JPH04278540A - Al alloy multilayered wiring structure - Google Patents

Al alloy multilayered wiring structure

Info

Publication number
JPH04278540A
JPH04278540A JP4006391A JP4006391A JPH04278540A JP H04278540 A JPH04278540 A JP H04278540A JP 4006391 A JP4006391 A JP 4006391A JP 4006391 A JP4006391 A JP 4006391A JP H04278540 A JPH04278540 A JP H04278540A
Authority
JP
Japan
Prior art keywords
alloy
film
oriented
orientation
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4006391A
Other languages
Japanese (ja)
Other versions
JP2977300B2 (en
Inventor
Makiko Nakamura
麻樹子 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP3040063A priority Critical patent/JP2977300B2/en
Publication of JPH04278540A publication Critical patent/JPH04278540A/en
Application granted granted Critical
Publication of JP2977300B2 publication Critical patent/JP2977300B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To obtain an Al alloy wiring resistant to both electromigration and stressmigration. CONSTITUTION:An Al alloy film 16 of <111> orientation which is resistant to electromigration and an Al alloy film 14 of <200> orientation are laminated in the vertical direction. Either one of the films may be constituted as the upper layer.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は半導体素子におけるア
ルミ合金の配線の構造と形成方法、特に積層構造を有す
るアルミ合金配線の構造と形成方法に関するものである
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the structure and formation method of aluminum alloy wiring in semiconductor devices, and more particularly to the structure and formation method of aluminum alloy wiring having a laminated structure.

【0002】0002

【従来の技術】従来半導体素子に用いられる配線はスパ
ッター法によるアルミ合金膜をパターニングすることに
より形成されている。また配線の信頼性を向上させるた
めAl合金膜の下層にTiN等のバリアメタルを形成し
た積層配線構造が積極的に用いられている。
2. Description of the Related Art Conventionally, wiring used in semiconductor devices has been formed by patterning an aluminum alloy film by sputtering. Furthermore, in order to improve the reliability of wiring, a laminated wiring structure in which a barrier metal such as TiN is formed under an Al alloy film is actively used.

【0003】一方、Al合金配線における信頼性はAl
合金の結晶配向に依存することが広く知られている。応
用物理学会90年春季学術講演会予稿集28p−ZA−
13「TiN上のAl合金膜の特性(II)」でも述べ
られているように、Al合金の結晶配向は、下地にTi
Nを形成したAl合金/TiNの積層配線において、下
層のTiNの配向を制御することによって、上層に形成
するAl合金の結晶配向をも制御できる。TiNの配向
はその堆積条件を変化させることにより容易に制御でき
る。例えばスパッターで膜形成を行う場合、基板バイア
スを0V〜−600Vの範囲で変化させることにより〈
111〉配向のTiNや〈200〉配向のTiNを得る
ことができる。この下地のTiNの結晶配向を利用する
ことにより、〈111〉配向や、〈200〉配向のAl
合金を、Al合金自体のスパッター条件を変えずに形成
することができる。すなわち、上層のAl合金が下層の
TiNの結晶配向を反映し、〈111〉配向のTiN上
には〈111〉配向のAl合金がまた〈200〉配向の
TiN上には〈200〉配向のAl合金が各々形成され
る。
On the other hand, the reliability of Al alloy wiring is
It is widely known that it depends on the crystal orientation of the alloy. Japan Society of Applied Physics 1990 Spring Academic Conference Proceedings 28p-ZA-
13 “Characteristics of Al alloy film on TiN (II)”, the crystal orientation of Al alloy is
In a laminated wiring of Al alloy/TiN in which N is formed, by controlling the orientation of TiN in the lower layer, it is also possible to control the crystal orientation of the Al alloy formed in the upper layer. The orientation of TiN can be easily controlled by changing its deposition conditions. For example, when forming a film by sputtering, by changing the substrate bias in the range of 0V to -600V,
TiN with 111> orientation and TiN with <200> orientation can be obtained. By utilizing the crystal orientation of this underlying TiN, <111> orientation and <200> orientation of Al
The alloy can be formed without changing the sputtering conditions of the Al alloy itself. That is, the upper layer Al alloy reflects the crystal orientation of the lower layer TiN, and the <111> oriented Al alloy is on the <111> oriented TiN, and the <200> oriented Al alloy is on the <200> oriented TiN. Alloys are respectively formed.

