JPH04278472A - Method for evaluating characteristics of thin film transistor - Google Patents

Method for evaluating characteristics of thin film transistor

Info

Publication number
JPH04278472A
JPH04278472A JP3966591A JP3966591A JPH04278472A JP H04278472 A JPH04278472 A JP H04278472A JP 3966591 A JP3966591 A JP 3966591A JP 3966591 A JP3966591 A JP 3966591A JP H04278472 A JPH04278472 A JP H04278472A
Authority
JP
Japan
Prior art keywords
gate voltage
output current
test
gate
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3966591A
Other languages
Japanese (ja)
Inventor
Fumisato Tamura
文識 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3966591A priority Critical patent/JPH04278472A/en
Publication of JPH04278472A publication Critical patent/JPH04278472A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Individual Semiconductor Devices (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To make high-speed measurement and evaluation. CONSTITUTION:A gate sweep area between a gate voltage (VTH1+VA)2 for starting actually a sweep and a gate voltage (VTH1+VB)3 for ending the sweep is set. Next, an OFF-state voltage (VGoff)4 is applied to a gate terminal of a tested sample and an OFF-state output current (Ioff)5 at this time is measured. After the measurement of the output current Ioff is finished, the gate voltage is jumped up to (VTH1+VA)2, and the output current is measured while the gate voltage is swept at a constant speed to become (VTH1+VB)3. Then, the gate voltage is jumped up to an ON-state voltage (VGon)7, and the OFF-state output current (Ion)8 at this time is measured.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は薄膜トランジスタの特性
評価方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for evaluating characteristics of thin film transistors.

【0002】0002

【従来の技術】TFTは主として液晶表示装置の画素の
電圧駆動用として用いられているが、この場合にTFT
の直流特性として特に評価が必要なパラメータは、出力
電流の遮断領域及び飽和領域のうちの特定のVGoff
(オフ電圧)あるいはVGon(オン電圧)をゲートに
印加したときのオフ出力電流(Ioff)とオン出力電
流(Ion)であり、また通常のFETと同様にしきい
値電圧VTHや実行移動度μeffなどの評価も必要で
ある。
[Prior Art] TFTs are mainly used for voltage driving of pixels in liquid crystal display devices;
The parameters that especially need to be evaluated as the DC characteristics of the
(off voltage) or VGon (on voltage) is applied to the gate, the off output current (Ioff) and on output current (Ion), and as with normal FETs, the threshold voltage VTH and effective mobility μeff etc. It is also necessary to evaluate

【0003】従来の薄膜トランジスタ(以下、TFTと
略す)の直流特性の評価方法は次のように行っていた。 まず図2(a)に示すように被試験TFTの出力電流を
遮断して(Ioff)5とするオフゲート電圧領域内の
ゲート電圧(VGoff)4を掃引開始電圧とし、TF
Tの出力電流が飽和して(Ion)8となるゲート電圧
領域内のオン・ゲート電圧(VGon)7までゲート電
圧を一定の速度で掃引して出力電流を測定していた。
A conventional method for evaluating the direct current characteristics of a thin film transistor (hereinafter abbreviated as TFT) was performed as follows. First, as shown in FIG. 2(a), the gate voltage (VGoff) 4 in the off-gate voltage region where the output current of the TFT under test is cut off (Ioff) 5 is set as the sweep start voltage, and the TFT
The output current was measured by sweeping the gate voltage at a constant speed to an on-gate voltage (VGon) of 7 within the gate voltage region where the output current of T is saturated and becomes (Ion) 8.

【0004】図2(a)に示す例では、ゲート電圧をV
Goff及びVGonと定義した場合にそれぞれ対応す
る出力電流をIoff及びIonとして評価しており、
VTHやμeffの評価は出力電流Iの(1/2)乗(
縦軸)とゲート電圧(横軸)の相関曲線の直線部分の傾
き(利得係数βの平方根)という式(1),(2)の関
係から求めていた。
In the example shown in FIG. 2(a), the gate voltage is set to V
When Goff and VGon are defined, the corresponding output currents are evaluated as Ioff and Ion, respectively.
The evaluation of VTH and μeff is the output current I to the (1/2) power (
It was determined from the relationship of equations (1) and (2), which is the slope (square root of the gain coefficient β) of the linear portion of the correlation curve between the vertical axis) and the gate voltage (horizontal axis).

