JPH04279722A - Direct-injection impact-diffusion previous-reaction tyre combustion engine and its combustion method - Google Patents
Direct-injection impact-diffusion previous-reaction tyre combustion engine and its combustion methodInfo
- Publication number
- JPH04279722A JPH04279722A JP12568891A JP12568891A JPH04279722A JP H04279722 A JPH04279722 A JP H04279722A JP 12568891 A JP12568891 A JP 12568891A JP 12568891 A JP12568891 A JP 12568891A JP H04279722 A JPH04279722 A JP H04279722A
- Authority
- JP
- Japan
- Prior art keywords
- fuel
- ignition
- collision
- combustion
- combustion engine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 68
- 238000002347 injection Methods 0.000 title claims abstract description 23
- 239000007924 injection Substances 0.000 title claims abstract description 23
- 238000009792 diffusion process Methods 0.000 title claims abstract description 15
- 238000009841 combustion method Methods 0.000 title claims description 7
- 238000006243 chemical reaction Methods 0.000 title abstract description 19
- 239000000446 fuel Substances 0.000 claims abstract description 66
- 230000009471 action Effects 0.000 claims description 7
- 238000010438 heat treatment Methods 0.000 claims 3
- 239000006185 dispersion Substances 0.000 claims 1
- 238000005485 electric heating Methods 0.000 claims 1
- 230000002708 enhancing effect Effects 0.000 claims 1
- 238000009434 installation Methods 0.000 claims 1
- 230000005540 biological transmission Effects 0.000 abstract 3
- 230000000694 effects Effects 0.000 description 10
- 230000006835 compression Effects 0.000 description 8
- 238000007906 compression Methods 0.000 description 8
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 238000009826 distribution Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000004904 shortening Methods 0.000 description 3
- 238000000889 atomisation Methods 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 1
- 206010024769 Local reaction Diseases 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000002283 diesel fuel Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000979 retarding effect Effects 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B2275/00—Other engines, components or details, not provided for in other groups of this subclass
- F02B2275/14—Direct injection into combustion chamber
Landscapes
- Ignition Installations For Internal Combustion Engines (AREA)
- Combustion Methods Of Internal-Combustion Engines (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は燃焼室中心域に燃料噴流
を衝突させ、衝突拡散作用によって燃焼室内に燃料の展
開を行う燃料供給方法を基本とし、その衝突部近傍に熱
源部を備え熱源によって拡散燃料の一部に先行反応域を
形成する事を特徴とする内燃機関と、その燃焼方式に関
する。[Industrial Application Field] The present invention is based on a fuel supply method in which a fuel jet collides with the central region of a combustion chamber and spreads the fuel inside the combustion chamber by the collision diffusion effect, and a heat source is provided near the collision part. This invention relates to an internal combustion engine characterized by forming a pre-reaction zone in a part of the diffused fuel, and its combustion method.
【0002】0002
【従来の技術】高圧縮比を用いる圧縮着火機関は熱効率
が高い事により省エネであり、CO2・CO・HCの排
出に関してもガソリン機関に較べ優位であるが反面、騒
音・振動が大であり、かつNOx・パティキュレートが
多い欠点を有している。[Prior Art] Compression ignition engines that use a high compression ratio are energy efficient due to their high thermal efficiency, and are superior to gasoline engines in terms of CO2, CO, and HC emissions, but on the other hand, they produce large amounts of noise and vibration. Moreover, it has the disadvantage of producing a large amount of NOx and particulates.
【0003】これらの欠点の原因は燃料の供給より着火
に到る間に物理的・化学的な着火遅れが存在し、この着
火遅れ期間に供給された燃料が予混合気を形成し、これ
が複数カ所においてほぼ同時的に反応するため、初期燃
焼割合が大となることに起因している。即ち、初期燃焼
割合が高いほど燃焼室内圧力は急激に高まり温度も上昇
する。この圧力と温度の急上昇が原因となり燃焼騒音・
振動が大となり、NOxも増大する事になる。これの防
止対策として噴射時期を圧縮上死点に遅退させると熱効
率が低下し、スモーク・パティキュレートとが増加する
等の問題が生じ熱効率に有利な圧縮着火機関においても
これらの問題点を解決し得る技術は未だ開発されていな
い現状にある。The cause of these drawbacks is that there is a physical and chemical ignition delay between the supply of fuel and ignition, and the fuel supplied during this ignition delay period forms a premixture, which causes multiple This is due to the fact that the initial combustion rate is large because the reaction occurs almost simultaneously in several places. That is, the higher the initial combustion rate, the more rapidly the pressure within the combustion chamber increases and the temperature also increases. This sudden rise in pressure and temperature causes combustion noise and
Vibration will increase, and NOx will also increase. As a countermeasure to prevent this, retarding the injection timing to compression top dead center causes problems such as a decrease in thermal efficiency and an increase in smoke and particulates.These problems can be solved even in compression ignition engines, which have an advantage in thermal efficiency. Currently, the technology that can do this has not yet been developed.
