JPH04279898A - Liquid metal cooled nuclear reactor - Google Patents

Liquid metal cooled nuclear reactor

Info

Publication number
JPH04279898A
JPH04279898A JP3042161A JP4216191A JPH04279898A JP H04279898 A JPH04279898 A JP H04279898A JP 3042161 A JP3042161 A JP 3042161A JP 4216191 A JP4216191 A JP 4216191A JP H04279898 A JPH04279898 A JP H04279898A
Authority
JP
Japan
Prior art keywords
fuel
core
reactor
transfer pot
fuel assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3042161A
Other languages
Japanese (ja)
Inventor
Ichiji Yamanaka
一司 山中
Masao Mine
峯 雅夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3042161A priority Critical patent/JPH04279898A/en
Publication of JPH04279898A publication Critical patent/JPH04279898A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PURPOSE:To prevent giving damage to fuel aggregate 2 due to the sliding among the fuel aggregate 2, and to reduce the liquid level of a cooling material 7. CONSTITUTION:The stand-by point of a fuel transfer pot 3 for storing fuel aggregate 2 is provided on one end part in a core tank 20, and the depth is defined so that the upper end of the fuel transfer pot 3 when the fuel transfer pot 3 is stored in the stand-by point is of the same horizontal position as the upper surface of a core supporting structure 1. As a result, the damage to a fuel coating tube is reduced, while the height of a reactor is reduced.

Description

【発明の詳細な説明】[Detailed description of the invention]

【産業上の利用分野】本発明は液体金属冷却原子炉に関
する。
FIELD OF THE INVENTION This invention relates to liquid metal cooled nuclear reactors.

【従来の技術】従来の液体金属冷却原子炉において用い
られている燃料集合体の燃料交換装置の例を図7,図8
及び図9を用いて説明する。図7は液体金属冷却原子炉
の燃料集合体交換装置を示す模式縦断面図、図8,図9
はそれぞれ図7に示す炉心支持板の模式平面図及び模式
縦断面図である。図7,図8及び図9において、2は燃
料集合体、3は燃料移送ポット、4は燃料交換機、5は
原子炉容器、6は燃料出入機、7は冷却材、10は遮蔽
プラグ、19は炉心支持板、20は炉心槽を示している
。これらの図において、炉心槽20には炉心支持板19
により支持された燃料集合体2が装荷されており、炉心
槽20の片側部には燃料移送ポット3が付設されてあり
、燃料集合体2を炉心槽20と燃料移送ポット3との間
を移送する燃料交換機4,使用済み・新の各燃料集合体
を原子炉容器5の内・外に搬出入する燃料出入機6がそ
れぞれ配備されている。燃料集合体の交換時、使用済み
燃料集合体2を原子炉容器5の外に搬出する際は、燃料
交換機4で燃料集合体2の1体を炉心支持板19内より
引き抜き、炉心槽20を越えて燃料移送ポット3上方ま
で移送した後、燃料交換機4から切り離して燃料移送ポ
ット3に収納する。燃料移送ポット3に収納された燃料
集合体2は、燃料移送ポット3ごと燃料出入機6により
原子炉容器5の外へ搬出される。次いで、新しい燃料集
合体2を原子炉容器5内に搬入する際は、燃料出入機6
により新しい燃料集合体2を収納した燃料移送ポット3
ごと原子炉容器5内に搬入した後、新しい燃料集合体2
を燃料交換機4で燃料移送ポット3から引き抜き、炉心
槽20内の新しい燃料集合体2を装荷する位置まで移送
した後、燃料交換機4から切り離して炉心支持板19内
に装荷する。なお、原子炉容器5内の冷却材7の液位は
、燃料集合体2の燃料交換機4による運搬中においても
、燃料集合体2の崩壊熱を除去するため、運転中におけ
る燃料集合体2の発熱部が浸漬するレベルに保持されて
いる。なお、特開平1−172797号公報には中性子
遮蔽体用収納管に流動抵抗素子突起を設けて、冷却材の
流動を規制している関連技術が開示されている。
[Prior Art] An example of a fuel exchange device for a fuel assembly used in a conventional liquid metal cooled nuclear reactor is shown in FIGS. 7 and 8.
This will be explained using FIG. Figure 7 is a schematic longitudinal sectional view showing a fuel assembly exchange device for a liquid metal cooled nuclear reactor, Figures 8 and 9.
7 are a schematic plan view and a schematic vertical cross-sectional view of the core support plate shown in FIG. 7, respectively. 7, 8 and 9, 2 is a fuel assembly, 3 is a fuel transfer pot, 4 is a fuel exchanger, 5 is a reactor vessel, 6 is a fuel inlet/outlet machine, 7 is a coolant, 10 is a shielding plug, 19 2 indicates a core support plate, and 20 indicates a core barrel. In these figures, the core support plate 19 is attached to the core barrel 20.
A fuel assembly 2 supported by the core barrel 20 is loaded, and a fuel transfer pot 3 is attached to one side of the core barrel 20, and the fuel assembly 2 is transferred between the core barrel 20 and the fuel transfer pot 3. A fuel exchange machine 4 for transporting used and new fuel assemblies, and a fuel loading/unloading machine 6 for transporting used and new fuel assemblies into and out of the reactor vessel 5 are provided. When exchanging fuel assemblies, when transporting the spent fuel assemblies 2 out of the reactor vessel 5, one of the fuel assemblies 2 is pulled out from within the core support plate 19 using the fuel exchange machine 4, and the core barrel 20 is removed. After being transferred to above the fuel transfer pot 3, it is separated from the fuel exchanger 4 and stored in the fuel transfer pot 3. The fuel assembly 2 housed in the fuel transfer pot 3 is carried out of the reactor vessel 5 along with the fuel transfer pot 3 by a fuel loading/unloading machine 6. Next, when carrying a new fuel assembly 2 into the reactor vessel 5, the fuel loading/unloading machine 6
Fuel transfer pot 3 containing a new fuel assembly 2
After transporting the entire fuel assembly 2 into the reactor vessel 5,
is pulled out from the fuel transfer pot 3 by the fuel exchanger 4 and transferred to the position in the core tank 20 where a new fuel assembly 2 is loaded, then separated from the fuel exchanger 4 and loaded into the core support plate 19. Note that the liquid level of the coolant 7 in the reactor vessel 5 is maintained at the same level as that of the fuel assembly 2 during operation in order to remove the decay heat of the fuel assembly 2 even while the fuel assembly 2 is being transported by the fuel exchanger 4. It is maintained at a level where the heat generating part is immersed. Note that Japanese Patent Laid-Open No. 1-172797 discloses a related technique in which a flow resistance element protrusion is provided on a neutron shield housing tube to regulate the flow of coolant.

