JPH0427910B2 - - Google Patents

Info

Publication number
JPH0427910B2
JPH0427910B2 JP21882084A JP21882084A JPH0427910B2 JP H0427910 B2 JPH0427910 B2 JP H0427910B2 JP 21882084 A JP21882084 A JP 21882084A JP 21882084 A JP21882084 A JP 21882084A JP H0427910 B2 JPH0427910 B2 JP H0427910B2
Authority
JP
Japan
Prior art keywords
dust
discharge electrode
discharge
voltage
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21882084A
Other languages
Japanese (ja)
Other versions
JPS6197057A (en
Inventor
Akio Akasaka
Toshiaki Mitsusaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP21882084A priority Critical patent/JPS6197057A/en
Publication of JPS6197057A publication Critical patent/JPS6197057A/en
Publication of JPH0427910B2 publication Critical patent/JPH0427910B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は電気集塵装置の放電極付着ダスト量検
出方法に係り、特に、放電極に付着するダスト量
を継続的に監視するに最適な電気集塵装置の放電
極付着ダスト量検出方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for detecting the amount of dust attached to a discharge electrode of an electrostatic precipitator. The present invention relates to a method for detecting the amount of dust attached to a discharge electrode of a dust collector.

〔発明の背景〕[Background of the invention]

電気集塵装置の一般的な構成は、直流高電圧が
印加される放電極と、平板状を成して放電極に対
峙する如く配設され且つ接地電位に保持される集
塵極とを、ガス流路が設けられた集塵室内に設置
したものとなつている。
The general configuration of an electrostatic precipitator includes a discharge electrode to which a high DC voltage is applied, and a dust collection electrode formed in a flat plate shape and arranged to face the discharge electrode and held at ground potential. It is installed inside a dust collection chamber equipped with a gas flow path.

放電極と集塵極の間にコロナ放電によるイオン
を生じさせ、電極間を通過する含塵ガス中のダス
トを帯電し、帯電したダストと集塵極間に形成さ
れる電界の作用によつて、ダストを集塵極へ移動
させることにより集塵が行なわれる。集塵時間の
経過とともに集塵極にダストが堆積する。これを
放置すると集塵効率が低下するため、適当な時間
間隔によつて槌打装置により集塵極を槌打し、ダ
ストを集塵極面より剥離させる方法がとられてい
る。槌打により落下したダストは集塵室の外部に
設けられたホツパに収集される。
Ions are generated by corona discharge between the discharge electrode and the dust collecting electrode, and the dust in the dust-containing gas passing between the electrodes is charged, and by the action of the electric field formed between the charged dust and the dust collecting electrode. , dust collection is performed by moving the dust to the dust collection pole. Dust accumulates on the dust collection electrode as the dust collection time passes. If this is left unattended, the dust collection efficiency will decrease, so a method is used in which the dust collection pole is hammered with a hammering device at appropriate time intervals to separate the dust from the dust collection pole surface. The dust that falls due to hammering is collected in a hopper provided outside the dust collection chamber.

一方、イオンの供給側である放電極の周辺にお
いても、ガス流の乱れに巻き込まれたダストが放
電極に衝突することによつて、その表面にダスト
が付着する。コロナ放電は、放電極が細いほど活
発に生じるが、ダストの付着により、その見掛上
の径が増大すると、放電極によるイオン発生量が
減少し、ガス中のダストの帯電が不充分になる。
このため、集塵極のみならず放電極にも槌打装置
が設けられている。
On the other hand, also around the discharge electrode, which is the ion supply side, dust caught in the turbulence of the gas flow collides with the discharge electrode, so that dust adheres to the surface thereof. Corona discharge occurs more actively as the discharge electrode becomes thinner, but when its apparent diameter increases due to dust adhesion, the amount of ions generated by the discharge electrode decreases, and the dust in the gas becomes insufficiently charged. .
For this reason, a hammering device is provided not only on the dust collecting electrode but also on the discharge electrode.

