JPH04279733A - Ignition method of gas turbine - Google Patents

Ignition method of gas turbine

Info

Publication number
JPH04279733A
JPH04279733A JP6807191A JP6807191A JPH04279733A JP H04279733 A JPH04279733 A JP H04279733A JP 6807191 A JP6807191 A JP 6807191A JP 6807191 A JP6807191 A JP 6807191A JP H04279733 A JPH04279733 A JP H04279733A
Authority
JP
Japan
Prior art keywords
ignition
fuel
ignition plug
stroke
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6807191A
Other languages
Japanese (ja)
Inventor
Shinji Karasawa
唐澤 伸二
Kentaro Murao
村尾 賢太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP6807191A priority Critical patent/JPH04279733A/en
Publication of JPH04279733A publication Critical patent/JPH04279733A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Pressure-Spray And Ultrasonic-Wave- Spray Burners (AREA)

Abstract

PURPOSE:To pass the sparking part of an ignition plug to an optimum ignition position without fail regardless of the variation of the ignition angle of a sprayed fuel, and to carry out the ignition of the sprayed fuel securely constantly, by reciprocating the ignition plug in a preset stroke for a specific period when the sprayed fuel is ignited. CONSTITUTION:To the manual setting member 10 of a controller 8, the temperature of fuel, the character of fuel, and some other specific ignition plug stroke instructions, and a set signal corresponding to the stroke center are input. And a current amplified in a current generator 11 is fed to an electropneumatic converter 16. And a compressed air reduced to a specific pressure by a regulator 17 is led in to an air cylinder 19 installed on the outer tube 1 of a combustor through the electropneumatic converter 16, a three-port electromagnetic change- over valve 18, and an orifice 25. And the three-port electromagnetic changeover valve 18 is operated for a specific period by a timer 24, and opened and closed depending on the ignition plug stroke instruction from the current generator 11 in the period. Consequently, the ignition plug connected to arms 22a and 22b is reciprocated corresponding to the up and down movement of a piston 20.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、液体燃料焚ガスタービ
ンに使用する点火栓の点火方法に関し、更に詳しくは着
火信頼性の向上をはかった点火方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ignition method for a spark plug used in a liquid fuel-fired gas turbine, and more particularly to an ignition method for improving ignition reliability.

【0002】0002

【従来の技術】ガスタービンの圧縮機から送られてきた
圧縮空気に液体燃料を噴射して燃焼させ、その燃料ガス
をタービンへ送る燃焼器には、ガスタービン作動時に燃
料を着火させる為に点火栓を燃焼器内へ挿入させる点火
装置が備えられている。また、その点火装置の種類とし
ては高圧電流により点火栓間隙に火花をスパークさせて
、噴霧状の燃料を着火させる火花点火方式、太いコイル
状ニクロム線または炭化硅素棒を荷電、赤熱し噴霧燃料
と接触させて発火させるグロー・プラグ方式及び火種と
なるトーチを燃焼器内筒に挿入して着火させるトーチ点
火方式等がある。このうち火花点火方式は構造が簡単で
あるために最も広く用いられている。
[Prior Art] A combustor that injects liquid fuel into compressed air sent from a gas turbine compressor and burns it, and sends the fuel gas to the turbine, is equipped with an ignition valve to ignite the fuel when the gas turbine is operating. An igniter is provided for inserting the plug into the combustor. In addition, the types of ignition devices include the spark ignition method, which uses a high-voltage current to spark a spark in the gap between the spark plugs and ignites the atomized fuel, and a thick coiled nichrome wire or silicon carbide rod that is charged, red-hot, and becomes the atomized fuel. There are two types of ignition methods: the glow plug method, in which ignition is caused by contact, and the torch ignition method, in which a torch is inserted into the inner cylinder of the combustor to ignite it. Of these, the spark ignition method is the most widely used because of its simple structure.

【0003】次に液体燃料焚ガスタービンの燃料器の従
来の点火装置についてその一例を図3を用いて説明する
Next, an example of a conventional ignition device for a fuel unit of a liquid fuel-fired gas turbine will be explained with reference to FIG.