【発明が解決しようとする課題】上記従来技術は、燃料
集合体交換時、燃料集合体は炉心支持板上において上下
方向へ大きく移動する操作が行われるため、収納管削除
型燃料集合体を使用する場合は次の点で問題があった。 その問題点を図10及び図11を用いて説明する。図1
0及び図11はそれぞれ収納管削除型燃料集合体の縦断
面図及び図10の炉心燃料ピンの拡大縦断面図であり、
14は炉心燃料ピン、22は炉心燃料ペレット、23は
炉心燃料被覆管を示している。上述の収納管削除型燃料
集合体2を使用した原子炉の場合、燃料集合体交換時の
収納管削除型燃料集合体2を炉心支持板19内より出し
入れする際に、隣接する燃料集合体2同士の間で行われ
る摺動によって炉心燃料ペレット22を内包している炉
心燃料被覆管23が破損する危険性があった。本発明の
目的は、燃料集合体交換時、燃料集合体を炉心支持板よ
り出し入れする際に、燃料集合体同士の間で行われる摺
動によって燃料破損を生ぜしめないこと及び燃料集合体
の崩壊熱を除去するために必要とされる冷却材の液位が
低くて済むようにすることにより、原子炉の高さを削減
することにある。
[Problems to be Solved by the Invention] The above-mentioned prior art uses a fuel assembly with a storage tube removed type because when replacing the fuel assembly, the fuel assembly is moved greatly in the vertical direction on the core support plate. When doing so, there were problems in the following points. The problem will be explained using FIGS. 10 and 11. Figure 1
0 and 11 are a vertical cross-sectional view of a storage tube deleted type fuel assembly and an enlarged vertical cross-sectional view of the core fuel pin of FIG. 10, respectively.
14 is a core fuel pin, 22 is a core fuel pellet, and 23 is a core fuel cladding tube. In the case of a nuclear reactor using the storage tube deleted type fuel assembly 2 described above, when the storage tube deleted type fuel assembly 2 is inserted or removed from the core support plate 19 during fuel assembly replacement, the adjacent fuel assembly 2 There was a risk that the core fuel cladding tube 23 enclosing the core fuel pellets 22 would be damaged due to the sliding between them. It is an object of the present invention to prevent fuel damage from occurring due to sliding between fuel assemblies and to prevent fuel assemblies from collapsing when the fuel assemblies are moved in and out of the core support plate during fuel assembly replacement. The aim is to reduce the height of the reactor by requiring a lower level of coolant to remove the heat.

【課題を解決するための手段】上記目的は、次のように
して達成することができる。 (1)炉心槽内に設けられている炉心支持板に装荷され
る燃料集合体を待機箇所において燃料移送ポットを介し
て燃料交換機により原子炉容器から搬出したり搬入した
りするようになっている燃料移送ポットを有する液体金
属冷却原子炉において、燃料移送ポットの待機箇所が炉
心槽内の一端部に設けられ、待機箇所に燃料移送ポット
を収容したとき燃料移送ポットの上端が炉心支持板上面
と同水平位置となる深さを有すること。 (2)(1)において、燃料移送ポットの上部が切欠き
を有し、待機箇所に燃料移送ポットを収容したとき、切
欠きの下端が炉心支持体上面と同水平位置となる深さを
有すること。 (3)(1)において、炉心頂部と炉心頂部より上部に
液位をもつ原子炉運転中の冷却材の前記液位との間隔が
、冷却材における原子炉定格運転中と使用済み燃料集合
体運搬時の温度差による液位の変動高さとほぼ同一とな
るように炉内の冷却材の液位を保持すること。 (4)(3)において、使用済み燃料集合体の発熱部と
炉心頂部との間で、かつ使用済み燃料運搬時の冷却材よ
りも下部の位置における炉心槽の周囲にフローホールを
設けること。
[Means for Solving the Problems] The above object can be achieved as follows. (1) Fuel assemblies loaded onto the core support plate provided in the reactor vessel are transported to and from the reactor vessel by a fuel exchanger via a fuel transfer pot at a standby location. In a liquid metal cooled nuclear reactor having a fuel transfer pot, a standby area for the fuel transfer pot is provided at one end of the core tank, and when the fuel transfer pot is accommodated in the standby area, the upper end of the fuel transfer pot is connected to the upper surface of the core support plate. It must have a depth that allows for the same horizontal position. (2) In (1), the upper part of the fuel transfer pot has a notch, and has a depth such that the lower end of the notch is in the same horizontal position as the upper surface of the core support when the fuel transfer pot is accommodated in the standby area. thing. (3) In (1), the distance between the top of the core and the liquid level of the coolant during reactor operation, which has a liquid level above the top of the core, is the same as that of the coolant during rated operation of the reactor and between the spent fuel assemblies. Maintain the liquid level of the coolant in the furnace so that it is approximately the same as the height of the liquid level fluctuation due to temperature differences during transportation. (4) In (3), a flow hole is provided around the core barrel between the heat generating part of the spent fuel assembly and the top of the core, and at a position below the coolant during spent fuel transportation.

【作用】本発明によれば、燃料集合体を交換する際、燃
料集合体を上下方向に大きく移動させることがないので
、隣接する燃料集合体同士の間でほとんど摺動作用は生
じない。また、使用済み燃料集合体運搬時の冷却材の液
位が原子炉運転中の液位に比べて温度低下によりかなり
低下するが、使用済み燃料集合体運搬時の冷却材の液位
が炉心頂部とほぼ同じになるように冷却材の液位が設定
できるので、冷却材の液位は低くて済む。更に、使用済
み燃料集合体の発熱部の上端と炉心頂部との間で、かつ
使用済み燃料運搬時における冷却材の液位よりも下部の
炉心槽の周囲にフローホールを設けてあるので、使用済
み燃料集合体運搬時の冷却材液位を燃料集合体の頂部が
十分に露出するまで下げられ、燃料交換機による燃料集
合体のつかみ,離しの各動作がITVで監視でき、燃料
交換機による操作が容易となる。
According to the present invention, when replacing fuel assemblies, the fuel assemblies are not moved significantly in the vertical direction, so that almost no sliding action occurs between adjacent fuel assemblies. In addition, the liquid level of the coolant during transport of spent fuel assemblies is considerably lower than the liquid level during reactor operation due to temperature drop, but the liquid level of coolant during transport of spent fuel assemblies is lower than the liquid level at the top of the core. Since the coolant liquid level can be set to be approximately the same as the above, the coolant liquid level can be set to be low. Furthermore, a flow hole is provided around the core tank between the upper end of the heat generating part of the spent fuel assembly and the top of the core, and below the coolant liquid level during spent fuel transportation. The coolant liquid level during transportation of the finished fuel assembly is lowered until the top of the fuel assembly is sufficiently exposed, and each movement of the fuel exchanger grabbing and releasing the fuel assembly can be monitored on the ITV. It becomes easier.