この放電極を槌打する間隔は、ダストの付着状
況に応じてなされるべきであるが、通常、運転開
始当初の集塵装置入口ガスの含塵濃度やダストの
粒径を参考にして経験的に設定しており、以後は
殆んど変更されることが無い。
The interval at which this discharge electrode is hammered should be determined depending on the dust adhesion situation, but it is usually determined empirically based on the dust concentration of the dust collector inlet gas and the dust particle size at the beginning of operation. It has been set to , and will rarely be changed thereafter.

しかし、実際には、ダストの特性は、発塵源側
における装置の運転条件の変更、燃料の変化等に
より変動している。従つて、長時間の運転では、
種々のダストが飛来し、付着性の強いダストの場
合には、放電極の径を増大させることになる。こ
のような付着性の強いダストにあつては、放電極
が肥大しつつある兆候をとらえて槌打ちの回数を
増やし、ダストの剥離を良くし、早い時期に放電
極の肥大を防止する必要がある。その理由は放電
極に付着後、長時間を経過したダストは固着を生
じさせ、これを剥離させるためには、槌打回数を
増すだけでは対処できないからである。
However, in reality, the characteristics of dust fluctuate due to changes in the operating conditions of the device at the dust source, changes in fuel, and the like. Therefore, when driving for a long time,
Various types of dust fly in the air, and in the case of highly adhesive dust, the diameter of the discharge electrode will be increased. In the case of highly adhesive dust like this, it is necessary to catch the signs that the discharge electrode is becoming enlarged and increase the number of hammer strikes to improve the removal of the dust and prevent the enlargement of the discharge electrode at an early stage. be. The reason for this is that dust that has been attached to the discharge electrode for a long period of time becomes stuck, and it is not possible to remove this by simply increasing the number of hammer strikes.

しかしながら、従来においては、放電極の付着
ダスト量を継続的に監視する方法が無かつたた
め、放電極に付着したダストが電極に固着した段
階で、スパーク電圧直前まで電圧を上げても放電
電流が設定した値まで流れないことから放電極の
肥大に気付く状態であつた。
However, in the past, there was no way to continuously monitor the amount of dust adhering to the discharge electrode, so when the dust adhering to the discharge electrode became fixed to the electrode, even if the voltage was raised to just before the spark voltage, the discharge current remained low. Since the discharge did not reach the set value, it was noticed that the discharge electrode was enlarged.

〔発明の目的〕[Purpose of the invention]

本発明は、このような事情に鑑みてなされたも
ので、放電極の付着ダスト量を検出できるように
した電気集塵装置の放電極付着ダスト量検出方法
を提供することを目的としている。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for detecting the amount of dust attached to a discharge electrode of an electrostatic precipitator, which makes it possible to detect the amount of dust attached to the discharge electrode.

〔発明の概要〕[Summary of the invention]

本発明は、前記目的を達成するために、一定時
間ごとに放電極に印加する放電電圧を零レベルか
ら設定値レベルまで徐々に増大させると共に、こ
の運転の際に放電電流が流れ始めるときの放電極
電圧を検出し、この電圧値とガスの相対密度を所
定の演算式に代入して放電極の肥大径を求めるよ
うにしたものである。
In order to achieve the above object, the present invention gradually increases the discharge voltage applied to the discharge electrode from the zero level to the set value level at regular intervals, and also reduces the discharge voltage when the discharge current starts flowing during this operation. The enlarged diameter of the discharge electrode is determined by detecting the electrode voltage and substituting this voltage value and the relative density of the gas into a predetermined calculation formula.

〔実施例〕〔Example〕

以下、添付図面に従つて本発明に係る電気集塵
装置の放電極付着ダスト量検出方法の好ましい実
施例を詳説する。
Hereinafter, preferred embodiments of the method for detecting the amount of dust attached to the discharge electrode of an electrostatic precipitator according to the present invention will be described in detail with reference to the accompanying drawings.