【0004】図において1は外筒、2は外筒1内に配置
され、複数個の空気孔3を有する内筒、4は燃料噴射ノ
ズル、5は点火栓6、直線形差動トランス7等からなる
点火装置である。8はコントローラで電圧電流変換部9
、手動設定部10及び電気信号出力部である電流発生部
11から構成されている。12は差動トランス7とコン
トローラ8の電圧電流変換部9とを接続して配置された
整流器、13は液体燃料温度を検出する為適宜の位置に
設けられた熱伝対温度検出器であり、増幅器14を介し
てコントローラ8の電圧電流変換部9に接続されている
。また、コントローラ8の電流発生部11は圧縮空気管
15が接続された電空変換器16に接続されている。 圧縮空気管15の上流側にはレギュレータ17が設けら
れ、下流側は3ポート電磁切換弁18を経てエアシリン
ダ19に接続されており、全体として図示のような閉ル
ープ回路を構成している。
In the figure, 1 is an outer cylinder, 2 is an inner cylinder disposed within the outer cylinder 1 and has a plurality of air holes 3, 4 is a fuel injection nozzle, 5 is a spark plug 6, a linear differential transformer 7, etc. It is an ignition device consisting of. 8 is a controller and a voltage/current converter 9
, a manual setting section 10, and a current generating section 11 which is an electrical signal output section. 12 is a rectifier arranged to connect the differential transformer 7 and the voltage-current converter 9 of the controller 8; 13 is a thermocouple temperature detector provided at an appropriate position to detect the liquid fuel temperature; It is connected to the voltage-current converter 9 of the controller 8 via the amplifier 14. Further, the current generating section 11 of the controller 8 is connected to an electro-pneumatic converter 16 to which a compressed air pipe 15 is connected. A regulator 17 is provided on the upstream side of the compressed air pipe 15, and the downstream side is connected to an air cylinder 19 via a 3-port electromagnetic switching valve 18, forming a closed loop circuit as shown.

【0005】次に点火装置5を含むガスタービンの動作
を説明する。ガスタービンの起動が開始され、燃料に点
火されるには、まず、液体燃料の温度が熱伝対温度検出
器13により検出され、その検出された電圧信号は増幅
器14で増幅されてコントローラ8の電圧電流変換部9
へ入力される。変換された電流は予め使用液体燃料の温
度と噴射角度θとの関係に合わせて設定された手動設定
部10で使用燃料に対応した電流値に補正され、電流発
生部11から増幅された電流が電空変換器16へ送られ
る。
Next, the operation of the gas turbine including the ignition device 5 will be explained. To start the gas turbine and ignite the fuel, the temperature of the liquid fuel is first detected by the thermocouple temperature detector 13, and the detected voltage signal is amplified by the amplifier 14 and sent to the controller 8. Voltage current converter 9
is input to. The converted current is corrected to a current value corresponding to the fuel used in the manual setting section 10, which is set in advance according to the relationship between the temperature of the liquid fuel used and the injection angle θ, and the amplified current is output from the current generation section 11. It is sent to the electro-pneumatic converter 16.

【0006】電空変換器16へはレギュレータ17で所
定の圧力に設定されたエアシリンダ用圧縮空気が導入さ
れており、この圧縮空気は入力された電流値に相応する
圧力に電空変換器16で減圧され、3ポート電磁切換弁
18を経てエアシリンダ19へ入る。ピストン20、点
火栓6および直線形差動トランス7のロッド21はアー
ム22a、22b、22cによって一体で往復する様に
接続されているのでピストン20の移動に相応して点火
栓6のスパーク部23が内筒2へ挿入されると共に、そ
の移動量は差動トランス7で電圧の変位量として検出さ
れる。
Compressed air for the air cylinder, which is set at a predetermined pressure by a regulator 17, is introduced into the electro-pneumatic converter 16, and this compressed air is adjusted to a pressure corresponding to the input current value. The pressure is reduced at , and the air enters the air cylinder 19 via the 3-port electromagnetic switching valve 18 . The piston 20, the ignition plug 6, and the rod 21 of the linear differential transformer 7 are connected by arms 22a, 22b, and 22c so as to reciprocate as one body, so that the spark portion 23 of the ignition plug 6 moves in accordance with the movement of the piston 20. is inserted into the inner cylinder 2, and the amount of movement thereof is detected by the differential transformer 7 as the amount of voltage displacement.