【0005】[0005]

【0006】ここでVG:ゲート電圧,VTH:しきい
値電圧,μeff:実効移動度,ε0:真空中の誘電率
,εr:ゲート絶縁膜の比誘電率,W:ゲート幅,L:
ゲート長,t:ゲート絶縁膜厚である。
Here, VG: gate voltage, VTH: threshold voltage, μeff: effective mobility, ε0: permittivity in vacuum, εr: relative dielectric constant of gate insulating film, W: gate width, L:
Gate length, t: Gate insulating film thickness.

【0007】式(1)を成立させるために出力の2端子
間には(VG−VTH)以上の電圧が印加してある。
In order to make equation (1) hold, a voltage of (VG-VTH) or more is applied between the two output terminals.

【0008】また、しきい値電圧VTHは具体的には図
2(b)における相関曲線22の直線部分を延長した相
関直線11が横軸と交わる点VTHから求めている。
Further, the threshold voltage VTH is specifically determined from the point VTH where the correlation straight line 11, which is an extension of the straight line portion of the correlation curve 22 in FIG. 2(b), intersects with the horizontal axis.

【0009】また図3のグラフに示す方法で、単結晶の
半導体基板上に形成されたFETのVTHを高速で測定
することがある。まず、出力電流がある微小な値(IT
H)18になるときのゲート電圧をしきい値電圧(VT
H)17と定義する。
Further, the VTH of an FET formed on a single-crystal semiconductor substrate is sometimes measured at high speed by the method shown in the graph of FIG. First, the output current has a certain small value (IT
H) The gate voltage when it becomes 18 is the threshold voltage (VT
H) Define as 17.

【0010】次に以前に同様の工程で製造されたサンプ
ルの測定で予め得られたしきい値VTHより高いゲート
電圧(V1)13をゲートに印加し、その時の出力電流
(I1)14を測定する。I1とITHを比較して、I
1が大きい場合、ある一定の値ΔVをV1から差引いた
値(V2)15をゲートに印加して、出力電流(I2)
16を測定する。
[0010] Next, a gate voltage (V1) 13 higher than the threshold value VTH obtained in advance by measurement of a sample previously manufactured in a similar process is applied to the gate, and the output current (I1) 14 at that time is measured. do. Comparing I1 and ITH, I
If 1 is large, a value (V2) 15 obtained by subtracting a certain value ΔV from V1 is applied to the gate, and the output current (I2)
Measure 16.

【0011】さらにI2とITHを比較してI2が小さ
い場合、V2に(ΔV/2)を加算した値(V3)をゲ
ートに印加して、その時の出力電流I3を測定し、IT
Hと比較する。出力電流I3とITHの差がある許容範
囲内であれば、その時のゲート印加電圧を被試験FET
のしきい値電圧VTHと近似していた。
[0011] Furthermore, when I2 is smaller by comparing I2 and ITH, a value (V3) obtained by adding (ΔV/2) to V2 is applied to the gate, and the output current I3 at that time is measured.
Compare with H. If the difference between the output current I3 and ITH is within the allowable range, the gate applied voltage at that time is applied to the FET under test.
It was close to the threshold voltage VTH of .

【0012】0012

【発明が解決しようとする課題】上述した従来のTFT
の直流特性の評価方法は、Ioff,Ion,VTH,
μeffの各パラメータを測定するために、ゲート電圧
をVGoffからVGonまでを一定の速度で掃引して
いたため、測定時間が非常に長くかかるという欠点があ
った。例えば、VGoffが−5V,VGonが10V
,ゲート掃引速度が毎秒0.5Vとした場合に1回の測
定時間は30秒であった。
[Problem to be solved by the invention] The above-mentioned conventional TFT
The method for evaluating the DC characteristics of is Ioff, Ion, VTH,
In order to measure each parameter of μeff, the gate voltage was swept from VGoff to VGon at a constant speed, which had the disadvantage that the measurement time was extremely long. For example, VGoff is -5V, VGon is 10V
, the time for one measurement was 30 seconds when the gate sweep rate was 0.5 V/sec.