実施例の説明の前に本発明の原理を説明する。
発明者らは実験の結果、コロナ開始電圧が放電極
のダスト付着による肥大径とガス温度に依存する
ことを確認した。これを利用することによつて放
電極の付着ダスト量を推定することができる。
Before explaining embodiments, the principle of the present invention will be explained.
As a result of experiments, the inventors confirmed that the corona starting voltage depends on the enlarged diameter of the discharge electrode due to dust adhesion and the gas temperature. By utilizing this, the amount of dust attached to the discharge electrode can be estimated.

放電極の径をφ、ガスの相対密度を、 δ=T0/T・P/P0 ………(1) (T0、P0は基準にしたガスの絶対温度と圧力で
あり、T、Pは実際のガスの絶対温度と圧力であ
る) とすると、コロナ開始電圧VCは次式で近似する
ことができる(但し、a1、a2、a3は実験で求ま
る定数)。
The diameter of the discharge electrode is φ, and the relative density of the gas is δ=T 0 /T・P/P 0 (1) (T 0 and P 0 are the absolute temperature and pressure of the gas based on the reference, and T , P are the actual absolute temperature and pressure of the gas), then the corona starting voltage VC can be approximated by the following formula (where a1, a2, and a3 are constants determined by experiment).

Vc=(a1φδ+a2√)・(a3−lnφ) ………(2) (1)式より明らかなように、コロナ開始電圧Vc
とガス温度Tを実測し、(2)式を逆算することによ
つて放電極の肥大径φを求めることができる。
Vc = (a 1 φδ + a 2 √)・(a 3 −lnφ) ………(2) As is clear from equation (1), the corona starting voltage Vc
The enlarged diameter φ of the discharge electrode can be determined by actually measuring the gas temperature T and calculating the equation (2).

次に、本発明による装置の一例を詳述する。 Next, an example of the apparatus according to the present invention will be described in detail.

第1図は本発明の一実施例を示すブロツク図で
ある。
FIG. 1 is a block diagram showing one embodiment of the present invention.

集塵室10は第1区と第2区に区分され、各々
に設けられた放電極(図示せず)には、1区用電
源12及び2区用電源14が接続されている。電
源12及び電源14の各々には1区電源制御盤1
6及び2区電源制御盤18の各々が接続されて、
放電極に印加する電圧を零から所定電圧まで変化
させる。
The dust collection chamber 10 is divided into a first section and a second section, and a discharge electrode (not shown) provided in each section is connected to a power source 12 for the first section and a power source 14 for the second section. Each of the power supplies 12 and 14 has a 1-area power supply control panel 1.
Each of the 6th and 2nd ward power control panels 18 is connected,
The voltage applied to the discharge electrode is changed from zero to a predetermined voltage.

集塵室10内には、モータとハンマの組合せで
構成された第1区の放電極を槌打ちする1区放電
極槌打装置20、及び第2区の放電極を槌打ちす
る2区放電極槌打装置22が設けられる。更に、
各槌打装置20及び22の近傍には雰囲気中のガ
ス温度を検出するためのガス温度検出器24及び
26が設けられている。槌打装置20及び22の
各々の駆動用モータ(図示せず)は槌打装置制御
盤28に接続される。
Inside the dust collection chamber 10, there is a first section discharge electrode hammering device 20 that hammers the discharge electrode in the first section, which is composed of a combination of a motor and a hammer, and a second section discharge electrode that hammers the discharge electrode in the second section. An electrode hammering device 22 is provided. Furthermore,
Gas temperature detectors 24 and 26 are provided near each of the hammering devices 20 and 22 to detect the gas temperature in the atmosphere. A driving motor (not shown) for each of the hammering devices 20 and 22 is connected to a hammering device control panel 28 .