【0007】なお、熱伝対温度検出器13が発生する電
流は直流であり、差動トランス7が発生する電流は交流
であるために、この差動トランス7が発生する電流は整
流器12で交流から直流に変換されてコントローラ8へ
フィードバックされる。そのフィードバックされた電流
値に応じて手動設定部10の電流値が補正され、スパー
ク部23を正確に燃料噴射角θ面上に位置するように制
御する。
Note that since the current generated by the thermocouple temperature detector 13 is direct current and the current generated by the differential transformer 7 is alternating current, the current generated by the differential transformer 7 is converted into alternating current by the rectifier 12 is converted into direct current and fed back to the controller 8. The current value of the manual setting unit 10 is corrected according to the fed-back current value, and the spark unit 23 is controlled to be accurately positioned on the fuel injection angle θ plane.

【0008】上述の点火方法によれば、熱伝温度計13
で液体燃料温度を検出し、コントローラ8で制御するこ
とにより点火栓のスパーク部24を燃料噴射角度θ面上
の点火最適位置に移動させ、着火不良トラブルを減少さ
せるものである。
According to the above-described ignition method, the heat transfer thermometer 13
By detecting the liquid fuel temperature and controlling it by the controller 8, the spark portion 24 of the ignition plug is moved to the optimum ignition position on the fuel injection angle θ plane, thereby reducing ignition failure troubles.

【0009】[0009]

【発明が解決しようとする課題】上記従来の装置におい
ては液体燃料の温度を熱伝温度計13で検出し、その温
度に応じて予め設定された位置に点火栓のスパーク部2
4を移動させた後点火している。しかしながら、燃料の
噴霧角度は液体燃料の温度だけでなく、ガスタービン吸
込み空気の密度や温度、または燃料の性状等によっても
変化する。そしてこれら他の複数のパラメータの関数と
して点火栓位置を最適に制御するには極めて複雑な制御
装置を必要とするという問題があった。
In the conventional device described above, the temperature of the liquid fuel is detected by the heat transfer thermometer 13, and the spark plug 2 of the ignition plug is placed at a preset position according to the detected temperature.
It is ignited after moving 4. However, the fuel spray angle changes not only depending on the temperature of the liquid fuel but also on the density and temperature of the gas turbine intake air, the properties of the fuel, and the like. There is a problem in that an extremely complex control device is required to optimally control the spark plug position as a function of these other multiple parameters.

【0010】本発明は上記従来技術の問題を解決する為
になされたもので、燃料の温度や性状或いは吸い込み空
気の密度や温度に関係なく確実に着火させることが可能
なガスタービンの点火方法を提供することを目的とする
The present invention has been made to solve the problems of the prior art described above, and provides an ignition method for a gas turbine that can reliably ignite regardless of the temperature and properties of the fuel or the density and temperature of the intake air. The purpose is to provide.

【0011】[0011]

【課題を解決するための手段】上記の課題を解決する為
に、本発明は、エアシリンダにより燃焼器内に挿入され
、燃料噴射ノズルから噴射する噴霧燃料に着火する為の
点火栓を有するガスタービンの点火方法において、前記
噴霧燃料着火に際しては前記点火栓を一定期間予め設定
されたストロークで往復させる様にしたものである。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the present invention provides a gas pump that is inserted into a combustor by an air cylinder and has an ignition plug for igniting atomized fuel injected from a fuel injection nozzle. In the turbine ignition method, the ignition plug is reciprocated with a preset stroke for a certain period of time when igniting the atomized fuel.

【0012】0012

【作用】燃料噴射ノズルから噴射する噴霧燃料の噴射角
度は燃料の温度や性状或いは吸い込み空気の密度や温度
によって様々に変化するが、点火栓が一定期間予め設定
されたストロークで往復するので点火栓のスパーク部が
必ず点火最適位置を通過する。
[Operation] The injection angle of the atomized fuel injected from the fuel injection nozzle varies depending on the temperature and properties of the fuel or the density and temperature of the intake air, but since the ignition plug reciprocates with a preset stroke for a certain period of time, the ignition plug The spark part always passes through the optimum ignition position.

【0013】[0013]

【実施例】以下、図面に従い本発明を説明する。図1は
本発明のガスタービンの点火方法の一実施例を示す要部
構成図であり、図1に示す部分以外は図3に示す従来例
と同様に構成されている。また、図1において、24は
電流発生部11と3ポート電磁切換弁18とに接続され
たタイマ、25は3ポート電磁切換弁18とエアシリン
ダ19とを接続する配管中に挿入されたオリフィスであ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be explained below with reference to the drawings. FIG. 1 is a diagram illustrating an embodiment of the gas turbine ignition method of the present invention, and the components other than those shown in FIG. 1 are constructed in the same manner as the conventional example shown in FIG. 3. Further, in FIG. 1, 24 is a timer connected to the current generator 11 and the 3-port electromagnetic switching valve 18, and 25 is an orifice inserted in the piping connecting the 3-port electromagnetic switching valve 18 and the air cylinder 19. be.

【0014】上記の構成において、コントローラ8の手
動設定部10には従来例と同様の燃料の温度、性状の他
吸い込み空気の密度や温度等を大まかに考慮した点火栓
ストローク指令と、ストローク中心に相応する設定信号
が入力され、電流発生部11で増幅された電流が電空変
換器16へ送られる。また、レギュレータ17で所定の
圧力に減圧された圧縮空気は電空変換器16、3ポート
電磁切換弁18、オリフィス25を経て燃焼器の外筒1
に取り付けられたエアシリンダ19へ流入する。3ポー
ト電磁切換弁18はタイマ24によって一定期間作動す
るもので、その間、電流発生部器11からの点火栓スト
ローク指令に応じて開閉し、それによるピストン20の
昇降運動に応じてアーム22a、22bに連結された点
火栓を往復運動させる。なお、オリフィス25はシリン
ダ19へ流入または流出する空気量を制限しピストンの
減速機構として機能する。
In the above configuration, the manual setting unit 10 of the controller 8 has an ignition plug stroke command that roughly takes into consideration the temperature and properties of the fuel as well as the density and temperature of the intake air, as in the conventional example, and a command that is set at the center of the stroke. A corresponding setting signal is input, and the current amplified by the current generator 11 is sent to the electropneumatic converter 16. The compressed air reduced to a predetermined pressure by the regulator 17 passes through the electro-pneumatic converter 16, the 3-port electromagnetic switching valve 18, and the orifice 25 into the outer cylinder 1 of the combustor.
The air flows into the air cylinder 19 attached to the air cylinder 19. The 3-port electromagnetic switching valve 18 is operated for a certain period of time by a timer 24, during which it opens and closes in response to the spark plug stroke command from the current generator 11, and opens and closes the arms 22a and 22b in response to the upward and downward movement of the piston 20. reciprocates the spark plug connected to the The orifice 25 restricts the amount of air flowing into or out of the cylinder 19 and functions as a piston deceleration mechanism.

【0015】図2は本発明のガスタービンの点火方法の
他の実施例を示す要部構成図である。なお、この実施例
においても図2に示す部分以外は図3に示す従来例と同
様に構成されている。
FIG. 2 is a block diagram showing another embodiment of the gas turbine ignition method of the present invention. This embodiment also has the same structure as the conventional example shown in FIG. 3 except for the parts shown in FIG.