【0004】0004
【発明が解決しようとする課題】多噴孔ノズルを用いた
燃料の拡散供給と空気スワール流動との整合による従来
燃焼方式においては、高圧噴射による噴霧流動エネルギ
ーが壁面に衝突し、微粒化と空気混合の進行した各々の
位置より反応が生じ、火炎の拡がりは主に壁面付近より
中心域に向かう燃焼過程である、したがって反応期間短
縮・空気利用率向上の手段として空気流動(スワール)
の整合が必須の条件とされている。またこの場合におい
て有効とされているグロープラグ等、付加熱源の位置は
キャビティ内の一噴孔より燃料噴霧が到達する壁面近傍
に設置せざるを得ない。したがって、この位置に熱源を
設置しても着火遅れ・燃焼期間の短縮等の効果は少ない
。[Problems to be Solved by the Invention] In the conventional combustion method that uses a multi-hole nozzle to match the diffusion supply of fuel with air swirl flow, the spray flow energy from high-pressure injection collides with the wall surface, causing atomization and air flow. Reactions occur at each location where mixing has progressed, and the flame spreads mainly through the combustion process from near the wall toward the center area.Therefore, air flow (swirl) is used as a means to shorten the reaction period and improve air utilization.
Consistency is considered to be an essential condition. Further, in this case, the additional heat source such as a glow plug, which is effective, must be installed near the wall surface where the fuel spray reaches from one nozzle hole in the cavity. Therefore, even if a heat source is installed in this position, the effect of shortening the ignition delay and combustion period is small.
【0005】また別の理由として、従来直噴方式におい
ては多孔ノズルより噴射される燃料群が壁面に到達する
に要する時間が距離に比的であるためと複数噴孔より燃
焼室内に供給される燃料分が各噴孔の乗数であり、これ
らが衝突位置において一定条件のもとにほぼ同時的に反
応する事によって急激な圧力上昇率が生ずる。このこと
から従来直噴方式においては高温熱源を燃焼室内に設置
しても従来の噴射条件を変えない限り着火遅れや、初期
燃焼に伴う急激な圧力上昇率の改善は期待し難い問題を
有している。Another reason is that in the conventional direct injection system, the time required for the fuel group injected from the multi-hole nozzle to reach the wall surface is proportional to the distance, and the fuel is supplied into the combustion chamber from multiple injection holes. The fuel component is a multiplier for each nozzle hole, and when these react almost simultaneously at the collision location under certain conditions, a rapid rate of pressure rise occurs. For this reason, in conventional direct injection systems, even if a high-temperature heat source is installed inside the combustion chamber, it is difficult to expect improvements in ignition delay or rapid pressure rise rate associated with initial combustion unless the conventional injection conditions are changed. ing.
【0006】[0006]
【課題を解決するための手段】本発明においては、単孔
ノズルよりの燃料噴流を噴孔付近において衝突作用を行
う事により、衝突点を起点として円盤状の混合気群を形
成すべく放射状の燃料拡散展開を図っている。したがっ
て燃焼室内の燃料密度分布は必然的に中心域に濃く、外
側域程希薄となる層状分布パターンが形成される。この
ため拡散燃焼を促進する手段の空気流動に関してもスワ
ールを必要としなく、圧縮作用と燃焼室形状との相関に
よるスキッシュ流・移動流を利用することを特徴として
いる。[Means for Solving the Problems] In the present invention, by colliding the fuel jet from a single-hole nozzle near the nozzle hole, a radial flow is created to form a disc-shaped mixture group starting from the collision point. Efforts are being made to spread fuel. Therefore, the fuel density distribution within the combustion chamber is necessarily dense in the central region, and forms a stratified distribution pattern in which the fuel density becomes thinner in the outer regions. For this reason, the present invention is characterized in that swirl is not required for the air flow as a means for promoting diffusive combustion, and squish flow and moving flow are utilized due to the correlation between compression action and the shape of the combustion chamber.
