JPH04279863A - Flow injection analyzer - Google Patents

Flow injection analyzer

Info

Publication number
JPH04279863A
JPH04279863A JP6769691A JP6769691A JPH04279863A JP H04279863 A JPH04279863 A JP H04279863A JP 6769691 A JP6769691 A JP 6769691A JP 6769691 A JP6769691 A JP 6769691A JP H04279863 A JPH04279863 A JP H04279863A
Authority
JP
Japan
Prior art keywords
solution
pipe
reaction
flow passage
transport liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6769691A
Other languages
Japanese (ja)
Inventor
Kimiyuki Suzaki
須崎 公之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP6769691A priority Critical patent/JPH04279863A/en
Publication of JPH04279863A publication Critical patent/JPH04279863A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To analyze components in aqueous solution speedily and accurately by means of the least reagent consumption by combining plural number of multi-way valves together. CONSTITUTION:Transport liquid is sent to a detector 15 through a transport liquid sending pipe 2, a liquid sending pump 1, a flow passage selector valve 9 and a reaction pipe 14. Sample solution is injected from a solution injecting pipe 5 of a flow passage selector valve 8 so as to be filled in a pipe 11. Coloring matter containing solution to be reacted upon analyzing components in the sample solution is injected from a solution injecting pipe 4 of a flow passage selector valve 7 so as to be filled in a pipe 10. Reaction adjusting solution is injected from a solution injecting pipe 6 of the flow passage selector valve 9 so as to be filled in a pipe 12. After these solutions are all filled in the pipes 10, 11 and 12, by switching the flow passage selector valves 7, 8 and 9 in 7, 8 and 9 order, the sample solution, the coloring matter containing solution and the reaction adjusting solution are introduced into the flow passage for the transport liquid at one time, and are mixed in the reaction pipe 14 of a reaction tank 13, and are reacted upon each other, and reaction products can be detected by means of the detector 15.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、フローインジェクショ
ン法による水溶液中のマンガン、クロム、アンモニウム
イオン等の成分の分析をするための分析装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an analyzer for analyzing components such as manganese, chromium, and ammonium ions in an aqueous solution using a flow injection method.

【0002】0002

【従来の技術】井戸水、工業排水などの水溶液中のマン
ガン、クロム、アンモニウムイオン等の成分の分析は、
用水の利用の際の水質検査に欠かすことのできない一工
程である。従来、例えば水溶液中のMnの分析、特に微
量定量分析には、Mnを含む水溶液と、これに含まれる
Mnと反応しMnに由来する発色を呈する試薬、例えば
ホルムアルドキシム等またはMnを酸化し過マンガン酸
を生成する事により発色を生じさせる試薬、例えばビス
マス酸ナトリウム、過硫酸アンモニウム、過ヨウ素酸カ
リウム等とを混合して反応させ、その着色を分光光度計
により測定する方法、Mnを含む水溶液と、これに含ま
れるMnと反応し色素の着色を消す試薬、例えば過酸化
水素、過ヨウ素酸カリウム及び退色を受ける色素、例え
ばマラカイトグリーン、メチレングリーン、3−(2−
ヒドロキシフェニルアゾ)ピリジン−2,6−ジオール
(HPAPD)とを混合し反応させ、分光光度計により
その退色速度を測定する接触分析法の他、原子吸光分析
法、誘導結合プラズマ発光法等々の分析方法が提案され
ている。
[Prior Art] Analysis of components such as manganese, chromium, and ammonium ions in aqueous solutions such as well water and industrial wastewater is
This is an essential step in water quality testing when using water. Conventionally, for example, analysis of Mn in an aqueous solution, especially trace quantitative analysis, has been carried out by using an aqueous solution containing Mn and a reagent that reacts with the Mn contained therein to develop a color derived from Mn, such as formaldoxime, or a reagent that oxidizes Mn. A method in which a reagent that generates color by producing permanganic acid, such as sodium bismuthate, ammonium persulfate, potassium periodate, etc., is mixed and reacted, and the resulting coloration is measured using a spectrophotometer. An aqueous solution containing Mn. and reagents that react with the Mn contained therein to erase the coloring of the dye, such as hydrogen peroxide, potassium periodate, and dyes that undergo fading, such as malachite green, methylene green, 3-(2-
In addition to contact analysis, which involves mixing and reacting with hydroxyphenylazo)pyridine-2,6-diol (HPAPD) and measuring the fading rate using a spectrophotometer, analysis methods include atomic absorption spectrometry, inductively coupled plasma luminescence, etc. A method is proposed.