【0016】図2において図3と同一要素には同一符号
を付して重複する説明は省略する。図2において、19
aはエアシリンダ19の頂部から横方向に延長して形成
された受台であり、この受台19aには電動機26が取
り付けられており、この電動機26と電流発生部11と
の間にはタイマ24が接続されている。電動機26の回
転軸27の先端にはカム28が固定されている。29は
ピストン20のピストンロッド上端にナット30等によ
り固定されたレバーであり、このレバー29の先端部に
はカム28に接触してローラ32が取り付けられている
In FIG. 2, the same elements as those in FIG. 3 are given the same reference numerals, and redundant explanations will be omitted. In Figure 2, 19
A is a pedestal extending laterally from the top of the air cylinder 19. An electric motor 26 is attached to this pedestal 19a, and a timer is connected between the electric motor 26 and the current generating section 11. 24 are connected. A cam 28 is fixed to the tip of the rotating shaft 27 of the electric motor 26. A lever 29 is fixed to the upper end of the piston rod of the piston 20 with a nut 30 or the like, and a roller 32 is attached to the tip of the lever 29 in contact with the cam 28.

【0017】上記の構成において、電動機26はタイマ
24によって一定期間作動し、電流発生部器11からの
点火栓ストローク指令に応じて回転する。電動機26が
回転すると回転軸27の先端に固定されたカム28が回
転し、このカム28の回転によりローラ31を介してレ
バー29が往復運動する。そしてこの往復運動はアーム
23a、23bを介して点火栓を往復運動させる。
In the above configuration, the electric motor 26 is operated for a certain period of time by the timer 24 and rotates in response to a spark plug stroke command from the current generating unit 11. When the electric motor 26 rotates, a cam 28 fixed to the tip of the rotating shaft 27 rotates, and the rotation of the cam 28 causes the lever 29 to reciprocate via the roller 31. This reciprocating movement causes the ignition plug to reciprocate via the arms 23a and 23b.

【0018】上記図1、図2の構成による点火栓の往復
運動により燃料噴射ノズルから噴射する噴霧燃料の確実
な点火が行われる。なお、点火栓往復運動の周期は5秒
程度とし、点火終了後点火栓は従来例と同様内筒の外側
に移動する。
The reciprocating movement of the spark plug according to the configuration shown in FIGS. 1 and 2 ensures reliable ignition of the atomized fuel injected from the fuel injection nozzle. The cycle of the reciprocating movement of the ignition plug is about 5 seconds, and after the ignition is completed, the ignition plug moves to the outside of the inner cylinder as in the conventional example.

【0019】[0019]

【発明の効果】以上述べたように、本発明によれば、噴
霧燃料着火に際して点火栓を一定期間予め設定されたス
トロークで往復させるので、燃料噴射ノズルから噴射す
る噴霧燃料の確実な点火が行われる。
As described above, according to the present invention, since the ignition plug is reciprocated with a preset stroke for a certain period of time when igniting the sprayed fuel, the sprayed fuel injected from the fuel injection nozzle can be reliably ignited. be exposed.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明のガスタービンの点火方法の一実施例を
示す要部構成図である。
FIG. 1 is a configuration diagram of main parts showing an embodiment of the gas turbine ignition method of the present invention.

【図2】本発明のガスタービンの点火方法の他の実施例
を示す要部構成図である。
FIG. 2 is a configuration diagram of main parts showing another embodiment of the gas turbine ignition method of the present invention.

【図3】従来のガスタービンの点火装置の例を示す構成
図である。
FIG. 3 is a configuration diagram showing an example of a conventional gas turbine ignition device.

【符号の説明】[Explanation of symbols]

8    コントローラ 9    電圧電流変換部 10  手動設定部 11  電流発生部 16  電空変換器 18  3ポート電磁切換弁 19  エアシリンダ 20  ピストン 24  タイマ 25  オリフィス 26  電動機 27  回転軸 28  カム 29  レバー 31  ローラ 8 Controller 9 Voltage current conversion section 10 Manual setting section 11 Current generation section 16 Electro-pneumatic converter 18 3 port solenoid switching valve 19 Air cylinder 20 Piston 24 Timer 25 Orifice 26 Electric motor 27 Rotation axis 28 Cam 29 Lever 31 Roller

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】エアシリンダにより燃焼器内に挿入され、
燃料噴射ノズルから噴射する噴霧燃料に着火する為の点
火栓を有するガスタービンの点火方法において、前記噴
霧燃料着火に際しては前記点火栓を一定期間予め設定さ
れたストロークで往復させることを特徴とするガスター
ビンの点火方法。
Claim 1: Inserted into a combustor by an air cylinder,
A method for igniting a gas turbine having an ignition plug for igniting atomized fuel injected from a fuel injection nozzle, characterized in that when igniting the atomized fuel, the ignition plug is reciprocated at a preset stroke for a certain period of time. How to ignite a turbine.
JP6807191A 1991-03-07 1991-03-07 Ignition method of gas turbine Withdrawn JPH04279733A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6807191A JPH04279733A (en) 1991-03-07 1991-03-07 Ignition method of gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6807191A JPH04279733A (en) 1991-03-07 1991-03-07 Ignition method of gas turbine

Publications (1)

Publication Number Publication Date
JPH04279733A true JPH04279733A (en) 1992-10-05

Family

ID=13363176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6807191A Withdrawn JPH04279733A (en) 1991-03-07 1991-03-07 Ignition method of gas turbine

Country Status (1)

Country Link
JP (1) JPH04279733A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6250065B1 (en) 1998-04-21 2001-06-26 Mitsubishi Heavy Industries, Ltd. Gas turbine combustion system and combustor ignition method therefor
JP2006523297A (en) * 2003-04-10 2006-10-12 ウッドワード・ガバナー・カンパニー Method and apparatus for detecting unstable combustion in a continuous combustion system
WO2016139696A1 (en) * 2015-03-03 2016-09-09 株式会社 東芝 Ignition device and gas turbine burner

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6250065B1 (en) 1998-04-21 2001-06-26 Mitsubishi Heavy Industries, Ltd. Gas turbine combustion system and combustor ignition method therefor
JP2006523297A (en) * 2003-04-10 2006-10-12 ウッドワード・ガバナー・カンパニー Method and apparatus for detecting unstable combustion in a continuous combustion system
WO2016139696A1 (en) * 2015-03-03 2016-09-09 株式会社 東芝 Ignition device and gas turbine burner
JPWO2016139696A1 (en) * 2015-03-03 2017-11-09 株式会社東芝 Ignition device and gas turbine combustor
US10578024B2 (en) 2015-03-03 2020-03-03 Toshiba Energy Systems & Solutions Corporation Ignition device and gas turbine combustor

Similar Documents

Publication Publication Date Title
US6722339B2 (en) Electromagnetic fuel ram-injector and improved ignitor
US6560967B1 (en) Method and apparatus for use with a gas fueled combustor
CN109441643B (en) Micro-turbojet engine and ignition device for combustion chamber of gas turbine
CN108397293B (en) A kind of missile turbojet engine fast starting control device and method
WO1989004920A1 (en) Fuel injector
CA2098523A1 (en) Device for operating a swirler which controls combustion air of a burner for gas turbine engines
US2718883A (en) From fuel
US4969432A (en) Torch ignitor for lean burn engines
JPH04279733A (en) Ignition method of gas turbine
GB2041081A (en) Heater for gaseous fluid
JPS5835272A (en) Internal-combustion engine
US5234024A (en) Differential pressure regulator
CN106523165B (en) Mechanically and electrically magnetic mixing controls dual fuel injection device to integrated form
GB637286A (en) Improvements relating to ignition means for combustion chambers
US4368715A (en) Fuel burner for heating internal combustion engine intake air
JP5192037B2 (en) Internal combustion engine
KR20120091599A (en) Gas torch with ignition device
CN108343955B (en) Mini hot air balloon burner long-open flame liquid phase heating combustion device and method
JP2000171005A (en) Control method of combustion
JP2006188976A (en) Hydrogen gas engine and injector used for hydrogen gas engine
CN201706552U (en) Rapid ignition structure with gas safety switch for main fire ignition
CN205779397U (en) Combined press EFI electromagnetic oil jet hybrid fuel jet device
KR20110053586A (en) Ignition device for a combustor for a gas turbine engine
US3705781A (en) Process and device for igniting oxyacetylene cutting torches
JP2873161B2 (en) Fuel supply control method for oil burner device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514