【0007】本発明においては従来の噴孔噴霧方式と較
べ、ノズルより噴流衝突部までの距離が短縮されており
、衝突作用による燃料流動エネルギーの減衰に要する時
間が短縮されている。したがって、これに併せ中心域付
近に高温熱源を配置する事によれば、燃焼室の中心域に
近い位置に先行的な初期反応域を形成する事が可能とな
る。この高温熱源による強制的着火によれば着火遅れ現
象の短縮と共に燃焼室全域に対して中心域よりの火炎伝
播と拡散燃焼の展開をより平均的距離において行なう事
ができる。[0007] In the present invention, compared to the conventional nozzle atomization system, the distance from the nozzle to the jet collision part is shortened, and the time required for attenuation of fuel flow energy due to collision action is shortened. Therefore, by arranging a high-temperature heat source near the center region in addition to this, it becomes possible to form a preliminary initial reaction region at a position near the center region of the combustion chamber. This forced ignition using a high-temperature heat source can shorten the ignition delay phenomenon and allow flame propagation from the center region and development of diffusive combustion to occur over a more average distance over the entire combustion chamber.
【0008】この場合においては、火炎の拡散はスキッ
シュ域よりの移動空気流により順次に燃焼室内に展開さ
れる事になり、更に上死点後には逆の拡散混合展開が燃
焼室キャビティとスキッシュ域間で行なわれる、その結
果着火遅れと燃焼期間の短縮された噴射律則的燃焼が実
現される。In this case, the flame spreads sequentially into the combustion chamber by the moving air flow from the squish region, and after top dead center, the reverse diffusion and mixing develops between the combustion chamber cavity and the squish region. As a result, injection lawful combustion with shortened ignition delay and combustion period is achieved.
【0009】このような条件構築には先ず、ピストン燃
焼室中心域部に燃料衝突部を配置し、燃料噴流の衝突作
用による均衡的な燃料拡散分布パターンの構成と、この
キャビティ内に突出し、かつノズルに近接して配備し得
る熱源としてのグロープラグが必要条件となる。In order to establish such conditions, first, a fuel collision part is arranged in the central region of the piston combustion chamber, a balanced fuel diffusion distribution pattern is created by the collision action of the fuel jets, and a fuel collision part protrudes into this cavity. A glow plug as a heat source that can be placed close to the nozzle is a requirement.
【0008】グロープラグ温度を高める事によれば、圧
縮作用に依存することなく燃焼室中心域の一部に到達燃
料に応じて先行的な反応域が形成される。即ち、円盤状
に展開する衝突拡散燃料群のうち、グロープラグに接触
する燃料分は急速に活性化が進行し、この域では他の域
より先行して反応が生成される。By increasing the glow plug temperature, a preliminary reaction zone is formed in response to the fuel reaching a part of the central region of the combustion chamber without depending on the compression effect. That is, of the collision-diffusion fuel group developed in a disk shape, the portion of the fuel that comes into contact with the glow plug is rapidly activated, and a reaction is generated in this region before other regions.
【0009】本発明は燃焼室中心域において燃料供給初
期に燃料の一部を強制的・かつ先行的に反応せしめ、先
行的火炎伝播燃焼反応により燃焼室内温度・圧力を高め
初期燃焼割合の制御を行うものである。また燃焼室内に
供給される燃料が着火遅れ現象に起因して同時的に多量
に反応し、これによって発生する高い圧力上昇率がコン
トロールされる。したがつて後続燃料群は先行反応によ
り温度・圧力共に充分高まりたる雰囲気中に供給される
事になり、火炎伝播と自己着火拡散燃焼の混在する燃焼
反応は順次にしかも急速に進行し、燃焼期間の短縮され
た静粛な運転が実現される。The present invention forcibly and proactively causes a part of the fuel to react in the early stage of fuel supply in the central region of the combustion chamber, increases the temperature and pressure in the combustion chamber through the preliminary flame propagation combustion reaction, and controls the initial combustion rate. It is something to do. Further, due to the ignition delay phenomenon, the fuel supplied into the combustion chamber simultaneously reacts in large quantities, thereby controlling the high rate of pressure rise that occurs. Therefore, the subsequent fuel group is supplied into an atmosphere where the temperature and pressure are sufficiently increased due to the preceding reaction, and the combustion reaction, which includes flame propagation and self-ignition diffusion combustion, proceeds sequentially and rapidly, and the combustion period This results in shorter and quieter operation.
【0010】0010
【実施例】本発明の実施例を図について説明する。ピス
トン(1)キャビティ(2)内に燃料衝突部(3)が構
成されており、衝突部(3)近傍にグロープラグ(4)
が配置されている。シリンダーヘッド部(5)に装着さ
れた噴射ノズル(6)よりの燃料噴流は図1に示すごと
く衝突作用によって周域に円盤状に拡散する、このうち
グロープラグ(4)に到達する量は360度中の〈θの
範囲であり、到達燃料分は衝突作用によって拡散速度も
抑制されているため、グロープラグを接触作用によって
摩耗させることなく、かつ量的にも少ないので熱交換に
よってプラグ温度を低下させる事も少ない、したがって
グロープラグの耐久性を損ずる因が軽減されている。[Embodiment] An embodiment of the present invention will be explained with reference to the drawings. A fuel collision part (3) is configured inside the piston (1) cavity (2), and a glow plug (4) is located near the collision part (3).
is located. As shown in Figure 1, the fuel jet from the injection nozzle (6) attached to the cylinder head (5) is diffused into a disc shape around the circumference due to the collision effect, and of this, 360 ml of fuel jet reaches the glow plug (4). This is within the range of 〈θ in the range of 〈θ〉, and the diffusion rate of the arriving fuel is also suppressed by the collision effect, so the glow plug is not worn out by the contact effect, and since the amount is small, the plug temperature can be controlled by heat exchange. There is little deterioration, therefore, the factors that impair the durability of the glow plug are reduced.
【0011】このように供給燃料の着火性に応じた温度
に維持されたグロープラグ熱源部に到達、あるいは接近
した燃料分は直ちに反応が開始される。[0011] As described above, the fuel that reaches or approaches the glow plug heat source section, which is maintained at a temperature corresponding to the ignitability of the supplied fuel, immediately starts to react.
【0012】すなわち燃料衝突拡散に伴いグロープラグ
域において、他の域より早く先行的な反応域(7)が形
成されるのである。この先行反応域は始めは小規模なが
ら火炎伝播作用により急速に発達する。そして先行反応
域の形成発達拡大される事によって燃焼室内の温度・圧
力は必然的に上昇する。したがって円盤状に拡散中の他
の燃料群も雰囲気温度・圧力が上昇することにより火炎
伝播・拡散火炎・自己着火条件が進展し、後続燃料群の
反応が促進されるのである。[0012] That is, due to fuel collision and diffusion, a pre-emptive reaction region (7) is formed in the glow plug region earlier than in other regions. This pre-reaction zone is small at first but rapidly develops due to flame propagation effects. The temperature and pressure within the combustion chamber inevitably rise as the advance reaction zone is formed and expanded. Therefore, the flame propagation, diffusion flame, and self-ignition conditions of the other fuel groups diffusing in a disk shape also progress as the ambient temperature and pressure rise, and the reactions of the subsequent fuel groups are promoted.
【0013】このような反応過程は燃焼室中心域におい
て燃料群の拡散作用行う本発明方法において特に有効な
手段であり、従来の多孔ノズル直噴方式のごとく燃焼室
壁面付近で噴孔数に応じて同時的に反応を開始する方式
では、その効果は少ない。Such a reaction process is a particularly effective means in the method of the present invention in which the fuel group diffuses in the central region of the combustion chamber. Methods in which the reactions are started simultaneously are less effective.
【0014】実施例はセタン価の高いディーゼル燃料よ
り着火が不利とされているメタノール(99.9%)を
用いて行った。The examples were conducted using methanol (99.9%), which is considered to be less ignitable than diesel fuel with a high cetane number.