【0003】0003

【発明が解決しようとする課題】しかし、近年技術が複
雑になり迅速な判断、対処が要求される分野においては
、連続的測定により可及的速かに諸条件を把握し次の段
階に対応することが必要となっている。上記した排水中
の成分の分析把握についても同様であり、比較的長時間
を要し一測定あたりの試薬使用量の多い従来の水溶液中
の各成分の定量分析方法において、短時間で、かつ試料
溶液を少なくできる分析方法の改良が求められている。
[Problem to be solved by the invention] However, in recent years, in fields where technology has become complex and prompt judgment and response are required, it is necessary to grasp various conditions as quickly as possible through continuous measurement and take measures for the next step. It is necessary to do so. The same applies to the analysis and understanding of the components in wastewater mentioned above. There is a need for improved analytical methods that require less solution.

【0004】0004

【課題を解決するための手段】本発明者らは、水溶液中
の各成分の定量分析方法につき種々の検討を行った結果
、複数個の多方向バルブを適宜組み合わせて用いること
により、試薬使用量が少なく、迅速かつ精度良い水溶液
中の成分を分析できることを見出し本発明を完成した。
[Means for Solving the Problems] As a result of various studies on quantitative analysis methods for each component in an aqueous solution, the present inventors have found that the amount of reagent used can be reduced by appropriately combining a plurality of multi-way valves. The present invention was completed based on the discovery that components in an aqueous solution can be analyzed quickly and accurately with little amount of oxidation.

【0005】すなわち、本発明は、輸送液送液部、試料
注入流路切替部、反応槽部および検出部が順に輸送液送
液管路で接続されており、該試料注入流路切替部がn個
(n≧2)の流路切替バルブで構成され、輸送液送液管
路に第1流路切替バルブが接続され、該第1流路切替バ
ルブにn−1個の流路切替バルブが直列に管路接続され
、第n端部流路切替バルブには溶液保持用管路が設けら
れているフローインジェクション分析装置を提供するも
のである。
That is, in the present invention, a transport liquid feeding section, a sample injection channel switching section, a reaction tank section, and a detection section are connected in order through a transport liquid feeding pipe, and the sample injection channel switching section Consisting of n (n≧2) channel switching valves, a first channel switching valve is connected to the transport liquid feeding pipe, and n-1 channel switching valves are connected to the first channel switching valve. The present invention provides a flow injection analyzer in which the liquid crystals are connected in series through a pipe line, and the n-th end flow path switching valve is provided with a solution holding pipe line.

【0006】[0006]

【作用】以下本発明を詳細に説明する。[Operation] The present invention will be explained in detail below.

【0007】本発明の分析装置は、試料溶液中の分析成
分と該成分と反応する発色試薬などの色素溶液とを反応
させ、反応生成物の発色または減色を検出して分析成分
を定量・測定するために、輸送液の流れる流路の途中の
流路切替バルブに複数個の流路切替バルブを接続し、該
バルブの間を溶液保持用管路を有する流路で接続したも
ので、試料溶液、分析成分と反応する色素溶液、反応調
整用溶液等を各流路切替バルブを接続する管路に保持し
た後、流路切替バルブの切り替えにより輸送液流路に各
溶液を流入させ、反応槽部で反応させ、反応生成物を検
出器で検出できるようにしたものである。
The analyzer of the present invention reacts an analytical component in a sample solution with a dye solution such as a coloring reagent that reacts with the component, and detects color development or color reduction of the reaction product to quantify and measure the analytical component. In order to do this, a plurality of flow path switching valves are connected to a flow path switching valve in the middle of the flow path through which the transport liquid flows, and the valves are connected by a flow path having a solution holding pipe. After holding the solution, the dye solution that reacts with the analytical component, the reaction adjustment solution, etc. in the pipes that connect the flow path switching valves, each solution flows into the transport liquid flow path by switching the flow path switching valves, and the reaction begins. The reaction takes place in a tank, and the reaction products can be detected with a detector.