電源制御盤16と18及び槌打装置制御盤28
の各々は、マイクロコンピユータを用いた制御部
30が接続され、予め設定したプログラムに従つ
て、電源電圧制御及び槌打間隔が制御される。制
御部30には、放電極の検出電圧Vc1及びVc2の
ほか、ガス温度検出器24及び26の検出信号が
印加される。
Power control panels 16 and 18 and hammering device control panel 28
Each of these is connected to a control unit 30 using a microcomputer, and power supply voltage control and hammering intervals are controlled according to a preset program. In addition to the detection voltages Vc1 and Vc2 of the discharge electrodes, detection signals of the gas temperature detectors 24 and 26 are applied to the control unit 30.

以上の構成において、その動作を第2図に基い
て説明する。制御部30は、1区電源制御盤16
と2区電源制御盤18を交互に一定間隔で動作さ
せる。時間t0に1区電源制御盤16によつて1区
の放電極の放電電流を零に落とし、この時点から
1区電源制御盤16の放電極電圧Vc1を徐々に上
昇させながら、時間t1の放電電流が流れ始める電
圧Vc1を検出し、制御部30内のメモリに記録す
る。この放電電圧減少区間では、1区の集塵性能
は一時的に低下するが、電気集塵装置はガス量の
変動やダストの性質の変化を考慮して、最悪時の
条件を設定して電源の容易が選ばれているため、
通常は余裕のある運転がなされている。つまり、
1区が低下中のときには2区が時間t0からt2にお
いて放電電圧が高くなるように設定することによ
り、1区と2区を併せた全体の集塵性能を計画値
に保つことができる。同様に、2区の放電極の放
電電流の流れ始めにおける電圧Vc2を検出する際
には、時間t2〜t4において1区の放電電圧を上昇
させてやる。
The operation of the above configuration will be explained based on FIG. 2. The control unit 30 includes the 1st section power control panel 16
and the second section power control panel 18 are operated alternately at regular intervals. At time t 0 , the discharge current of the discharge electrode of the first section is reduced to zero by the first section power control panel 16, and from this point on, while gradually increasing the discharge electrode voltage Vc1 of the first section power control panel 16, the discharge current of the first section power supply control panel 16 is reduced to zero. The voltage Vc1 at which the discharge current starts flowing is detected and recorded in the memory within the control unit 30. During this discharge voltage reduction section, the dust collection performance in section 1 temporarily decreases, but the electrostatic precipitator takes into account fluctuations in gas amount and changes in dust properties, sets the worst-case conditions, and then turns on the power. Since the ease of
Normally, the vehicle is driven with plenty of leeway. In other words,
By setting the discharge voltage in the second section to be higher from time t0 to t2 when the first section is decreasing, the overall dust collection performance of the first section and the second section can be maintained at the planned value. Similarly, when detecting the voltage Vc2 at the beginning of the flow of discharge current in the discharge electrode of the second section, the discharge voltage of the first section is increased from time t2 to t4.

このようにして得られたコロナ開始電圧と(2)式
とから、制御部30は(2)式を逆算し、肥大径φを
算出する。この肥大径φから槌打装置20または
22を作動させるべきタイミングが決定され、槌
打装置制御盤28が駆動される。
From the corona start voltage obtained in this manner and equation (2), the control unit 30 back-calculates equation (2) to calculate the enlarged diameter φ. The timing at which the hammering device 20 or 22 should be operated is determined from this enlarged diameter φ, and the hammering device control panel 28 is driven.

なお、以上の構成は、放電極付着ダスト量の測
定中においても、集塵性能が低下することがない
ように1区と2区を交互に運転したものである
が、付着ダスト量の測定のみを問題にするのであ
れば、対象とする放電極が設置されたセクシヨン
のみを第2図に示すように放電電圧を制御すれば
よい。
In addition, in the above configuration, the 1st section and the 2nd section were operated alternately so that the dust collection performance would not deteriorate even during the measurement of the amount of dust attached to the discharge electrode, but only for the measurement of the amount of attached dust. If this is a problem, it is sufficient to control the discharge voltage only in the section where the target discharge electrode is installed, as shown in FIG.

また、集塵室を2区に分割する例を示したが、
3区以上の場合でも同様に適用が可能である。
Also, an example was shown in which the dust collection room is divided into two sections, but
The same application is possible even in cases of three or more wards.

尚、集塵室内の圧力、温度(ガス密度)に変動
が無い場合、ガス温度検出器24,26は不用で
あるが、設けることによつて付着ダスト量の算出
精度を向上できる。
Note that if there is no fluctuation in the pressure and temperature (gas density) in the dust collection chamber, the gas temperature detectors 24 and 26 are unnecessary, but by providing them, the accuracy of calculating the amount of attached dust can be improved.

実験例 1 放電極 径2.6φ、材質 炭素鋼 集塵極間隔 300mm 放電極間隔 200mm 付着させたダスト フライアツシユ(固有電
気抵抗8×1012Ωcm150℃) 以上の条件の下での実験結果は第3図の破線の
ようになるが、これは実線で示す計算値と略同じ
値となつていることが分かる。
Experimental example 1 Discharge electrode diameter 2.6φ, material carbon steel Dust collection electrode spacing 300mm Discharge electrode spacing 200mm Adhered dust Fly ash (specific electrical resistance 8×10 12 Ωcm150℃) The experimental results under the above conditions are shown in Figure 3. It can be seen that this value is almost the same as the calculated value shown by the solid line.

実験例 2 放電極(炭素鋼)の径を変えてダストを付着さ
せずに実験した場合も上図と同一の傾向を示し
た。従つて(2)式は、ダストの固有電気抵抗の大小
にかかわらず適用できることが判つた。なお(2)式
の定数a1、a2、a3は上記実験例1のの集塵極間
隔や放電極間隔、被処理ガスの組成などによつて
変化し、実験的に定まる。
Experimental Example 2 When the diameter of the discharge electrode (carbon steel) was changed and the experiment was conducted without adhering dust, the same tendency as shown in the above figure was shown. Therefore, it was found that equation (2) can be applied regardless of the specific electrical resistance of dust. Note that the constants a 1 , a 2 , and a 3 in equation (2) vary depending on the spacing between the collecting electrodes and the spacing between the discharge electrodes in Experimental Example 1, the composition of the gas to be treated, etc., and are determined experimentally.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明に係る電気集塵装置
の付着ダスト量検出方法によれば、放電極の付着
ダスト量を容易に検出できると共に、継続的な検
出を行なうことができる。更に、その付着ダスト
量検出値に基づいて槌打間隔の最適化を図ること
もできる。
As explained above, according to the method for detecting the amount of dust attached to an electrostatic precipitator according to the present invention, the amount of dust attached to the discharge electrode can be easily detected, and the detection can be performed continuously. Furthermore, it is also possible to optimize the hammering interval based on the detected value of the amount of attached dust.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すブロツク図、
第2図は第1図の実施例の動作タイムチヤート
図、第3図はダスト付着量の計算値と実験値を示
す説明図である。 10……集塵室、12……1区用電源、14…
…2区用電源、16……1区電源制御盤、18…
…2区電源制御盤、20……1区放電極槌打装
置、22……2区放電極槌打装置、24,26…
…ガス温度検出器、28……槌打装置制御盤、3
0……制御部。
FIG. 1 is a block diagram showing one embodiment of the present invention;
FIG. 2 is an operation time chart of the embodiment shown in FIG. 1, and FIG. 3 is an explanatory diagram showing calculated values and experimental values of the amount of dust adhesion. 10...Dust collection room, 12...Power supply for 1 section, 14...
...Power supply for 2nd district, 16...1st district power control panel, 18...
...2nd section power control panel, 20...1st section discharge electrode hammer device, 22...2nd section discharge electrode hammer device, 24, 26...
... Gas temperature detector, 28 ... Hammering device control panel, 3
0...Control unit.