【0004】0004

【発明が解決しようとする課題】しかしながら、以上述
べた形成方法によるAl合金配線を用いエレクトロマイ
グレーション特性による抵抗の増加及びストレスマイグ
レーションによるボイドの形成を実験により調べたとこ
ろその結果は〈図2〉〈図3〉のようになった。まず図
2は下層TiN50nm上層Al合金400nm、ライ
ン巾1.1μm の積層配線を公知の方法により〈20
0〉及び〈111〉に結晶配向させて形成し250℃の
恒温下で5E6A/cm2 の電流密度で電流を流し続
けた時のエレクトロマイグレーションによる抵抗の増大
を示したものである。図からわかる通り、〈200〉配
向の積層配線では〈111〉配向に比較して抵抗率の増
大が激しい。すなわち〈200〉配向のAl合金配線は
〈111〉配向のAl合金配線よりもエレクトロマスグ
レーションに弱い。次に図3は下層TiN50nm上層
Al合金400nmライン巾0.6μm の積層配線を
公知の方法により〈200〉及び〈111〉に結晶配向
させて形成し、200℃の恒温下で2100時間放置し
た後、目視観察によりボイドの数をカウントした結果を
示すものである。図からわかる通り〈111〉に配向さ
せたAl合金配線のボイド数は〈200〉に配向させた
Al合金配線の倍以上ある。すなわち〈111〉配向の
Al合金配線は〈200〉配向のAl合金配線よりもス
トレスマイグレーションに弱い。
[Problem to be Solved by the Invention] However, when we conducted an experiment to investigate the increase in resistance due to electromigration characteristics and the formation of voids due to stress migration using Al alloy wiring formed by the above-described formation method, the results were as shown in Fig. 2. The result is as shown in Figure 3. First, Fig. 2 shows a layered wiring layer with a lower layer of TiN of 50 nm, an upper layer of Al alloy of 400 nm, and a line width of 1.1 μm by a known method.
This figure shows the increase in resistance due to electromigration when a current was continuously applied at a current density of 5E6 A/cm 2 at a constant temperature of 250° C. when the crystals were formed with crystal orientations of 0> and <111>. As can be seen from the figure, in the laminated wiring with <200> orientation, the resistivity increases more sharply than in the <111> orientation. That is, the <200> oriented Al alloy wiring is more susceptible to electromass gration than the <111> oriented Al alloy wiring. Next, FIG. 3 shows a laminated wiring having a lower layer of TiN of 50 nm, an upper layer of Al alloy of 400 nm, and a line width of 0.6 μm, which are formed by a known method with crystal orientation of <200> and <111>, and after being left at a constant temperature of 200°C for 2100 hours. , which shows the results of counting the number of voids by visual observation. As can be seen from the figure, the number of voids in the <111> oriented Al alloy wiring is more than twice that of the <200> oriented Al alloy wiring. That is, the <111> oriented Al alloy wiring is more susceptible to stress migration than the <200> oriented Al alloy wiring.

【0005】以上述べた通りAl合金配線を一定方位に
配向させても、エレクトロマイグレーションとストレス
マイグレーションの両方に強い配線が得られないという
問題点があった。
As described above, even if the Al alloy wiring is oriented in a certain direction, there is a problem in that a wiring that is resistant to both electromigration and stress migration cannot be obtained.

【0006】[0006]

【課題を解決するための手段】この発明は前記課題を解
決するためにエレクトロマイグレーションに強い〈11
1〉配向のAl合金と、ストレスマイグレーションに強
い〈200〉配向のAl合金とを積層させてAl合金配
線を形成し、エレクトロマイグレーション及びストレス
マイグレーションの双方に強いAl合金配線を形成しよ
うとするものである。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the present invention provides a method that is strong against electromigration.
This method attempts to form an Al alloy wiring that is resistant to both electromigration and stress migration by laminating an Al alloy with a 1> orientation and an Al alloy with a <200> orientation, which is resistant to stress migration. be.