【0008】以下、本発明装置を図面に基づいて詳細に
説明する。
The apparatus of the present invention will be explained in detail below with reference to the drawings.

【0009】図1は、本発明装置の一実施態様を示す概
要図である。輸送液送液部としての送液ポンプ1、輸送
液送液管路2、試料注入流路切替部3には管路11,1
2により接続された3個の流路切替バルブ7,8,9、
端部流路切替バルブ7には溶液保持用管路10、各流路
切替バルブへの溶液注入用管路4,5,6、反応槽部1
3としての反応管路14および検出器15から構成され
ている。
FIG. 1 is a schematic diagram showing one embodiment of the apparatus of the present invention. A liquid sending pump 1 as a transport liquid sending section, a transport liquid sending pipe 2, and a sample injection flow path switching section 3 include pipes 11 and 1.
three flow path switching valves 7, 8, 9 connected by 2;
The end channel switching valve 7 includes a solution holding pipe 10, solution injection pipes 4, 5, 6 to each flow switching valve, and a reaction tank section 1.
3, a reaction line 14 and a detector 15.

【0010】各構成は、通常の液体クロマトグラフ装置
などで使用されているものを適宜選択することができる
[0010] Each configuration can be appropriately selected from those used in ordinary liquid chromatograph apparatuses.

【0011】次に、本発明装置の動作について説明する
Next, the operation of the apparatus of the present invention will be explained.

【0012】輸送液は輸送液送液管路2を送液ポンプ1
により流路切替バルブ9、反応管路14および検出器1
5に送液される。試料溶液は流路切替バルブ8の溶液注
入用管路5から注入されて管路11に充填される。試料
溶液中の分析成分と反応する色素溶液は流路切替バルブ
7の溶液注入用管路4から注入されて管路10に充填さ
れる。反応調整用溶液は流路切替バルブ9の溶液注入用
管路6から注入されて管路12に充填される。すべての
溶液が管路10,11,12に充填された後、流路切替
バルブ7,8,9を7→8→9の順に切り替える事によ
り、管路中に充填された試料溶液、色素溶液、反応調整
用溶液が輸送液の流路に一度に導入される。そして、反
応槽部13の反応管路14で各溶液が混合され反応し、
反応生成物が検出器15で検出される。
[0012] The liquid to be transported is passed through the liquid transport pipe 2 to the liquid transport pump 1.
Flow path switching valve 9, reaction pipe 14 and detector 1
The liquid is sent to 5. The sample solution is injected from the solution injection conduit 5 of the flow path switching valve 8 and filled into the conduit 11 . A dye solution that reacts with the analytical component in the sample solution is injected from the solution injection conduit 4 of the flow path switching valve 7 and filled into the conduit 10 . The reaction adjustment solution is injected from the solution injection conduit 6 of the flow path switching valve 9 and filled into the conduit 12 . After all the solutions are filled in the pipes 10, 11, and 12, the sample solution and the dye solution filled in the pipes are changed by switching the flow path switching valves 7, 8, and 9 in the order of 7 → 8 → 9. , the reaction adjustment solution is introduced into the transport liquid channel all at once. Then, each solution is mixed and reacted in the reaction pipe line 14 of the reaction tank section 13,
The reaction product is detected by detector 15.

【0013】試料溶液、色素溶液、反応調整用溶液のそ
れぞれの注入管路は、分析成分、反応種類などにより上
記説明した以外にも適宜選択することができる。
[0013] The injection lines for the sample solution, dye solution, and reaction adjustment solution can be appropriately selected from those described above depending on the components to be analyzed, the type of reaction, and the like.

【0014】これらの動作手順の制御はプログラムに従
って制御することも可能である。
[0014] These operating procedures can also be controlled according to a program.

【0015】図1に示す分析装置では、例えば次に示す
ような分析が可能となる。アンモニウムイオンとネスラ
ー試薬の反応を利用する場合には、輸送液として水、色
素溶液としてネスラー試薬、反応調整用溶液として0.
5MNaOHをそれぞれ使用してアンモニウムイオンを
定量でき、カルシウムイオンとエチレングリコールビス
(2−アミノエチルエーテル)(ETGA)が錯体をつ
くることを利用してZn−[4−(2−ピリジルアゾ)
レゾルシノール](PAR)錯体の呈色を測定して間接
的にカルシウムイオンを定量する場合には、輸送液とし
て水、色素溶液としてZn−ETGA四酢酸錯体+PA
R、反応調整用溶液としてホウ酸塩緩衝溶液(pH7.
5)をそれぞれ使用し、Cr(III)がCe(IV)
によりCr(VI)に酸化され、Cr(VI)は1,5
−ジフェニルカルバジド(DPC)と反応して呈色を示
すことを利用したクロムの測定では、輸送液として0.
8MHNO3、色素溶液として0.05W/V%DPC
、反応調整用溶液として0.025W/V%Ce(SO
4)2−0.07MH2SO4をそれぞれ使用し、反応
調整用溶液を輸送液の流路に導入するか、しないかによ
って全クロムおよびクロム(III)とクロム(VI)
との分別定量ができる。
The analysis apparatus shown in FIG. 1 enables the following analysis, for example. When using the reaction between ammonium ions and Nessler's reagent, water is used as the transport liquid, Nessler's reagent is used as the dye solution, and 0.0% is used as the reaction adjustment solution.
Ammonium ions can be determined using 5M NaOH, and Zn-[4-(2-pyridylazo)
When indirectly quantifying calcium ions by measuring the color of the resorcinol (PAR) complex, water is used as the transport liquid and Zn-ETGA tetraacetic acid complex + PA is used as the dye solution.
R, borate buffer solution (pH 7.
5) respectively, Cr(III) is Ce(IV)
is oxidized to Cr(VI) by
- In the measurement of chromium using the reaction with diphenylcarbazide (DPC), which shows coloration, 0.0.
8MHNO3, 0.05W/V% DPC as dye solution
, 0.025W/V%Ce(SO
4) Using 2-0.07M H2SO4, total chromium, chromium (III) and chromium (VI) depending on whether or not the reaction adjustment solution is introduced into the flow path of the transport liquid.
It is possible to separate and quantify the

【0016】図2には、2個の流路切替バルブ7,8を
使用した場合の本発明装置の一実施態様を示す概要図で
ある。この分析装置では、輸送液として水、色素溶液と
してK2Cr2O7−H2SO4をそれぞれ使用して化
学的酸素要求量(COD)を測定することができる。
FIG. 2 is a schematic diagram showing an embodiment of the apparatus of the present invention in which two flow path switching valves 7 and 8 are used. This analyzer can measure chemical oxygen demand (COD) using water as a transport liquid and K2Cr2O7-H2SO4 as a dye solution.

【0017】[0017]

【実施例】以下本発明を実施例により説明するが、本発
明はこれらによりの限定されるものではない。
[Examples] The present invention will be explained below with reference to Examples, but the present invention is not limited thereto.

【0018】実施例 図1の分析装置を用いて廃液中のMnを定量分析する方
法を説明する。輸送液送液管路2はすべて内径0.5m
mのテフロン製細管を用い、反応管路14の長さを20
0cmとし、管路10、11、12はそれぞれの溶液充
填量が30μlとなるように調整した物を取り付けた。 送液ポンプ1の流速は1.50ml/min、反応槽1
3の温度は50℃、検出器15として紫外可視検出器を
用いその波長は472nmに設定した。
EXAMPLE A method for quantitatively analyzing Mn in waste liquid using the analyzer shown in FIG. 1 will be explained. All liquid transport pipes 2 have an inner diameter of 0.5 m.
Using a Teflon tube of 20 m, the length of the reaction pipe 14 is 20 m.
0 cm, and pipes 10, 11, and 12 were each equipped with a solution volume adjusted to be 30 μl. The flow rate of liquid pump 1 is 1.50 ml/min, reaction tank 1
The temperature in step 3 was 50° C., and an ultraviolet-visible detector was used as the detector 15, and its wavelength was set to 472 nm.

【0019】輸送液は40vol%エタノール水溶液、
色素溶液はHPAPDのエタノール溶液とpH9.3に
調整した(NH4Cl+NH4OH+NaCl)緩衝液
を[HPAPD]=0.35mM、[NH3]=0.9
3M、[NaCl]=0.32Mとなるように調製した
混合液、反応試薬溶液は0.08M過酸化水素水をそれ
ぞれ使用した。
[0019] The transport liquid is a 40 vol% ethanol aqueous solution,
The dye solution was a mixture of an ethanol solution of HPAPD and a buffer solution (NH4Cl + NH4OH + NaCl) adjusted to pH 9.3, [HPAPD] = 0.35 mM, [NH3] = 0.9.
3M, [NaCl]=0.32M, and a 0.08M hydrogen peroxide solution was used as the reaction reagent solution.

【0020】温度、流速、検出器信号ともに安定した時
点で、色素溶液を管路4から、試料溶液を管路5から、
反応試薬溶液を管路6からそれぞれ管路10、11、1
2に充填し、流路切替バルブ7,8,9を7→8→9の
順に切り替える事により、管路4、5、6の溶液を輸送
液の流路中に一度に導入した。流路切替バルブ9の切り
替え後、約60秒で混合液は検出器15に達する。その
時点での472nmにおける吸収のプロファイルピーク
高さを読み取り、空試験値との差から、予め作成したM
n検量線によりMn量を定量した。
[0020] When the temperature, flow rate, and detector signal are all stabilized, the dye solution is introduced from conduit 4, the sample solution is introduced from conduit 5,
The reaction reagent solution is transferred from pipe 6 to pipes 10, 11, and 1, respectively.
2, and by switching the flow path switching valves 7, 8, and 9 in the order of 7→8→9, the solutions in the pipes 4, 5, and 6 were introduced into the transport liquid flow path at once. After switching the flow path switching valve 9, the mixed liquid reaches the detector 15 in about 60 seconds. Read the absorption profile peak height at 472 nm at that point, and from the difference from the blank test value, create a M
The amount of Mn was determined using an n calibration curve.

【0021】この測定条件におけるMnの定量濃度範囲
は0.1〜3μg/mlであり、測定の相対標準偏差率
は3%であった。また、1時間あたり約50試料の測定
ができた。
The quantitative concentration range of Mn under these measurement conditions was 0.1 to 3 μg/ml, and the relative standard deviation rate of the measurement was 3%. Additionally, approximately 50 samples could be measured per hour.

【0022】[0022]

【発明の効果】本発明は簡便な操作、短時間、高精度、
迅速、かつ少量の試薬で水溶液中の各成分の定量分析が
できる分析装置である。
[Effects of the invention] The present invention provides simple operation, short time, high precision,
This is an analytical device that can perform quantitative analysis of each component in an aqueous solution quickly and with a small amount of reagents.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明装置の一実施態様として3個の流路切替
バルブを使用した場合の分析装置を示す図である。
FIG. 1 is a diagram showing an analysis device using three flow path switching valves as an embodiment of the device of the present invention.

【図2】本発明の一実施態様として2個の流路切替バル
ブを使用した場合の分析装置を示す図である。
FIG. 2 is a diagram showing an analyzer using two flow path switching valves as an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  輸送液送液部、試料注入流路切替部、
反応槽部および検出部が順に輸送液送液管路で接続され
ており、該試料注入流路切替部がn個(n≧2)の流路
切替バルブで構成され、輸送液送液管路に第1流路切替
バルブが接続され、該第1流路切替バルブにn−1個の
流路切替バルブが直列に管路接続され、第n端部流路切
替バルブには溶液保持用管路が設けられていることを特
徴とするフローインジェクション分析装置。
[Claim 1] A transport liquid feeding section, a sample injection channel switching section,
The reaction tank section and the detection section are sequentially connected by a transport liquid feeding pipe, and the sample injection flow path switching section is composed of n pieces (n≧2) of flow switching valves, and the transport liquid feeding pipe A first channel switching valve is connected to the first channel switching valve, n-1 channel switching valves are connected in series to the first channel switching valve, and a solution holding pipe is connected to the n-th end channel switching valve. A flow injection analysis device characterized by being provided with a channel.
JP6769691A 1991-03-08 1991-03-08 Flow injection analyzer Pending JPH04279863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6769691A JPH04279863A (en) 1991-03-08 1991-03-08 Flow injection analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6769691A JPH04279863A (en) 1991-03-08 1991-03-08 Flow injection analyzer

Publications (1)

Publication Number Publication Date
JPH04279863A true JPH04279863A (en) 1992-10-05

Family

ID=13352381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6769691A Pending JPH04279863A (en) 1991-03-08 1991-03-08 Flow injection analyzer

Country Status (1)

Country Link
JP (1) JPH04279863A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018054592A (en) * 2016-09-21 2018-04-05 大阪瓦斯株式会社 Gas sensor and gas detection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018054592A (en) * 2016-09-21 2018-04-05 大阪瓦斯株式会社 Gas sensor and gas detection device

Similar Documents

Publication Publication Date Title
US4224033A (en) Programmable, continuous flow analyzer
US11454619B2 (en) Methods for colorimetric endpoint detection and multiple analyte titration systems
AU655203B2 (en) Flow injection analysis of total inorganic phosphate
US5783740A (en) Analytical system for trace element
Lin et al. Flow injection analysis method for determination of total dissolved nitrogen in natural waters using on-line ultraviolet digestion and vanadium chloride reduction
Itabashi et al. A novel flow injection technique: All injection analysis
US4871681A (en) Method for the colorimetric determination of the cyanide concentration of aqueous solutions
JP2005164289A (en) Method of measuring nitrite ion and nitrate ion, and its instrument
Kass et al. Spectrophotometric determination of sulphur dioxide and hydrogen sulphide in gas phase by sequential injection analysis technique
JPH04279863A (en) Flow injection analyzer
Zhang et al. New intelligent photometric titration system and its method for constructing chemical oxygen demand based on micro-flow injection
van Staden Solving the problems of sequential injection systems as process analyzers
Themelis et al. Direct, selective flow injection spectrophotometric determination of calcium in wines using methylthymol blue and an on-line cascade dilution system
Zagatto et al. Detecting and circumventing sources of inaccuracy in flow analysis
JP3538957B2 (en) Method and apparatus for analyzing three-state nitrogen in water
Ayora-Cañada et al. Sheath-flow Fourier transform infrared spectrometry for the simultaneous determination of citric, malic and tartaric acids in soft drinks
JPH11304711A (en) Automatic calibration method and apparatus in three-phase nitrogen analysis in water
Ensafi et al. Spectrofluorimetric flow injection determination of trace amounts of periodate
JP2001124757A (en) Self diagnosis method of system in trimorphic nitrogen- analyzing system
JP2000146942A (en) Device for measuring concentration of nitrogen in water
JPH10123148A (en) Method and device for analyzing a plurality of components simultaneously by continuous flow analysis method
JP3911820B2 (en) Ion concentration measuring device
JP2936289B2 (en) Sample solution dilution method
JPH1010050A (en) Gasifying separator of three-form nitrometer
JP3911821B2 (en) Ion concentration measuring device