に制
御することにより、絶対速度に応じた減衰力を振動系に
与えることも考えられるが、能動制御は信頼性や経済性
の面で難点がある。
[0005]Although it is possible to apply active control using an actuator to provide a damping force corresponding to the absolute speed to the vibration system, active control has drawbacks in terms of reliability and economy.

【0006】本発明は上記事情に鑑みてなされたもので
、絶対速度に比例した減衰力を振動系に与えることによ
って理想に近い減衰特性が得られる免震・防振制御方法
を提供することを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and aims to provide a seismic isolation/vibration isolation control method that provides nearly ideal damping characteristics by applying a damping force proportional to absolute speed to a vibration system. purpose.

【0007】[0007]

【課題を解決するための手段】本発明では係る目的を達
成するために、基台とその上部に配置される免震あるい
は防振対象物との間に可変減衰ダンパーを設け、前記基
台の絶対速度を測定するとともに前記免震あるいは防振
対象物の絶対速度を測定し、両者間の相対速度および免
震あるいは防振対象物の絶対速度から前記可変減衰ダン
パーの減衰特性をフアジー推論により制御することを特
徴としている。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a variable attenuation damper between a base and an object to be seismically isolated or vibration-proofed placed above the base. At the same time as measuring the absolute speed of the seismically isolated or vibration-proofed object, the damping characteristics of the variable damping damper are controlled by fuzzy inference from the relative speed between the two and the absolute speed of the seismically isolated or vibration-proofed object. It is characterized by

【0008】[0008]

【作用】基台の絶対速度を測定するとともに前記免震あ
るいは防振対象物の絶対速度を測定し、免震あるいは防
振対象物の絶対速度のみならず両者間の相対速度を加味
することにより、可変減衰ダンパーをフアジー制御し、
絶対速度に比例した減衰力を振動系に与える。
[Operation] By measuring the absolute speed of the base and the absolute speed of the seismically isolated or vibration-proofed object, taking into account not only the absolute speed of the seismically isolated or vibration-proofed object but also the relative speed between the two. , fuzzy control of variable damping damper,
Gives a damping force proportional to the absolute speed to the vibration system.

【0009】[0009]

【実施例】以下、本発明の一実施例を図面を参照して説
明する。図1は本発明方法を免震構造物に適用した例を
示す。図において符号1は地盤、2は地盤1上に積層ゴ
ム3を介して支持される構造物、4は地盤1と構造物2
との間に介装されて構造物に対して水平方向の抑制力を
与える可変減衰ダンパーである。可変減衰ダンパー4の
減衰係数は、後に詳述するいわゆるフアジー制御用のコ
ントローラ6によってパワーアンプ7を介して制御され
る。コントローラ6には構造物2の絶対速度を測定する
センサー8からの出力信号が入力されるとともに、該セ
ンサー8の値および地盤1自体の絶対速度を測定するセ
ンサー9の値が入力されてそれらの相対速度を電気信号
の形で発生する演算器10からの出力信号も入力される
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows an example in which the method of the present invention is applied to a seismic isolation structure. In the figure, numeral 1 is the ground, 2 is a structure supported on the ground 1 via the laminated rubber 3, and 4 is the ground 1 and the structure 2.
This is a variable damper that is interposed between the structure and the structure to apply a horizontal restraining force to the structure. The damping coefficient of the variable damper 4 is controlled via a power amplifier 7 by a controller 6 for so-called fuzzy control, which will be described in detail later. The output signal from the sensor 8 that measures the absolute speed of the structure 2 is input to the controller 6, as well as the value of the sensor 8 and the value of the sensor 9 that measures the absolute speed of the ground 1 itself. An output signal from a calculator 10 that generates relative velocity in the form of an electrical signal is also input.

【0010】前記可変減衰ダンパー4には電磁ダンパー
、オイルダンパー等種々のダンパーが使用できるが、こ
こではその一例として図2に示す公知の電磁ダンパー4
を用いる。このダンパー4は、ケーシング13に一方の
取付部14が取り付けられるとともに、ケーシング13
に固着された円筒部15に他方の取付部16が取り付け
られ、円筒部15にはボールネジ18が前記取付部16
と連結されて内蔵され、両取付部14,16が接近ある
いは離間される方向に相対移動する際に、ボールネジ1
8に取り付けられたシャフト19とともにアルミニュー
ム製のロータ20が回転し、このロータ20とそれに対
向するケーシング13内のマグネット22およびコイル
23との間で抵抗力が生じ、もって前記両取付部14,
16間に所定の減衰力を与える構造のものである。 なお、ロータ20とコイル23との間に生じる抵抗力は
コイル23に流す電流の大きさにより変化する。
Various dampers such as an electromagnetic damper and an oil damper can be used as the variable damper 4, and here, as an example, a known electromagnetic damper 4 shown in FIG. 2 is used.
Use. This damper 4 has one mounting portion 14 attached to the casing 13, and the casing 13
The other mounting part 16 is attached to the cylindrical part 15 fixed to the cylindrical part 15, and a ball screw 18 is attached to the cylindrical part 15.
The ball screw 1
The rotor 20 made of aluminum rotates together with the shaft 19 attached to the shaft 19 , and a resistance force is generated between the rotor 20 and the magnet 22 and coil 23 in the casing 13 facing the rotor 20 .
This structure provides a predetermined damping force between 16 and 16. Note that the resistance force generated between the rotor 20 and the coil 23 changes depending on the magnitude of the current flowing through the coil 23.

【0011】次に、上記可変減衰ダンパーによる構造物
の免震制御方法について説明しながらコントローラ6の
作用を明らかにする。地震等により構造物2に横揺れが
生じる場合、構造物2および地盤1の絶対速度はそれぞ
れセンサー8,9によって測定され、それらの測定値は
コントローラ6および演算器10にそれぞれ送られる。 演算器10では構造物2と地盤1との間の相対速度が算
出され、それらの値は電気信号の形でコントローラ6へ
送られる。
Next, the function of the controller 6 will be explained while explaining a seismic isolation control method for a structure using the variable attenuation damper. When the structure 2 is shaken due to an earthquake or the like, the absolute velocities of the structure 2 and the ground 1 are measured by sensors 8 and 9, respectively, and the measured values are sent to the controller 6 and the calculator 10, respectively. The computing unit 10 calculates the relative velocity between the structure 2 and the ground 1, and sends these values to the controller 6 in the form of electrical signals.

【0012】コントローラ6ではいわゆるフアジー制御
が行われる。すなわち、そのルールの一例を図3(a)
,(b)、図4(a),(b)に示す。図3(a),(
c)は前件部である速度メンパーシップ関数を、図3(
b)は後件部である減衰係数メンバーシップ関数をそれ
ぞれ示す。図3(a)前件部ー図3(b)後件部に対す
るルールが図4(a)であり、図3(c)前件部ー図3
(b)後件部に対するルールが図4(b)である。ここ
で、PBはポジテイブビッグ、PM  はポジテイブミ
ドル、PSはポジテイブスモール、ZOはゼロ、NBは
ネガテイブビッグ、NMはネガテイブミドル、NSはネ
ガテイブスモールをそれぞれ示す。このルールに従って
、構造物2の絶対速度が大きくかつ構造物2と地盤1と
の間の相対速度が小さいときには大きな減衰係数を、ま
た逆に構造物2の絶対速度が小さくかつ構造物と地盤と
の間の相対速度が大きいときには小さな減衰係数を与え
るようにコントローラ6から可変減衰ダンパー4へ所定
の出力信号を発する。なお、実際の制御は上記した図4
(a)および(c)のルールを組み合わせて行う。
The controller 6 performs so-called fuzzy control. In other words, an example of the rule is shown in Figure 3(a).
, (b), and shown in FIGS. 4(a) and (b). Figure 3(a), (
c) is the antecedent part of the velocity membership function, and Figure 3 (
b) shows the attenuation coefficient membership function which is the consequent part. The rules for Figure 3 (a) antecedent part - Figure 3 (b) consequent part are shown in Figure 4 (a), and Figure 3 (c) antecedent part - Figure 3
(b) The rule for the consequent part is shown in FIG. 4(b). Here, PB stands for positive big, PM stands for positive middle, PS stands for positive small, ZO stands for zero, NB stands for negative big, NM stands for negative middle, and NS stands for negative small. According to this rule, when the absolute velocity of structure 2 is large and the relative velocity between structure 2 and ground 1 is small, a large damping coefficient is applied, and conversely, when the absolute velocity of structure 2 is small and the relative velocity between structure 2 and ground 1 is small, a large damping coefficient is applied. The controller 6 issues a predetermined output signal to the variable damper 4 so as to provide a small damping coefficient when the relative speed between the two is large. The actual control is shown in Figure 4 above.
This is done by combining the rules (a) and (c).