【表1】 供試機関の諸元を示す[Table 1] Indicates the specifications of the test engine
【0015】[0015]
【発明の効果】燃料供給直後に熱源により強制的に確実
に拡散燃料群の一部に全燃料供給期間よりみて先行的な
極所反応域を構築する本発明燃焼方式においては従来の
圧縮着火燃焼方式と異なり、燃焼期間全体における燃焼
割合の配分を噴射律則的に近接することが可能である。
したがって熱発生パターンを噴射系の制御によって自在
に変えうることができる。Effects of the Invention: Immediately after fuel supply, the combustion method of the present invention forcibly and reliably constructs a local reaction zone in a part of the diffused fuel group in advance compared to the entire fuel supply period, compared to conventional compression ignition combustion. Unlike the conventional method, it is possible to distribute the combustion rate over the entire combustion period close to the injection law. Therefore, the heat generation pattern can be freely changed by controlling the injection system.
【0016】その結果、従来より高熱効率圧縮着火内燃
機関の欠点とされている着火遅れ現象を短縮することや
、圧縮着火が困難とされていた多くの可燃物質や代替燃
料使用が可能となった。[0016] As a result, it has become possible to shorten the ignition delay phenomenon, which has traditionally been considered a drawback of high thermal efficiency compression ignition internal combustion engines, and to use many combustible substances and alternative fuels that were considered difficult to combust ignite. .
【0017】着火遅れ期間の短縮と先行反応域の形成に
より燃焼割合を律することが可能となったため、初期燃
焼割合を抑制した燃焼により初期圧力上昇率に起因する
ディーゼルノック現象が大きく減じ、更に燃焼最高圧力
・熱発生率・燃焼期間等も制御することが自在となるた
め、次に示すごとく多くの特徴と効果が立証された。[0017] Since it has become possible to control the combustion rate by shortening the ignition delay period and forming a pre-reaction zone, combustion with the initial combustion rate suppressed greatly reduces the diesel knock phenomenon caused by the initial pressure rise rate, and further improves combustion. Since it is possible to freely control the maximum pressure, heat release rate, combustion period, etc., many features and effects have been demonstrated as shown below.
【0018】1.急速な初期燃焼圧力上昇率が減ずるこ
とにより、燃焼騒音・NOxが減少した。
1.燃焼割合を噴射律則的とすることにより熱発生率を
理想的とし、燃焼最高圧力を抑制して高熱効率が得られ
、CO2・NOxが低減した。
1.噴射律則的に燃焼期間を短縮し得ることと、圧力上
昇率を抑制し得ることの相乗効果により高熱効率を維持
し、機関の静粛化が達成され、耐久性・信頼性が向上す
る。
1.強制熱源着火を核とした層状的拡散燃焼により、排
気中の未燃焼成分が減少する。
1.空気スワールを必要としないため吸気系抵抗が少な
く、体積比率が向上することにより比出力が向上する。
1.噴射系圧力も超高圧とする必要がなく、ノズルも単
孔を用いることにより信頼・耐久性に有利である。
1.グロープラグに到達する燃料割合と衝突エネルギー
の少ないことにより、プラグ寿命が長い。
1.超高圧を用いる必要がないため生産性も容易であり
、そのための設備投資等も必要なく、結果的に生産コス
トが低減する。
1.2サイクル・4サイクルの両方式に適用して有効で
ある。1. Combustion noise and NOx were reduced by reducing the rapid initial combustion pressure rise rate. 1. By setting the combustion ratio to the injection law, the heat release rate was idealized, the maximum combustion pressure was suppressed, high thermal efficiency was obtained, and CO2 and NOx were reduced. 1. The synergistic effect of shortening the combustion period according to injection rules and suppressing the rate of pressure rise maintains high thermal efficiency, achieves a quiet engine, and improves durability and reliability. 1. Stratified diffusion combustion centered on forced heat source ignition reduces unburned components in the exhaust gas. 1. Since no air swirl is required, the intake system resistance is low, and the specific output is improved by improving the volume ratio. 1. The pressure of the injection system does not need to be extremely high, and the use of a single hole nozzle is advantageous in terms of reliability and durability. 1. Longer plug life due to lower proportion of fuel reaching the glow plug and less impact energy. 1. Productivity is easy because there is no need to use ultra-high pressure, and there is no need to invest in equipment for this purpose, resulting in a reduction in production costs. 1. It is effective when applied to both 2-cycle and 4-cycle formulas.
【0019】本発明の噴射ノズルは単孔で、かつ噴孔面
積も大きな特徴によって液体燃料以外の微粉状燃料・気
体燃料の使用が可能となる、更に従来の多噴孔方式では
限界とされていた小型直噴機関の設計も容易となる等、
多くの効果・特徴を有するものである。[0019] The injection nozzle of the present invention has a single hole and a large nozzle hole area, which makes it possible to use pulverized fuel and gaseous fuel other than liquid fuel, which is considered to be the limit of conventional multi-nozzle systems. It will also be easier to design small direct injection engines, etc.
It has many effects and features.
図面は本発明の構成並びに作用を示すものである。 The drawings illustrate the structure and operation of the present invention.
【図1】燃焼室中心付近の断面図[Figure 1] Cross-sectional view near the center of the combustion chamber
【図2】噴射ノズルを傾斜させた場合の構成例[Figure 2] Example of configuration when the injection nozzle is tilted
【図3】
供試機関の本発明による正味熱効率マップ[Figure 3]
Net thermal efficiency map of the test engine according to the present invention
【図4】CO
濃度マップ[Figure 4] CO
concentration map
【図5】未燃メタノール濃度マップ[Figure 5] Unburnt methanol concentration map
【図6】NOx濃度マップ[Figure 6] NOx concentration map
【図7】2500rpmにおける各負荷域の筒内圧力と
熱発生率波形[Figure 7] In-cylinder pressure and heat release rate waveform in each load range at 2500 rpm
【図8】2500rpmにおける各負荷域の筒内圧力・
熱発生率・圧力上昇率を示す[Figure 8] Cylinder pressure in each load range at 2500 rpm
Indicates heat release rate and pressure rise rate
【図9】2500rpmにおける負荷の影響を示す線図
であり、点線は吸気絞り作用範囲を表している[Figure 9] A diagram showing the influence of load at 2500 rpm, with the dotted line representing the range of intake throttle action.
1 ピストン
2 燃焼室キャビティ
3 衝突部
4 電熱源プラグ
5 シリンダーヘッド部
6 燃料ノズル
7 先行反応域
8 スキッシュによる空気流動方向9 衝
突部支柱
10 初期拡散燃料群1 Piston 2 Combustion chamber cavity 3 Collision section 4 Electric heat source plug 5 Cylinder head section 6 Fuel nozzle 7 Preliminary reaction zone 8 Direction of air flow due to squish 9 Collision section support 10 Initial diffusion fuel group
Claims (5)
と、この噴射ノズルの燃料噴流を衝突作用により拡散せ
しめるための衝突部を支持した構造の内燃機関において
、衝突部近傍に着火用熱電極を配備し、初期燃焼反応の
開始条件を拡散燃料の一部が熱電極と接する事により火
炎伝播燃焼とし、中間以後の燃焼反応を火炎伝播と拡散
的自己着火の混在する燃焼方式とした事を特徴とした熱
面着火燃焼方式。Claim 1: An internal combustion engine having a structure in which a cylinder head part supports a fuel injection nozzle and a collision part for diffusing the fuel jet of the injection nozzle by collision action, in which a heating electrode for ignition is provided near the collision part. , the starting condition for the initial combustion reaction is flame propagation combustion due to a part of the diffused fuel coming into contact with the heating electrode, and the combustion reaction after the middle stage is characterized by a combustion method in which flame propagation and diffusive self-ignition are mixed. Hot surface ignition combustion method.
と、ノズルよりの燃料噴流を噴流衝突作用によって拡散
せしめるための燃料衝突部を有し、衝突部を電気的に加
熱して供給燃料の蒸発・気化促進作用を高め、更に衝突
部近傍に着火用熱電極を装着した事を特徴とした直噴内
燃機関。2. The cylinder head has a fuel injection nozzle and a fuel collision part for diffusing the fuel jet from the nozzle by jet collision action, and the collision part is electrically heated to evaporate and vaporize the supplied fuel. A direct-injection internal combustion engine that has enhanced accelerating action and is further characterized by the installation of a heating electrode for ignition near the collision area.