【0013】また、図3に示したVTHの高速測定をT
FTに適用した場合、TFTは非晶質または多結晶の半
導体でチャネル層が形成されているため速い表面準位密
度NSTが大きく、かつばらついているので高速にゲー
ト電圧を変化させると出力電流が揺らいでしまい、精度
の高い測定ができなくなってしまうという欠点があった
In addition, the high-speed measurement of VTH shown in FIG.
When applied to FT, since the channel layer of TFT is formed of an amorphous or polycrystalline semiconductor, the fast surface state density NST is large and fluctuates, so if the gate voltage is changed rapidly, the output current will change. The drawback was that it fluctuated, making it impossible to make highly accurate measurements.

【0014】[0014]

【課題を解決するための手段】本発明の薄膜トランジス
タの特定評価方法は、被試験トランジスタの出力電流の
遮断領域に対応する遮断ゲート電圧領域内の所定の試験
遮断ゲート電圧をゲートに印加して遮断出力電流を測定
した後、前記出力電流を単調に増大させる線形ゲート電
圧領域内の所定の試験小ゲート電圧に跳躍させ、次に前
記試験小ゲート電圧から前記線形増大ゲート電圧領域内
の所定の試験大ゲート電圧までの間に試験掃引ゲート電
圧を前記ゲートに印加して単調増加し前記試験大ゲート
電圧に対応する線形出力電流を測定し、次に前記被試験
トランジスタの出力電流の飽和領域に対応する飽和ゲー
ト電圧領域内の所定の試験飽和ゲート電圧までにゲート
電圧を跳躍させて対応する被試験トランジスタの飽和出
力電流を測定して構成されている。
[Means for Solving the Problems] The method for specific evaluation of thin film transistors of the present invention is to apply a predetermined test cutoff gate voltage to the gate in a cutoff gate voltage region corresponding to the cutoff region of the output current of the transistor under test to cut it off. After measuring the output current, jump the output current monotonically to a predetermined test small gate voltage within the linear gate voltage region, and then jump from the test small gate voltage to a predetermined test within the linearly increasing gate voltage region. A test sweep gate voltage is applied to the gate up to a large gate voltage, and a linear output current that increases monotonically and corresponds to the test large gate voltage is measured, and then a linear output current corresponding to the test large gate voltage is measured, and then a linear output current corresponding to the saturation region of the output current of the transistor under test is measured. The gate voltage is jumped up to a predetermined test saturation gate voltage within the saturation gate voltage region, and the saturation output current of the corresponding transistor under test is measured.

【0015】[0015]

【実施例】次に本発明について図面を参照して説明する
。図1は本発明の一実施例を説明するためのゲート電圧
と出力電流の特性図である。まず、従来の方法で測定し
た同様のサンプルのしきい値電圧(VTH1)1に基づ
いて出力電流が線形的に増大する領域のうち、実際に掃
引を開始するゲート電圧(VTH1+VA)2と掃引を
終了するゲート電圧(VTH1+VB)3のゲート掃引
領域を設定する。ここでVA及びVBは、これから測定
する複数のサンプルのしきい値電圧の予想されるばらつ
きの大きさによって決定される定数である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be explained with reference to the drawings. FIG. 1 is a characteristic diagram of gate voltage and output current for explaining one embodiment of the present invention. First, in the region where the output current increases linearly based on the threshold voltage (VTH1) 1 of a similar sample measured using the conventional method, we will compare the gate voltage (VTH1 + VA) 2 where the sweep actually starts and the sweep The gate sweep region of the gate voltage (VTH1+VB) 3 to be completed is set. Here, VA and VB are constants determined by the expected magnitude of variation in threshold voltages of a plurality of samples to be measured.

【0016】次に被試験サンプルのゲート端子にオフ電
圧(VGoff)4を印加し、この時のオフ出力電流(
Ioff)5を測定する。出力電流Ioffの測定完了
後、ゲート電圧を(VTH1+VA)2まで跳躍させ、
(VTH1+VB)3になるまで一定の速度でゲート電
圧を掃引しながら出力電流を測定する。次に、ゲート電
圧をオン電圧(VGon)7まで跳躍させこのときのオ
フ出力電流(Ion)8を測定する。
Next, an off voltage (VGoff) 4 is applied to the gate terminal of the sample under test, and the off output current (VGoff) at this time is
Measure Ioff)5. After completing the measurement of the output current Ioff, jump the gate voltage to (VTH1+VA)2,
The output current is measured while sweeping the gate voltage at a constant speed until it reaches (VTH1+VB)3. Next, the gate voltage is jumped to the on voltage (VGon) 7 and the off output current (Ion) 8 at this time is measured.

【0017】尚、この一連の測定においてゲート電圧V
GがVG<(VTH1+VB)3のとき、出力の2端子
間に(VG−VTH1)以上の電位差を与えておけば、
前述の式(1)が成立するので縦軸を出力電流の(1/
2)乗とした図1(b)をプロットして、この相関曲線
22の直線部分を下方延長した相関直線11を引き、こ
の直線11と横軸との交点から被試験サンプルのしきい
値電圧(VTH2)12が求まる。また上述の直線の傾
きと式(2)より実効移動度μeffも求まる。
Note that in this series of measurements, the gate voltage V
When G is VG<(VTH1+VB)3, if a potential difference of at least (VG-VTH1) is applied between the two output terminals,
Since the above equation (1) holds true, the vertical axis is (1/1) of the output current.
2) is plotted in FIG. 1(b), a correlation straight line 11 is drawn by extending the straight line part of this correlation curve 22 downward, and the threshold voltage of the test sample is calculated from the intersection of this straight line 11 and the horizontal axis. (VTH2)12 is found. Further, the effective mobility μeff can also be determined from the above-mentioned slope of the straight line and equation (2).

【0018】従って、液晶ディスプレイの駆動用装置と
して用いられる薄膜トランジスタ(TFT)の測定に本
発明を適用すると、電圧保持特性及び応答特性などのモ
ニターとして必要なIoff,Ion,VTH,μef
fの各パラメータの高速評価が可能となる。
Therefore, when the present invention is applied to the measurement of thin film transistors (TFTs) used as driving devices for liquid crystal displays, Ioff, Ion, VTH, μef, which are necessary for monitoring voltage holding characteristics, response characteristics, etc.
It becomes possible to quickly evaluate each parameter of f.

【0019】例えばVGoffが−5V,VGonが+
10V、しきい値電圧の推定値VTH1が+2V、ゲー
ト電圧掃引速度が毎秒0.5Vの場合に、(VTH1+
VA)=1.0V,(VTH1+VB)=4.0Vとす
ると、従来の30秒かかった測定が本実施例では、6〜
8秒程度で行うことができる。
For example, VGoff is -5V, VGon is +
10V, the estimated threshold voltage VTH1 is +2V, and the gate voltage sweep speed is 0.5V/s, (VTH1+
VA) = 1.0V, (VTH1+VB) = 4.0V, the measurement that conventionally took 30 seconds takes 6 to 6 seconds in this example.
This can be done in about 8 seconds.

【0020】次に第2の実施例として本発明を大量のサ
ンプルのTFTの直流パラメータ測定に適用する場合に
ついて述べる。
Next, as a second embodiment, a case where the present invention is applied to measurement of DC parameters of TFTs of a large number of samples will be described.

【0021】被試験サンプルのしきい値電圧が母集団の
中である一定の傾向を持って変動している場合は、第1
の実施例で示した推定のしきい値電圧(VTH1)1と
して、被試験トランジスタの測定直前に測定した数サン
プルのしきい値電圧の平均値(VTHav)を適用すれ
ば、常に(VTH1+VA)と(VTH1+VB)のゲ
ート電圧掃引区間は最適領域内に保つことができる。
[0021] If the threshold voltage of the test sample fluctuates with a certain tendency in the population, the first
If the average value (VTHav) of the threshold voltages of several samples measured immediately before the measurement of the transistor under test is applied as the estimated threshold voltage (VTH1)1 shown in the example, it will always be (VTH1+VA). The gate voltage sweep section of (VTH1+VB) can be kept within the optimum region.

【0022】また、図1(b)において被測定TFTの
しきい値電圧VTHを求めるときに用いた相関曲線22
の直線部分を下方延長した相関直線11の上にオン電流
(1/2)乗であるIonの平方根が存在することを確
かめることにより、測定上のトラブル及び特異点を除去
することもでき、本実施例の信頼性をより向上させるこ
とができる。
In addition, the correlation curve 22 used when determining the threshold voltage VTH of the TFT under test in FIG. 1(b)
By confirming that the square root of Ion, which is the on-state current (1/2), exists on the correlation straight line 11 obtained by extending the straight line part of The reliability of the embodiment can be further improved.

【0023】[0023]

【発明の効果】以上説明したように本発明は、TFTの
代表的な直流特性であるIoff,Ion,VTH,μ
effを求めるのに必要な領域のみゲート電圧を印加及
び掃引して、その他のゲート電圧領域は跳躍して電圧を
掃引しないので、高速な測定・評価が可能となるという
効果を有する。
Effects of the Invention As explained above, the present invention can improve the typical DC characteristics of TFTs such as Ioff, Ion, VTH, μ
Since the gate voltage is applied and swept only in the region necessary to obtain eff, and the voltage does not jump and sweep in other gate voltage regions, it has the effect of enabling high-speed measurement and evaluation.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の第1の実施例を説明するためのトラン
ジスタのゲート電圧と出力電流の特性図である。
FIG. 1 is a characteristic diagram of gate voltage and output current of a transistor for explaining a first embodiment of the present invention.

【図2】従来の薄膜トランジスタの特性評価方法の一例
を説明するためのゲート電圧と出力電流の特性図である
FIG. 2 is a characteristic diagram of gate voltage and output current for explaining an example of a conventional thin film transistor characteristic evaluation method.

【図3】従来の薄膜トランジスタの特性評価方法の他の
例を説明するための出力電流の特性図である。
FIG. 3 is a characteristic diagram of output current for explaining another example of a conventional thin film transistor characteristic evaluation method.

【符号の説明】[Explanation of symbols]

1    推定しきい値 2    掃引小ゲート電圧 3    掃引大ゲート電圧 4    オフゲート電圧 5,9    オフ出力電流 6    ゲート掃引領域 7    オンゲート電圧 8,10    オン出力電圧 11    相関直線 12    測定しきい値 13,22    相関曲線 1 Estimated threshold 2 Sweep small gate voltage 3 Sweep large gate voltage 4 Off-gate voltage 5,9 Off output current 6 Gate sweep area 7 On-gate voltage 8,10 On output voltage 11 Correlation line 12 Measurement threshold 13, 22 Correlation curve

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  被試験トランジスタの出力電流の遮断
領域に対応する遮断ゲート電圧領域内の所定の試験遮断
ゲート電圧をゲートに印加して遮断出力電流を測定した
後、前記出力電流を単調に増大させる線形ゲート電圧領
域内の所定の試験小ゲート電圧に跳躍させ、次に前記試
験小ゲート電圧から前記線形増大ゲート電圧領域内の所
定の試験大ゲート電圧までの間に試験掃引ゲート電圧を
前記ゲートに印加して単調増加し前記試験大ゲート電圧
に対応する線形出力電流を測定し、次に前記被試験トラ
ンジスタの出力電流の飽和領域に対応する飽和ゲート電
圧領域内の所定の試験飽和ゲート電圧までにゲート電圧
を跳躍させて対応する被試験トランジスタの飽和出力電
流を測定することを特徴とする薄膜トランジスタの特性
評価方法。
1. After applying a predetermined test cutoff gate voltage within a cutoff gate voltage region corresponding to the cutoff region of the output current of the transistor under test to the gate and measure the cutoff output current, the output current is monotonically increased. jump to a predetermined test small gate voltage within the linear gate voltage region, and then increase the test sweep gate voltage between the test small gate voltage and the predetermined test large gate voltage within the linear increasing gate voltage region. Measure the linear output current corresponding to the test large gate voltage that increases monotonically by applying the 1. A method for evaluating the characteristics of a thin film transistor, the method comprising measuring the saturation output current of the corresponding transistor under test by jumping the gate voltage.
【請求項2】  前記被試験トランジスタと同等な製造
工程のトランジスタの試験結果を用いて予め求めた出力
電流とゲート電圧特性曲線の3極管特性領域内の最大の
傾きを与えるゲート電圧あるいはしきい値電圧に基づい
て、前記被試験トランジスタの線形出力電流の平方根に
対応して直線的に増大する前記線形ゲート電圧領域を決
定することを特徴とする請求項1記載の薄膜トランジス
タ特性評価方法。
2. A gate voltage or threshold that provides the maximum slope within the triode characteristic region of an output current and gate voltage characteristic curve determined in advance using test results of a transistor manufactured in the same manufacturing process as the transistor under test. 2. The thin film transistor characteristic evaluation method according to claim 1, further comprising determining the linear gate voltage region that linearly increases in correspondence with the square root of the linear output current of the transistor under test based on the value voltage.
JP3966591A 1991-03-06 1991-03-06 Method for evaluating characteristics of thin film transistor Pending JPH04278472A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3966591A JPH04278472A (en) 1991-03-06 1991-03-06 Method for evaluating characteristics of thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3966591A JPH04278472A (en) 1991-03-06 1991-03-06 Method for evaluating characteristics of thin film transistor