【0013】図5は記したフアジー制御を実際に行った
場合の加速度応答倍率を示す。条件としては重量2トン
の構造物(固有周期1.3秒)を積層ゴム(減衰1.5
%)で支持したものであり、これについてシュミレーシ
ョン解析を行った結果を示す。図5(a)に振幅を、図
5(b)に減衰係数をそれぞれ示す。これらの図に示す
ように上記したフアジー制御を導入することによりダン
パーなしの場合あるいはパッシブダンパーを用いた場合
に比べて理想的な減衰特性が得られるのがわかる。図6
および図7はそれぞれ異なる種類の地震波(100Ga
lに基準化)を与えたときの、パッシブダンパーを使用
した場合とフアジー制御を行った場合の加速度応答波形
および減衰係数の変化(0〜100%)の比較例を示す
。入力波によって多少の効果に差はあるが、概ねバッシ
ブダンパーを使用した場合の8割前後に応答が低減され
ていることがわかる。なお、本発明が適用される対象物
はなんら構造物に限られることなく、例えば工作機械等
にも適用可能であるのは言うまでもない。
FIG. 5 shows the acceleration response magnification when the fuzzy control described above is actually performed. The conditions are that a structure weighing 2 tons (natural period 1.3 seconds) is made of laminated rubber (damping 1.5 seconds).
%), and the results of a simulation analysis on this are shown. FIG. 5(a) shows the amplitude, and FIG. 5(b) shows the damping coefficient. As shown in these figures, it can be seen that by introducing the above-described fuzzy control, ideal damping characteristics can be obtained compared to the case without a damper or when a passive damper is used. Figure 6
and Figure 7 show different types of seismic waves (100Ga
A comparative example of changes in acceleration response waveforms and damping coefficients (0 to 100%) when a passive damper is used and when fuzzy control is performed is shown when given (standardized to l). Although there are some differences in effectiveness depending on the input wave, it can be seen that the response is generally reduced to about 80% of that when using a bassive damper. Note that the object to which the present invention is applied is not limited to any structure, and it goes without saying that the present invention can also be applied to, for example, a machine tool.

【0014】[0014]

【発明の効果】以上説明したように本発明方法によれば
、基台の絶対速度を測定するとともに免震あるいは防振
対象物の絶対速度を測定し、免震あるいは防振対象物の
絶対速度のみならず両者間の相対速度を加味することに
より、可変減衰ダンパーをフアジー制御し、絶対速度に
比例した減衰力を振動系に与えることができ、もって能
動制御を導入することなく理想的な減衰が実現できるこ
ととなった。
As explained above, according to the method of the present invention, the absolute speed of the base is measured, and the absolute speed of the target for seismic isolation or vibration isolation is measured, and the absolute speed of the target for seismic isolation or vibration isolation is measured. In addition, by taking into account the relative speed between the two, it is possible to perform fuzzy control on the variable damping damper and apply a damping force proportional to the absolute speed to the vibration system, thereby achieving ideal damping without introducing active control. has become possible.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】図1は本発明方法の一実施例を示す概略側面図
である。
FIG. 1 is a schematic side view showing one embodiment of the method of the present invention.

【図2】図2は本発明方法を実施する際に用いる可変減
衰ダンパーの一例を示す断面図である。
FIG. 2 is a sectional view showing an example of a variable attenuation damper used when carrying out the method of the present invention.

【図3】図3(a),(c)はフアジー制御の前件部の
速度メンバーシップ関数を示す図、図3(b)は同制御
の後件部の減衰係数メンバーシップ関数を示す図である
[Figure 3] Figures 3 (a) and (c) are diagrams showing the velocity membership function of the antecedent part of fuzzy control, and Figure 3 (b) is a diagram showing the damping coefficient membership function of the consequent part of the same control. It is.

【図4】図4(a),(b)はそれぞれ上記フアジー制
御のルールを説明する図である。
FIGS. 4(a) and 4(b) are diagrams each explaining the rules of the fuzzy control.

【図5】図5は(a),(b)はそれぞれ上記フアジー
制御を実施した場合のシュミレーション結果を示す図で
ある。
FIGS. 5A and 5B are diagrams showing simulation results when the above-mentioned fuzzy control is implemented, respectively. FIGS.

【図6】図6は地震波入力を与えた場合のパッシブダン
パーを用いた場合とフアジー制御を行った場合との比較
例を示す図である。
FIG. 6 is a diagram showing a comparative example between a case where a passive damper is used and a case where fuzzy control is performed when seismic wave input is applied.

【図7】図7は他の種類の地震波入力を与えた場合の前
記同様の比較例を示す図である。
FIG. 7 is a diagram showing a comparative example similar to the above when another type of seismic wave input is applied.

【図8】図8は振動系の一般的な加速度応答倍率を示す
図である。
FIG. 8 is a diagram showing a general acceleration response magnification of a vibration system.