【実施例】以下、実施例について説明する。図1〜図6
は本発明の一実施例を示し、図1は液体金属冷却原子炉
の模式縦断面図、図2,図3はそれぞれ炉心支持構造物
の模式平面図及び模式縦断面図、図4は燃料移送ポット
の斜視図、図5,図6はそれぞれ炉心配置を示す横断面
図及び中性子遮蔽体の外観図である。図1〜図6におい
て、1は炉心支持構造物、8は案内筒、9はITV、1
1は収納管のない炉心集合体、12はブランケット燃料
集合体、13は中性子遮蔽体、15はブランケット燃料
ピン、16は中性子遮蔽体用収納管、17は中性子遮蔽
材、18は流動抵抗素子突起、21はフローホール、2
4は燃料集合体出入口、32はブランケット燃料集合体
用収納管を示しており、そのほかは前出の符号である。 図1において、原子炉容器5内には、本発明になる燃料
移送ポット3の待機箇所が炉心槽20内の一端部に設け
られ、燃料移送ポット3の上部には下端が炉心支持構造
物1の上面と同水平位置となるような切り欠きが設けら
れている。また、燃料集合体2を炉心支持構造物1で支
持しているが、炉心支持構造物1の部分を拡大して示し
ているのが図2及び図3であり、図4には切り欠きを有
する燃料移送ポット3の構造がわかり易いように斜視図
で示している。また、炉心槽20の周囲には穴21が設
けられている。燃料集合体2には、図5に示すように、
収納管のない炉心燃料集合体11,ブランケット燃料集
合体12及び中性子遮蔽体13があり、収納管のない炉
心燃料集合体11の外周にブランケット燃料集合体用収
納管32を有するブランケット燃料集合体12、更にそ
の外周には、中性子遮蔽体用収納管16の周りに図6に
示すような流動抵抗素子突起18を有する中性子遮蔽体
13が配置されている。中性子遮蔽体13に流動抵抗素
子突起18を設けてある上下方向の範囲は、中性子遮蔽
体13下端から収納管のない炉心燃料集合体11の発熱
部上端までの高さに相当する部分である。流動抵抗素子
突起18により、ブランケット燃料集合体用収納管32
及び中性子遮蔽体用収納管16の各隣接管の間に隙間が
設けられ、かつ流動抵抗素子突起18を有する上下方向
の間では冷却材7は上方に均一に流動し、流動抵抗素子
突起18の上端より上部では冷却材7は横方向にも流動
でき、原子炉運転中において炉心燃料集合体11の十分
な冷却材流量を確保できるようになっている。炉心支持
構造物1は、図1に示すように、燃料集合体交換時にお
いて、燃料集合体2を収納する燃料移送ポット3の燃料
集合体2の出入口に設けてある切り欠きの下端を炉心支
持構造物1の上面と同水平位置に設置できる構造になっ
ている。更に、燃料集合体2が燃料移送ポット3に収納
された状態で燃料出入機6により原子炉容器5外に搬出
される際、その途中においても燃料集合体2の崩壊熱除
去のため燃料集合体2の発熱部が冷却材に浸漬してある
ように、その高さまでは切り欠きを設けずに、それより
上部に燃料集合体2が出し入れするための切り欠きを設
けた構造になっている。燃料集合体交換時には、燃料移
送ポット3の最も近くにある燃料集合体2(図2の中の
2−1)を燃料交換機4でつかみ、燃料集合体2が炉心
支持構造物1から切り離される高さまで引き上げる。そ
の後、燃料集合体2を燃料移送ポット3まで横方向に移
送し、燃料交換機4から燃料集合体2を切り離す。燃料
集合体2を収納した燃料移送ポット3は燃料出入機6に
よって原子炉容器5外へ搬出され、その後再び空の燃料
移送ポット3が原子炉容器5内に運び込まれる。このよ
うにして、炉心外側にある燃料集合体から順(図2中の
2−2,2−3という順)に順次、炉心支持構造物1内
の全部の燃料集合体2が原子炉容器5外へ搬出された後
、新しい燃料集合体2を燃料移送ポット3に収納して原
子炉容器5内に搬入し、燃料交換機4で炉心支持構造物
1内に据付けるようになっている。本実施例によれば、
燃料集合体2を炉心支持構造物1内に出し入れする際に
、燃料集合体2を炉心支持構造物1から切り離す分だけ
引き抜けば良いことから燃料集合体同士の摺動による炉
心燃料ピン14及び炉心燃料被覆管23破損の危険性を
低減することができる。また、燃料集合体2の上下方向
の移動量を少なくできることから、運搬する燃料集合体
2の崩壊熱除去のために必要な冷却材7の液位を低く保
つことができるので、原子炉容器の高さを削減すること
が可能となる。また、原子炉の運転停止に伴う冷却材7
の温度低下により、冷却材7の液位は燃料集合体2の頂
部が露出するまで収縮するが、燃料集合体2の崩壊熱除
去のために、ポンプ(図示せず)により炉心槽20外の
冷却材7を炉心槽20の底部から炉心槽20内に流入さ
せた後、オーバフローして炉心槽外に流出させるように
なっている。しかし、本実施例の場合、炉心槽20の周
囲には冷却材7の液位と燃料集合体2の発熱部の上端と
の間の高さの位置にフローホール21が設けられている
ので、炉心槽20内の冷却材7はフローホール21から
炉心槽20外に流出する。したがって、冷却材7液位は
燃料集合体2の頂部が十分に露出するレベルまで下がり
、燃料交換機4による燃料集合体2のつかみ、離しの煩
雑な操作を遮蔽プラグ10の案内筒8を通して設置され
ているITV9で監視しながら行うことができる。 なお、燃料移送ポット3に切り欠きを設けずに燃料移送
ポット3の上端が炉心支持構造物1の上面と同一水平位
置となるように燃料移送ポット3の待機箇所を設けても
、切り欠きを設けた場合とほとんど同一操作で同様な効
果が得られるが、この場合は燃料移送ポット3の待機箇
所の深さが切り欠きを有する場合よりも深くなる。
[Example] Examples will be described below. Figures 1 to 6
1 shows an embodiment of the present invention, FIG. 1 is a schematic longitudinal sectional view of a liquid metal cooled nuclear reactor, FIGS. 2 and 3 are a schematic plan view and a schematic longitudinal sectional view of a core support structure, respectively, and FIG. 4 is a fuel transfer diagram. A perspective view of the pot, FIGS. 5 and 6 are a cross-sectional view showing the core arrangement, and an external view of the neutron shield, respectively. 1 to 6, 1 is a core support structure, 8 is a guide tube, 9 is an ITV, 1
1 is a core assembly without a storage tube, 12 is a blanket fuel assembly, 13 is a neutron shield, 15 is a blanket fuel pin, 16 is a storage tube for the neutron shield, 17 is a neutron shielding material, and 18 is a flow resistance element protrusion. , 21 is a flow hole, 2
Reference numeral 4 indicates a fuel assembly inlet/outlet, 32 indicates a storage pipe for a blanket fuel assembly, and the other symbols are the same as those mentioned above. In FIG. 1, in the reactor vessel 5, a standby location for the fuel transfer pot 3 according to the present invention is provided at one end of the core tank 20, and the lower end of the fuel transfer pot 3 is connected to the core support structure 1. A notch is provided so that it is at the same horizontal position as the top surface of the. Furthermore, although the fuel assembly 2 is supported by the core support structure 1, FIGS. 2 and 3 show an enlarged view of the core support structure 1, and FIG. 4 shows a cutout. The structure of the fuel transfer pot 3 is shown in a perspective view for easy understanding. Further, a hole 21 is provided around the core barrel 20 . In the fuel assembly 2, as shown in FIG.
A blanket fuel assembly 12 includes a core fuel assembly 11 without a storage tube, a blanket fuel assembly 12, and a neutron shield 13, and has a blanket fuel assembly storage tube 32 on the outer periphery of the core fuel assembly 11 without a storage tube. Further, on the outer periphery, a neutron shield 13 having a flow resistance element protrusion 18 as shown in FIG. 6 is arranged around the neutron shield housing tube 16. The vertical range in which the flow resistance element protrusion 18 is provided on the neutron shield 13 corresponds to the height from the lower end of the neutron shield 13 to the upper end of the heat generating part of the core fuel assembly 11 without a storage tube. The flow resistance element protrusion 18 allows the blanket fuel assembly storage pipe 32