【0007】[0007]

【作用】本発明によれば〈111〉配向のAl合金と〈
200〉配向のAl合金を積層させて形成したので、〈
111〉配向のAl合金がボイド等により断線しても積
層された残余の〈200〉配向のAl合金により電流が
流れるので配線不良とはならない。また〈200〉配向
のAl配線の抵抗がエレクトロマイグレーションにより
増大しても積層された残余の〈111〉配向のAl合金
により電流が流れるので配線抵抗は充分低い値が確保で
きる。
[Operation] According to the present invention, an Al alloy with <111> orientation and <
Since it was formed by stacking Al alloys with 200> orientation,
Even if the Al alloy with the 111> orientation is disconnected due to voids or the like, current will flow through the remaining Al alloy with the <200> orientation in the stack, so no wiring defects will occur. Further, even if the resistance of the <200> oriented Al wiring increases due to electromigration, current flows through the remaining <111> oriented Al alloy layered, so that a sufficiently low value of the wiring resistance can be ensured.

【0008】[0008]

【実施例】図1は本発明の実施例を示す工程断面図であ
る。図示しない拡散層やトランジスタが形成された半導
体基板11の上にBPSG膜等の層間絶縁膜12を60
00Å程度形成する。その上層にTiN膜13を反応性
スパッタ法で全圧3〜10Torrパワー1.5〜2.
0kW、N2 20〜40%、基板バイアス−600V
にて50nm堆積する。これにより〈200〉に強く配
向したTiN膜が得られる。その上層に連続的にAl合
金膜、例えばAl−Si−Cu膜14をスパッター法で
、Ar圧8mTorr 、DCパワー12kWにて30
00Å堆積することにより下層のTiNの結晶方位を反
映した〈200〉に配向したAl合金膜が得られる。
Embodiment FIG. 1 is a process sectional view showing an embodiment of the present invention. An interlayer insulating film 12 such as a BPSG film is formed on a semiconductor substrate 11 on which diffusion layers and transistors (not shown) are formed.
A thickness of approximately 00 Å is formed. A TiN film 13 is formed on the top layer by reactive sputtering at a total pressure of 3 to 10 Torr and a power of 1.5 to 2 Torr.
0kW, N2 20-40%, substrate bias -600V
Deposit 50 nm at . As a result, a TiN film with strong <200> orientation is obtained. An Al alloy film, e.g., an Al-Si-Cu film 14, is continuously formed on the top layer by sputtering at an Ar pressure of 8 mTorr and a DC power of 12 kW for 300 m
By depositing 00 Å, an Al alloy film oriented in <200> reflecting the crystal orientation of the underlying TiN layer can be obtained.

【0009】次にこの基板を5分間純水洗浄を行ないA
l合金膜表面に20〜30Å程度の非常に薄い酸化膜1
5を形成する。その後Arで酸化膜15の表面を数秒〜
数十秒スパッタエッチを行なう。この時酸化膜15は部
分的にエッチング除去され下地のAl合金膜が露出し、
アモルファス化している状態となる。
Next, this substrate was cleaned with pure water for 5 minutes, and A
A very thin oxide film 1 of about 20 to 30 Å on the surface of the alloy film.
form 5. After that, the surface of the oxide film 15 is coated with Ar for several seconds.
Perform sputter etching for several tens of seconds. At this time, the oxide film 15 is partially etched away and the underlying Al alloy film is exposed.
It becomes amorphous.

【0010】次にこの上層にAl合金膜16をスパッタ
ー法により前述した条件と同様の条件にて3000Å堆
積させる。通常Al合金膜は絶縁膜等のアモルファス上
にスパッタ堆積すると〈111〉の結晶方位に配向した
膜が形成される。従って〈200〉に配向したAl合金
膜14の上層でも、間にアモルファス層である薄い酸化
膜15があり、また絶縁膜15が除去された部分でも下
地の〈200〉Al合金がスパッターエッチによりアモ
ルファス化されて存在するので、上層に形成したAl合
金16は〈111〉に配向する。またアモルファス化し
た〈200〉Al合金14と上層の〈111〉Al合金
とが電気的に接続されているので抵抗の問題もない。
Next, an Al alloy film 16 with a thickness of 3000 Å is deposited on this upper layer by sputtering under the same conditions as described above. Usually, when an Al alloy film is sputter deposited on an amorphous material such as an insulating film, a film oriented in the <111> crystal orientation is formed. Therefore, even in the upper layer of the <200> oriented Al alloy film 14, there is a thin oxide film 15 which is an amorphous layer in between, and even in the part where the insulating film 15 is removed, the underlying <200> Al alloy becomes amorphous due to sputter etching. Since the Al alloy 16 formed in the upper layer has a <111> orientation. Further, since the amorphous <200> Al alloy 14 and the upper layer <111> Al alloy are electrically connected, there is no resistance problem.