衝突拡散パターンの形成と噴射タイミングとの整合によ
り着火電極近傍に他の域より先行して燃焼反応域を形成
する事を特徴とした前期特許請求範囲1記載の内燃機関
先行着火燃焼方式。3. A thermal ignition electrode is provided near the collision part, and a combustion reaction region is formed in the vicinity of the ignition electrode prior to other regions by forming a fuel collision diffusion pattern and matching the injection timing. An internal combustion engine pre-ignition combustion method according to claim 1 of the previous patent.
性を強化するための突起部を有し、突起部の形状は円錐
状あるいは多角錐状とし錐部頂点を燃料噴流の中心に位
置するように配備した事を特徴とした燃焼室構成の前記
特許請求範囲1記載の内燃機関。4. The collision surface of the fuel jet collision part has a protrusion for enhancing the dispersion of the jet, the shape of the protrusion is conical or polygonal pyramid, and the apex of the cone is located at the center of the fuel jet. The internal combustion engine according to claim 1, characterized in that the combustion chamber is arranged in such a manner that the internal combustion engine has a combustion chamber configuration.
し、電気制御によって衝突部温度を制御する事を特徴と
する前記特許請求範囲1に記載の内燃機関。5. The internal combustion engine according to claim 1, wherein an electric heating device is built in the fuel collision part, and the temperature of the collision part is controlled by electrical control.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12568891A JPH04279722A (en) | 1991-03-06 | 1991-03-06 | Direct-injection impact-diffusion previous-reaction tyre combustion engine and its combustion method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12568891A JPH04279722A (en) | 1991-03-06 | 1991-03-06 | Direct-injection impact-diffusion previous-reaction tyre combustion engine and its combustion method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04279722A true JPH04279722A (en) | 1992-10-05 |
Family
ID=14916229
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12568891A Pending JPH04279722A (en) | 1991-03-06 | 1991-03-06 | Direct-injection impact-diffusion previous-reaction tyre combustion engine and its combustion method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04279722A (en) |
-
1991
- 1991-03-06 JP JP12568891A patent/JPH04279722A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3073118B2 (en) | In-cylinder internal combustion engine | |
US20080257304A1 (en) | Internal combustion engine and combustion method of the same | |
CN114320572B (en) | Multi-combustion-mode ammonia fuel engine and control method thereof | |
EP0544920B1 (en) | Direct injection type compression ignition internal combustion engine | |
JP3804879B2 (en) | Combustion method of direct injection diesel engine | |
JP2002070558A (en) | Compression self-ignition type gasoline internal combustion engine | |
CN216518262U (en) | Ignition system and engine | |
Phatak et al. | Cold startability of open-chamber direct-injection diesel engines-part II: combustion chamber design and fuel spray geometry and additional air and glow plug as a starting aid | |
JPS631710A (en) | Spark ignition fuel injection stratified charge combustion system and various fuels high-compression stratified combustion engine | |
JP3695011B2 (en) | Sub-chamber engine | |
JPH04279722A (en) | Direct-injection impact-diffusion previous-reaction tyre combustion engine and its combustion method | |
JP3080079B2 (en) | Control device for in-cylinder injection internal combustion engine | |
JP3206280B2 (en) | Compression ignition type internal combustion engine | |
JPH09317470A (en) | Diesel engine for low volatile fuel | |
JP2569919B2 (en) | In-cylinder direct injection spark ignition engine | |
JP3809920B2 (en) | Fuel injection control device for diesel engine | |
JP2001020744A (en) | Engine and combustion control method for the same | |
JPH07259567A (en) | Direct-injection type compression ignition internal combustion engine | |
KR100227905B1 (en) | Structure of combustion chamber for direct injection typed internal combustion engines | |
JPH09317471A (en) | Diesel engine using low quality fuel | |
JP2987997B2 (en) | Subchamber type combustion chamber | |
CN116608071A (en) | Jet ignition type methanol engine combustion system | |
JPH07122405B2 (en) | Combustion chamber of direct injection diesel engine | |
JPS6189919A (en) | Combustion chamber of direct injection type diesel engine | |
JPH07247844A (en) | Compression ignition internal combustion engine and combustion system thereof |