A gap is provided between each adjacent pipe of the neutron shield housing pipe 16 and the flow resistance element protrusion 18 exists between the upper and lower directions, and the coolant 7 uniformly flows upward. Above the upper end, the coolant 7 can also flow in the lateral direction, making it possible to ensure a sufficient flow rate of coolant for the core fuel assembly 11 during reactor operation. As shown in FIG. 1, the core support structure 1 supports the core at the lower end of a notch provided at the entrance/exit of the fuel assembly 2 of the fuel transfer pot 3 that houses the fuel assembly 2 during fuel assembly replacement. It has a structure that allows it to be installed at the same horizontal position as the top surface of the structure 1. Furthermore, when the fuel assembly 2 stored in the fuel transfer pot 3 is carried out of the reactor vessel 5 by the fuel loading/unloading machine 6, the fuel assembly 2 is also transported in order to remove the decay heat of the fuel assembly 2 during the transport. The structure is such that there is no cutout up to that height so that the heat generating part of the fuel assembly 2 is immersed in the coolant, but a cutout is provided above it for the fuel assembly 2 to be taken in and taken out. When replacing a fuel assembly, the fuel assembly 2 closest to the fuel transfer pot 3 (2-1 in FIG. Pull it up. Thereafter, the fuel assembly 2 is transferred laterally to the fuel transfer pot 3 and separated from the fuel exchanger 4. The fuel transfer pot 3 containing the fuel assembly 2 is carried out of the reactor vessel 5 by the fuel loading/unloading machine 6, and then the empty fuel transfer pot 3 is carried into the reactor vessel 5 again. In this way, all the fuel assemblies 2 in the core support structure 1 are transferred to the reactor vessel 5 in order from the fuel assemblies located outside the core (in the order 2-2 and 2-3 in FIG. 2). After being carried out, a new fuel assembly 2 is stored in a fuel transfer pot 3, carried into a reactor vessel 5, and installed in a core support structure 1 by a fuel exchanger 4. According to this embodiment,
When moving the fuel assembly 2 in and out of the core support structure 1, it is only necessary to pull out the fuel assembly 2 by the amount necessary to separate it from the core support structure 1. The risk of damage to the core fuel cladding tube 23 can be reduced. In addition, since the amount of vertical movement of the fuel assembly 2 can be reduced, the liquid level of the coolant 7 necessary for removing decay heat from the fuel assembly 2 being transported can be kept low, so the level of the coolant 7 can be kept low. It becomes possible to reduce the height. In addition, coolant 7 due to nuclear reactor shutdown
As the temperature decreases, the liquid level of the coolant 7 contracts until the top of the fuel assembly 2 is exposed. However, in order to remove the decay heat of the fuel assembly 2, a pump (not shown) is used to cool the coolant 7 outside the core tank 20. After the coolant 7 flows into the core barrel 20 from the bottom of the core barrel 20, it overflows and flows out of the core barrel. However, in the case of this embodiment, the flow hole 21 is provided around the core barrel 20 at a height between the liquid level of the coolant 7 and the upper end of the heat generating part of the fuel assembly 2. The coolant 7 in the core barrel 20 flows out of the core barrel 20 through the flow hole 21 . Therefore, the liquid level of the coolant 7 is lowered to a level where the top of the fuel assembly 2 is sufficiently exposed, and the complicated operation of gripping and releasing the fuel assembly 2 by the fuel exchanger 4 is eliminated through the guide tube 8 of the shielding plug 10. This can be done while being monitored by ITV9. Note that even if the fuel transfer pot 3 is not provided with a notch and a standby location for the fuel transfer pot 3 is provided so that the upper end of the fuel transfer pot 3 is at the same horizontal position as the top surface of the core support structure 1, the notch is not provided. The same effect can be obtained with almost the same operation as in the case where the notch is provided, but in this case, the depth of the waiting area of the fuel transfer pot 3 is deeper than in the case where the notch is provided.

【発明の効果】本発明によれば、燃料集合体を交換する
際、燃料集合体を上下方向に大きく移動させる必要がな
いので、収納管削除型燃料集合体を使用した原子炉の燃
料集合体の交換時において、燃料集合体同士の摺動によ
る燃料被覆管破損の危険性を低減することができる。ま
た、燃料集合体交換時の冷却材液位は低くて済み、原子
炉の高さを削減することができる。更に、燃料集合体交
換時の冷却材の液位を燃料集合体の頂部が十分に露出す
るまで下げられるので、燃料交換機による燃料集合体の
つかみ、離しの操作をITVで監視しながら行うことが
でき、燃料集合体交換に対する信頼性を向上させること
ができる。
Effects of the Invention According to the present invention, when replacing a fuel assembly, there is no need to move the fuel assembly significantly in the vertical direction. When replacing the fuel cladding, the risk of damage to the fuel cladding due to sliding between the fuel assemblies can be reduced. Furthermore, the coolant liquid level when replacing the fuel assembly can be kept low, and the height of the reactor can be reduced. Furthermore, since the liquid level of the coolant during fuel assembly replacement can be lowered until the top of the fuel assembly is sufficiently exposed, the operation of grabbing and releasing the fuel assembly by the fuel exchanger can be performed while being monitored by the ITV. This improves the reliability of fuel assembly replacement.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例を示す液体金属冷却型原子炉
の模式縦断面図である。
FIG. 1 is a schematic vertical cross-sectional view of a liquid metal cooled nuclear reactor showing one embodiment of the present invention.

【図2】図1に示す炉心支持構造物の模式平面図である
FIG. 2 is a schematic plan view of the core support structure shown in FIG. 1.

【図3】図1に示す炉心支持構造物の模式縦断面図であ
る。
FIG. 3 is a schematic vertical cross-sectional view of the core support structure shown in FIG. 1.

【図4】図1に示す燃料移送ポットの斜視図である。FIG. 4 is a perspective view of the fuel transfer pot shown in FIG. 1;

【図5】炉心配置を示す横断面図である。FIG. 5 is a cross-sectional view showing the core arrangement.

【図6】中性子遮蔽体の外観図である。FIG. 6 is an external view of a neutron shield.

【図7】従来の燃料集合体交換装置を示す模式縦断面図
である。
FIG. 7 is a schematic vertical sectional view showing a conventional fuel assembly exchange device.

【図8】図7に示す炉心支持板の模式平面図である。8 is a schematic plan view of the core support plate shown in FIG. 7. FIG.

【図9】図7に示す炉心支持板の模式縦断面図である。9 is a schematic longitudinal sectional view of the core support plate shown in FIG. 7. FIG.

【図10】収納管削除型燃料集合体の縦断面図である。FIG. 10 is a longitudinal cross-sectional view of a storage tube deleted type fuel assembly.

【図11】図10の炉心燃料ピンの拡大縦断面図である
FIG. 11 is an enlarged longitudinal cross-sectional view of the core fuel pin of FIG. 10;

【符号の説明】[Explanation of symbols]

1  炉心支持構造物 2  燃料集合体 3  燃料移送ポット 4  燃料交換機 5  原子炉容器 6  燃料出入機 7  冷却材 19  炉心支持板 20  炉心槽 21  フローホール 1 Core support structure 2 Fuel assembly 3 Fuel transfer pot 4 Fuel exchange machine 5 Reactor vessel 6 Fuel loading/unloading machine 7 Coolant 19 Core support plate 20 Core tank 21 Flow hole

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】  炉心槽内に設けられている炉心支持板
に装荷される燃料集合体を待機箇所において燃料移送ポ
ットを介して燃料交換機により原子炉容器から搬出した
り搬入したりするようになっている前記燃料移送ポット
を有する液体金属冷却原子炉において、前記燃料移送ポ
ットの待機箇所が前記炉心槽内の一端部に設けられ、該
待機箇所に前記燃料移送ポットを収容したとき該燃料移
送ポットの上端が前記炉心支持板上面と同水平位置とな
る深さを有することを特徴とする液体金属冷却原子炉。
[Claim 1] Fuel assemblies loaded on a core support plate provided in a reactor barrel are carried in and out of the reactor vessel by a fuel exchanger via a fuel transfer pot at a standby location. In a liquid metal cooled nuclear reactor having the fuel transfer pot, a standby location for the fuel transfer pot is provided at one end of the core barrel, and when the fuel transfer pot is accommodated in the standby location, the fuel transfer pot A liquid metal cooled nuclear reactor characterized in that the upper end of the reactor has a depth such that the upper end thereof is at the same horizontal position as the upper surface of the core support plate.
【請求項2】  前記燃料移送ポットの上部が切欠きを
有し、前記待機箇所に前記燃料移送ポットを収容したと
き、前記切欠きの下端が前記炉心支持体上面と同水平位
置となる深さを有する請求項1記載の液体金属冷却原子
炉。
2. The upper part of the fuel transfer pot has a notch, and the depth is such that the lower end of the notch is at the same horizontal position as the upper surface of the core support when the fuel transfer pot is accommodated in the standby location. The liquid metal cooled nuclear reactor according to claim 1, comprising:
【請求項3】  炉心頂部と該炉心頂部より上部に液位
を有する原子炉運転中の冷却材の前記液位との間隔が、
前記冷却材における前記原子炉定格運転中と前記使用済
み燃料集合体運搬時の温度差による液位の変動高さとほ
ぼ同一になるように前記炉内の冷却材の液位を保持して
なる請求項1記載の液体金属冷却原子炉。
3. The distance between the top of the reactor core and the liquid level of a coolant during reactor operation that has a liquid level above the top of the reactor core,
A claim in which the liquid level of the coolant in the reactor is maintained so as to be approximately the same as the height of fluctuation in the liquid level due to a temperature difference between the coolant during rated operation of the reactor and during transportation of the spent fuel assembly. The liquid metal cooled nuclear reactor according to item 1.
【請求項4】  前記使用済み燃料集合体の発熱部の上
端と前記炉心頂部との間で、かつ前記使用済み燃料集合
体運搬時の前記冷却材の液位よりも下部の位置における
前記炉心槽の周囲にフローホールを有してなる請求項3
記載の液体金属冷却原子炉。
4. The core tank at a position between the upper end of the heat generating part of the spent fuel assembly and the top of the core and below the liquid level of the coolant during transportation of the spent fuel assembly. Claim 3 comprising a flow hole around the periphery of the
The liquid metal cooled nuclear reactor described.
【請求項5】  前記炉心槽内に設けられている前記炉
心支持板に装荷される前記燃料集合体を前記炉心槽に対
して側方から出し入れするようにしたことを特徴とする
請求項1及び4記載の液体金属冷却原子炉。
5. The fuel assembly loaded on the core support plate provided in the core barrel is moved in and out of the core barrel from the side. 4. The liquid metal cooled nuclear reactor according to 4.
JP3042161A 1991-03-08 1991-03-08 Liquid metal cooled nuclear reactor Pending JPH04279898A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3042161A JPH04279898A (en) 1991-03-08 1991-03-08 Liquid metal cooled nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3042161A JPH04279898A (en) 1991-03-08 1991-03-08 Liquid metal cooled nuclear reactor

Publications (1)

Publication Number Publication Date
JPH04279898A true JPH04279898A (en) 1992-10-05

Family

ID=12628235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3042161A Pending JPH04279898A (en) 1991-03-08 1991-03-08 Liquid metal cooled nuclear reactor

Country Status (1)

Country Link
JP (1) JPH04279898A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220051811A1 (en) * 2020-08-17 2022-02-17 Terrapower, Llc Modular manufacture, delivery, and assembly of nuclear reactor core systems

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220051811A1 (en) * 2020-08-17 2022-02-17 Terrapower, Llc Modular manufacture, delivery, and assembly of nuclear reactor core systems

Similar Documents

Publication Publication Date Title
US20140254737A1 (en) Managing nuclear reactor spent fuel rods
JP2023123623A (en) Double standard fuel canister system
JPH04279898A (en) Liquid metal cooled nuclear reactor
JP6756470B2 (en) Reactors and nuclear plants
US3446703A (en) Method of operating a nuclear reactor
US4655996A (en) East neutron reactor having a storage structure independent of the core structure
JP2525827B2 (en) Fuel assembly
US4364899A (en) Assembly for passage through a containment slab for transferring irradiated nuclear fuel
US20200343006A1 (en) Fuel Element, Fuel Assembly, and Core
US3850794A (en) Gas-cooled nuclear reactor
KR20240047020A (en) Molten Salt Reactor
JPS61791A (en) Fast neutron reactor
JPS603599A (en) Storage rack for used fuel
Wootton PRESSURIZED WATER NUCLEAR REACTOR
JP2837874B2 (en) Liquid metal cooled fast neutron reactor
JPS5834390A (en) Liquid metal cooled type fast breeder
JPS6344800Y2 (en)
JPH028280B2 (en)
Blake NUCLEAR REACTORS
JPS62151793A (en) In-pile fuel storage device
JPS59150374A (en) Thermal shield device in fast breeder
Laurer et al. Gas-cooled nuclear reactor
JPS61272696A (en) Fuel carry-in/carry-out equipment construction for nuclear reactor
JPS6157883A (en) Core upper-section mechanism
Crambes et al. Integrated exchanger nuclear reactors