Publications (1)

Publication Number Publication Date
JPH04278472A true JPH04278472A (en) 1992-10-05

Family

ID=12559383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3966591A Pending JPH04278472A (en) 1991-03-06 1991-03-06 Method for evaluating characteristics of thin film transistor

Country Status (1)

Country Link
JP (1) JPH04278472A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106205524A (en) * 2016-07-13 2016-12-07 昆山龙腾光电有限公司 The grid drive method of a kind of display panels, system and device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106205524A (en) * 2016-07-13 2016-12-07 昆山龙腾光电有限公司 The grid drive method of a kind of display panels, system and device

Similar Documents

Publication Publication Date Title
US5945866A (en) Method and system for the reduction of off-state current in field effect transistors
JPH09283577A (en) Method for estimating service life of floating soi-mosfet
US7145356B2 (en) Circuits for transistor testing
US6198301B1 (en) Method for determining the hot carrier lifetime of a transistor
EP0040691A1 (en) Apparatus for measuring semiconductor surface potential and impurity concentration
US7019545B2 (en) Method for monitoring quality of an insulation layer
US6069485A (en) C-V method to extract lateral channel doping profiles of MOSFETs
US6166558A (en) Method for measuring gate length and drain/source gate overlap
US6991948B2 (en) Method of electrical characterization of a silicon-on-insulator (SOI) wafer
JPH04278472A (en) Method for evaluating characteristics of thin film transistor
Ghizzo et al. Preconditioning of p-GaN power HEMT for reproducible Vth measurements
JP4342537B2 (en) Semiconductor device characteristic evaluation method and test apparatus
US20070109007A1 (en) Elastic metal gate MOS transistor for surface mobility measurement in semiconductor materials
KR102189444B1 (en) Method For Measuring Leakage Current Of Thin Film Transistor
US6731130B1 (en) Method of determining gate oxide thickness of an operational MOSFET
Kimura et al. Time-dependent dielectric degradation (TDDD) influenced by ultrathin film oxidation process
Barker et al. Electrical characteristics of a polyaniline/silicon hybrid field-effect transistor gas sensor
JP2609728B2 (en) MIS interface evaluation method and apparatus
Cristoloveanu et al. Model for carrier lifetime extraction from pseudo-MOSFET transients
JP3247396B2 (en) Evaluation method of semiconductor device
US7362122B2 (en) Method and circuit for extracting current-voltage characteristics of device
Brisbin et al. The effect of the subthreshold slope degradation on NBTI device characterization
Ji et al. A new Ultra-Fast Single Pulse technique (UFSP) for channel effective mobility evaluation in MOSFETs
Jenkins et al. Pulse-Train Method to Measure Transient Response of Field-Effect Transistors
Yao et al. Accuracy of effective channel-length extraction using the capacitance method