Claims (1)

【特許請求の範囲】[Claims] 1 接地レベルにある集塵極に対向配設された放
電極に高電圧を印加してコロナ放電を生じさせ、
このコロナ放電によつて電極間を通過するガス中
のダストを帯電させて集塵を行なう電気集塵装置
において、前記放電極に印加する放電電圧を略零
ボルトにしたのち徐々に放電電圧を上昇させ、放
電電流が流れ始める時点の放電極電圧を検出し、
該検出電圧に基づいて放電極付着ダスト量を検出
することを特徴とする電気集塵装置の放電極付着
ダスト量検出方法。
1 Applying a high voltage to a discharge electrode placed opposite to a dust collection electrode at ground level to generate corona discharge,
In an electrostatic precipitator that collects dust by charging the dust in the gas passing between the electrodes by this corona discharge, the discharge voltage applied to the discharge electrode is set to approximately zero volts, and then the discharge voltage is gradually increased. and detect the discharge electrode voltage at the point when the discharge current starts flowing,
A method for detecting the amount of dust attached to a discharge electrode of an electrostatic precipitator, characterized in that the amount of dust attached to the discharge electrode is detected based on the detected voltage.
JP21882084A 1984-10-18 1984-10-18 Method and apparatus for detecting dust quantity stuck on discharge pole of electrical dust precipitator Granted JPS6197057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21882084A JPS6197057A (en) 1984-10-18 1984-10-18 Method and apparatus for detecting dust quantity stuck on discharge pole of electrical dust precipitator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21882084A JPS6197057A (en) 1984-10-18 1984-10-18 Method and apparatus for detecting dust quantity stuck on discharge pole of electrical dust precipitator

Publications (2)

Publication Number Publication Date
JPS6197057A JPS6197057A (en) 1986-05-15
JPH0427910B2 true JPH0427910B2 (en) 1992-05-13

Family

ID=16725856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21882084A Granted JPS6197057A (en) 1984-10-18 1984-10-18 Method and apparatus for detecting dust quantity stuck on discharge pole of electrical dust precipitator

Country Status (1)

Country Link
JP (1) JPS6197057A (en)

Also Published As

Publication number Publication date
JPS6197057A (en) 1986-05-15

Similar Documents

Publication Publication Date Title
US9630186B2 (en) Method and a device for cleaning an electrostatic precipitator
EP2172271B1 (en) A method and a device for controlling the power supplied to an electrostatic precipitator
KR101984321B1 (en) Electrostatic precipitator
JPS58501162A (en) How to detect and apply reverse corona in electrostatic precipitators
CN102489405B (en) Method and device for high-voltage static dust removal
Masuda et al. Electrostatic precipitation
JPH0427910B2 (en)
CN111420804A (en) Magnetoelectric composite gas purification method
JPH0222707B2 (en)
JPS6353858B2 (en)
JPH05200324A (en) Method for controlling charging of electric precipitator
JPS62132560A (en) Inversive ionization detector for electrostatic precipitator
JPS6141252B2 (en)
JP3527690B2 (en) Electric dust collector
CN114100861B (en) Acoustic wave soot blower for electrostatic dust collector and control method thereof
JPS6094160A (en) Operation of electric dust collector
JPS58133849A (en) Detector for abnormal state of electrical dust precipitator
JPH0153106B2 (en)
Finney et al. Electron Beam Precharging of Particles in a Laboratory Scale Electrostatic Precipatator
AU2021418882A1 (en) Energy-saving two-way electric dust collection device for adjusting supplied voltage according to concentration of contained dust
KR20160062976A (en) Micro Pulse System, Electrostatic Precipitator Having The Same, and Method for Controlling Micro Pulse System
Batmunkh et al. Modeling an electrostatic precipitator (ESP) with ESPVI 4.0 W
JPH05212311A (en) Operation of electric precipitator
JPS61467A (en) Air filter apparatus
JPH0518629B2 (en)