【0011】以上の様に形成した〈111〉Al合金/
〈200〉Al合金/TiNの積層メタルをパターニン
グすることによりエレクトロマスグレーション及びスト
レスマイグレーションに強い高信頼性の配線が得られる
<111> Al alloy formed as above/
By patterning the <200> Al alloy/TiN laminated metal, highly reliable wiring that is resistant to electromass migration and stress migration can be obtained.

【0012】また本実施例ではAl合金膜の間に酸化膜
を形成する方法を示したが〈111〉Al合金と〈20
0〉Al合金の界面がアモルファスでありかつ電気的に
接続されていれば酸化膜を用いずとも良い。例えばより
簡便には酸化膜を形成せずに〈200〉Al合金を直接
Arにてスパッタエッチしてアモルファス化しても良い
。更に本実施例では下層のAl合金を〈200〉に配向
させ上層のAl合金を〈111〉に配向させたが、この
配向が逆であっても良いことは言うまでもない。この場
合は、図示しないが層間絶縁膜上に通常のスパッター法
により〈111〉に配向したAl合金を3000Å形成
し、その上層に基板バイアス−600Vの条件にて〈2
00〉に配向したTiNを50nm形成し更にその上層
に通常のスパッター法により下地のTiNの結晶方位を
反映した〈200〉に配向したAl合金を3000Å形
成することにより〈200〉Al合金/TiN/〈11
1〉Al合金の積層メタルを形成できる。
[0012]Also, in this example, a method of forming an oxide film between the Al alloy films was shown.
0>If the interface of the Al alloy is amorphous and electrically connected, it is not necessary to use an oxide film. For example, it is more convenient to directly sputter-etch the <200> Al alloy with Ar without forming an oxide film to make it amorphous. Further, in this example, the lower layer Al alloy was oriented <200> and the upper layer Al alloy was oriented <111>, but it goes without saying that the orientations may be reversed. In this case, although not shown, an Al alloy with a <111> orientation is formed to a thickness of 3000 Å on the interlayer insulating film by a normal sputtering method, and an Al alloy with a <111> orientation is formed on the interlayer insulating film to a thickness of 3000 Å, and the <2
<200> Al alloy/TiN/ <11
1> Laminated metal of Al alloy can be formed.

【0013】[0013]

【発明の効果】以上詳細に説明したようにこの発明によ
れば、ストレスマイグレーションに強い〈200〉配向
のAl合金とエレクトロマイグレーションに強い〈11
1〉配向のAl合金を積層した配線を形成するようにし
たので、ストレスマイグレーション及びエレクトロマイ
グレーションの双方に強いAl合金配線を得ることがで
きこれによって配線の信頼性の向上が期待できる。
As explained in detail above, according to the present invention, an Al alloy with a <200> orientation that is resistant to stress migration and a <11> oriented Al alloy that is resistant to electromigration.
Since the wiring is formed by laminating Al alloys with the 1> orientation, it is possible to obtain an Al alloy wiring that is resistant to both stress migration and electromigration, and thereby it is expected that the reliability of the wiring will be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例の工程断面図[Fig. 1] Process sectional view of one embodiment of the present invention

【図2】エレク
トロマイグレーションによる抵抗増加を示すグラフ
[Figure 2] Graph showing resistance increase due to electromigration

【図3】ストレスマイグレーションによるボイド数を示
すグラフ。
FIG. 3 is a graph showing the number of voids due to stress migration.

【符号の説明】[Explanation of symbols]

11    シリコン基板 12    BPSG膜 13    〈200〉に配向したTiN膜14   
 〈200〉に配向したAl合金膜15    酸化膜
11 Silicon substrate 12 BPSG film 13 <200> oriented TiN film 14
Al alloy film 15 oriented in <200> Oxide film