【符号の説明】[Explanation of symbols]

1  基台(地盤) 2  免震あるいは防振対象物(構造物)3  積層ゴ
ム 4  可変減衰ダンパー 6  コントローラ 8  速度センサー 9  速度センサー
1 Base (ground) 2 Seismic isolation or vibration isolation object (structure) 3 Laminated rubber 4 Variable damping damper 6 Controller 8 Speed sensor 9 Speed sensor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  基台とその上部に配置される免震ある
いは防振対象物との間に可変減衰ダンパーを設け、前記
基台の絶対速度を測定するとともに前記免震あるいは防
振対象物の絶対速度を測定し、両者間の相対速度および
免震あるいは防振対象物の絶対速度から前記可変減衰ダ
ンパーの減衰力をフアジー推論により制御することを特
徴とする免震・防振制御方法。
Claim 1: A variable attenuation damper is provided between a base and a seismically isolated or vibration-proofed object placed above the base, and the absolute speed of the base is measured and the A seismic isolation/vibration isolation control method comprising: measuring an absolute velocity, and controlling the damping force of the variable damper by fuzzy reasoning from the relative velocity between the two and the absolute velocity of an object to be isolated or vibration-isolated.
JP6911591A 1991-03-08 1991-03-08 Seismic isolation / vibration isolation control method Expired - Fee Related JP2899843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6911591A JP2899843B2 (en) 1991-03-08 1991-03-08 Seismic isolation / vibration isolation control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6911591A JP2899843B2 (en) 1991-03-08 1991-03-08 Seismic isolation / vibration isolation control method

Publications (2)

Publication Number Publication Date
JPH04280308A true JPH04280308A (en) 1992-10-06
JP2899843B2 JP2899843B2 (en) 1999-06-02

Family

ID=13393322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6911591A Expired - Fee Related JP2899843B2 (en) 1991-03-08 1991-03-08 Seismic isolation / vibration isolation control method

Country Status (1)

Country Link
JP (1) JP2899843B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000097278A (en) * 1998-09-22 2000-04-04 Matsushita Electric Ind Co Ltd Operational control method of mechanical device
JP2001214633A (en) * 2000-02-04 2001-08-10 Hitachi Metals Techno Ltd Cushioning device for building and its monitor system and control system
JP2016038047A (en) * 2014-08-08 2016-03-22 株式会社大林組 Vibration control system
JP2016038049A (en) * 2014-08-08 2016-03-22 株式会社大林組 Vibration control system
JP2016038046A (en) * 2014-08-08 2016-03-22 株式会社大林組 Vibration control system and adjustment method of vibration control system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000097278A (en) * 1998-09-22 2000-04-04 Matsushita Electric Ind Co Ltd Operational control method of mechanical device
JP2001214633A (en) * 2000-02-04 2001-08-10 Hitachi Metals Techno Ltd Cushioning device for building and its monitor system and control system
JP2016038047A (en) * 2014-08-08 2016-03-22 株式会社大林組 Vibration control system
JP2016038049A (en) * 2014-08-08 2016-03-22 株式会社大林組 Vibration control system
JP2016038046A (en) * 2014-08-08 2016-03-22 株式会社大林組 Vibration control system and adjustment method of vibration control system

Also Published As

Publication number Publication date
JP2899843B2 (en) 1999-06-02

Similar Documents

Publication Publication Date Title
Nagaya et al. Vibration control of a structure by using a tunable absorber and an optimal vibration absorber under auto-tuning control
De Wit et al. Adaptive eccentricity compensation
Clark et al. Design approaches for shaping polyvinylidene fluoride sensors in active structural acoustic control (ASAC)
CN104677483B (en) A kind of digitized magneto-electric low-frequency shock transducer system
Berardengo et al. LRLC-shunted piezoelectric vibration absorber
Mao et al. Design of tuneable vibration absorber by using inertial actuator with proof-mass acceleration feedback
JP2899843B2 (en) Seismic isolation / vibration isolation control method
US4267496A (en) Device for damping oscillations
Henrioulle et al. Experimental validation of a collocated PVDF volume velocity sensor/actuator pair
US4199989A (en) Cold damping of mechanical structures
Strassberger et al. Active noise reduction by structural control using piezo-electric actuators
Hwang et al. Plate with piezoelectric actuators/sensors
Xu et al. Joint acceleration feedback control for robots: analysis, sensing and experiments
CN112835294A (en) Control method for active vibration isolation system of cold atom gravimeter
Garcia et al. Passive and active control of a complex flexible structure using reaction mass actuators
JPH03250165A (en) Hybrid dynamic vibration reducer
CN109654149B (en) Active control method and system of hybrid shock isolator based on acceleration and force
Smith et al. A crude method of loop-shaping adaptive structures through optimum spatial compensator design
JPH10239219A (en) Engine spindle torque control device
Jin et al. Modeling of Active Vibration Reduction System (AVRS) based on vibration source propagation path
JPS63165652A (en) Earthquakeproof and vibrationproof optimum control system
JPS58221038A (en) Vibration-proof device
Nishimura et al. An experimental study of the active control of a building model
Lorenz et al. Applying semi-active friction damping to elastic supports for automotive applications
Nishimura et al. An intelligent tuned mass damper (an experimental study of an active-passive composite tuned mass damper)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990119

LAPS Cancellation because of no payment of annual fees