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  絶縁膜上に〈200〉に配向されたT
iN膜が形成され、その上層に〈200〉に配向された
Al合金膜が形成され、その上層に少なくとも部分的に
導伝性をもつアモルファス膜が形成され更にその上層に
〈111〉に配向されたAl合金膜が形成されているこ
とを特徴とするAl合金積層配線構造。
Claim 1: T oriented in <200> on an insulating film.
An iN film is formed, an Al alloy film oriented in <200> is formed on top of it, an amorphous film having at least partial conductivity is formed on the top layer, and an amorphous film oriented in <111> is formed on top of that. An Al alloy laminated wiring structure characterized in that an Al alloy film is formed.
【請求項2】  絶縁膜上に〈111〉に配向されたA
l合金膜が形成されその上層に〈200〉に配向された
TiN膜が形成され更にその上層に〈200〉に配向さ
れたAl合金膜が形成されていることを特徴とするAl
合金積層配線構造。
[Claim 2] A with <111> orientation on the insulating film
An Al alloy film is formed, in which a <200> oriented TiN film is formed on top of the L alloy film, and a <200> oriented Al alloy film is further formed on top of the TiN film oriented in <200>.
Alloy laminated wiring structure.
【請求項3】  絶縁膜上に〈200〉に配向されたT
iN膜を形成する工程と前記TiN膜上に〈200〉に
配向されたAl合金膜を形成する工程と前記〈200〉
に配向されたAl合金膜上に少なくとも部分的に導電性
を持つアモルファス膜を形成する工程と前記アモルファ
ス膜上に〈111〉に配向されたAl合金膜を形成する
工程とを順に施すことを特徴とするAl合金積層配線構
造の形成方法。
Claim 3: T oriented in <200> on the insulating film.
A step of forming an iN film, a step of forming an Al alloy film oriented in <200> on the TiN film, and a step of forming an Al alloy film oriented in <200> on the TiN film.
A step of forming an amorphous film having at least partial conductivity on an Al alloy film oriented in <111> direction, and a step of forming an Al alloy film oriented in <111> direction on the amorphous film are sequentially performed. A method for forming an Al alloy laminated wiring structure.
JP3040063A 1991-03-06 1991-03-06 Al alloy laminated wiring structure and method of forming the same Expired - Fee Related JP2977300B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3040063A JP2977300B2 (en) 1991-03-06 1991-03-06 Al alloy laminated wiring structure and method of forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3040063A JP2977300B2 (en) 1991-03-06 1991-03-06 Al alloy laminated wiring structure and method of forming the same

Publications (2)

Publication Number Publication Date
JPH04278540A true JPH04278540A (en) 1992-10-05
JP2977300B2 JP2977300B2 (en) 1999-11-15

Family

ID=12570469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3040063A Expired - Fee Related JP2977300B2 (en) 1991-03-06 1991-03-06 Al alloy laminated wiring structure and method of forming the same

Country Status (1)

Country Link
JP (1) JP2977300B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006191356A (en) * 2005-01-06 2006-07-20 Toshiba Corp Thin film piezoelectric resonator and method for manufacturing thin film piezoelectric resonator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006191356A (en) * 2005-01-06 2006-07-20 Toshiba Corp Thin film piezoelectric resonator and method for manufacturing thin film piezoelectric resonator

Also Published As

Publication number Publication date
JP2977300B2 (en) 1999-11-15

Similar Documents

Publication Publication Date Title
US6436825B1 (en) Method of copper barrier layer formation
JP3353727B2 (en) Method for forming wiring structure of semiconductor device
JPH0653163A (en) Integrated-circuit barrier structure and its manufacture
JP2001007298A (en) Composite iridium-metal-oxygen barrier structure where barrier is formed of heat-resistant metal and method of forming the same
JP2951636B2 (en) Method for manufacturing a metallization structure
JPH0897209A (en) Semiconductor device and its manufacture
JP3315211B2 (en) Electronic components
JP2977300B2 (en) Al alloy laminated wiring structure and method of forming the same
JPH06302599A (en) Semiconductor device and fabrication thereof
JPH10242078A (en) Multilayer electrode using oxide conductor
JP4230713B2 (en) Electronic component and manufacturing method thereof
US7498257B2 (en) Methods for metal ARC layer formation
JPH10294314A (en) Semiconductor device and fabrication thereof
JPH04256313A (en) Manufacture of semiconductor device
JPH11186190A (en) Fabrication of semiconductor device
JPH07176615A (en) Formation of wiring
JPH04307956A (en) Multilayer interconnection structure of integrated circuit
JPH053254A (en) Method of forming laminated wiring
KR100561523B1 (en) Method for forming Al interconnect
JP3329148B2 (en) Wiring formation method
JPH0754848B2 (en) Semiconductor device
JP2535539B2 (en) Josephson circuit manufacturing method
JP3099381B2 (en) Semiconductor device and manufacturing method thereof
JP3412832B2 (en) Method of forming metal wiring
JPH04315427A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990824

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070910

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees