JPH04278219A - Magnetic recording medium and magnetic memory device - Google Patents

Magnetic recording medium and magnetic memory device

Info

Publication number
JPH04278219A
JPH04278219A JP4160891A JP4160891A JPH04278219A JP H04278219 A JPH04278219 A JP H04278219A JP 4160891 A JP4160891 A JP 4160891A JP 4160891 A JP4160891 A JP 4160891A JP H04278219 A JPH04278219 A JP H04278219A
Authority
JP
Japan
Prior art keywords
magnetic
protective coating
recording medium
coating layer
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4160891A
Other languages
Japanese (ja)
Inventor
Shinan Yaku
四男 屋久
Yoshihiro Shiroishi
芳博 城石
Sadao Hishiyama
菱山 定夫
Akira Ishikawa
晃 石川
Tsuguyuki Oono
大野 徒之
Tomoo Yamamoto
朋生 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4160891A priority Critical patent/JPH04278219A/en
Publication of JPH04278219A publication Critical patent/JPH04278219A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a magnetic recording medium which is excellent in sliding resistance and proper to high-density recording and to provide a high-reliability large-capacity magnetic memory device. CONSTITUTION:In a magnetic recording medium having at least one layer of a protective covering layer 14 and 14' on a magnetic layer 13 and 13', the absolute value of an internal stress remaining in the magnetic recording medium 14 and 14' is less than 1GPa. According to the invention, further a magnetic memory device having the magnetic recording medium surface can be provided. The application of the protective covering layer in which the absolute value of the stress remaining inside is less than 1GPa, enhances the adhesion of the magnetic layer and the protection covering layer, which makes it possible to enhance sliding resistance and hence provide a high-reliability and large-capacity magnetic memory device.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はフレキシブル型磁気ディ
スク装置、ドラム型磁気記憶装置、テ−プ型磁気記憶装
置、カ−ド型磁気記憶装置、リジッド型磁気ディスク装
置などに用いる磁気記録媒体および磁気記憶装置に関す
る。
[Industrial Application Field] The present invention relates to magnetic recording media used in flexible magnetic disk devices, drum-type magnetic storage devices, tape-type magnetic storage devices, card-type magnetic storage devices, rigid-type magnetic disk devices, etc. Related to magnetic storage devices.

【0002】0002

【従来の技術】磁気記録の高密度化に対応するため、酸
化鉄薄膜、窒化鉄薄膜、磁性合金薄膜などの薄膜磁性層
を記録層とする磁気記録媒体の研究開発が進められてい
る。これら薄膜媒体は非磁性基体上にスパッタリング法
、真空蒸着法、メッキ法、イオンプレ−ティング法等の
手法により形成されることが多い。これらは膜厚が小さ
いこと、保磁力や磁化が大きいことなどの理由により高
記録密度化に適していると言える。しかしながら、上記
磁性薄膜を用いた磁気記録媒体は磁気ヘッドの摺動によ
り損傷を受けやすく、耐摺動性が悪いという問題を持っ
ている。磁気ファイルとして使用される磁気記録媒体等
は、特に高度の信頼性が要求されるため、上記問題点を
克服することは、高記録密度化を実現するうえで極めて
重要である。
2. Description of the Related Art In order to cope with the increasing density of magnetic recording, research and development is progressing on magnetic recording media having thin magnetic layers such as iron oxide thin films, iron nitride thin films, and magnetic alloy thin films as recording layers. These thin film media are often formed on nonmagnetic substrates by sputtering, vacuum evaporation, plating, ion plating, or other techniques. These materials are suitable for high recording density because of their small film thickness, large coercive force, and large magnetization. However, magnetic recording media using the magnetic thin film described above have the problem of being easily damaged by sliding of the magnetic head and having poor sliding resistance. Since magnetic recording media used as magnetic files are particularly required to have a high degree of reliability, overcoming the above problems is extremely important in realizing high recording density.

【0003】従来の連続薄膜を用いた磁気記録媒体では
、上記問題点を解決するため、磁性膜上にC系保護被覆
層を形成する手法(特開昭61−54017号公報、特
開昭61−54019号公報)、C系保護被覆層上にさ
らに有機系液体潤滑剤を形成する手法(特開昭61−9
6512号公報)、WC保護被覆層を形成する手法(特
開昭49−20081号公報、特開昭53−21901
号公報、特開昭53−21902号公報)、Si,Zr
,Hf,Ti,Ta,Nb,Wの窒化物あるいは炭化物
保護被覆層を形成する手法(米国特許第Re.3246
4号公報)、Zr,Ti,Ta,Hfの酸化物,窒化物
,炭化物,硼化物保護被覆層を形成する手法(特開昭6
3−66722号公報)等が提案されている。
In order to solve the above-mentioned problems in conventional magnetic recording media using continuous thin films, a method of forming a C-based protective coating layer on the magnetic film (Japanese Unexamined Patent Publication No. 61-54017, Japanese Unexamined Patent Publication No. 61-61) has been proposed. -54019), a method of further forming an organic liquid lubricant on the C-based protective coating layer (Japanese Patent Laid-Open No. 61-9
6512), a method for forming a WC protective coating layer (JP-A-49-20081, JP-A-53-21901)
(Japanese Patent Application Laid-Open No. 53-21902), Si, Zr
, Hf, Ti, Ta, Nb, W forming a nitride or carbide protective coating layer (US Patent No. Re.3246)
4), a method of forming a protective coating layer of oxides, nitrides, carbides, and borides of Zr, Ti, Ta, and Hf (Japanese Unexamined Patent Publication No. 6)
3-66722) etc. have been proposed.

【0004】0004

【発明が解決しようとする課題】しかしながら、本発明
者らの検討によると、上記保護被覆層を有する従来技術
の場合には、保護被覆層の硬度は相対的に高いにもかか
わらず、磁性層と保護被覆層の密着力が小さく、磁気記
録媒体に割れ、剥離等の急激な損傷が生じやすく、装置
に振動等が加えられた時の耐摺動性が不十分であること
が問題であった。本発明は以上の点に鑑みなされたもの
であって、金属または酸化物、窒化物等の磁性層上に、
磁性層との密着性に優れた高硬度、高靱性保護被覆層を
形成することにより、耐摺動性に優れ、高密度記録に適
した磁気記録媒体および信頼性の高い大容量磁気記憶装
置を提供することを目的とする。
[Problems to be Solved by the Invention] However, according to the studies of the present inventors, in the case of the prior art having the above-mentioned protective coating layer, although the hardness of the protective coating layer is relatively high, the magnetic layer The problem is that the adhesion between the magnetic recording medium and the protective coating layer is low, causing rapid damage to the magnetic recording medium such as cracking and peeling, and insufficient sliding resistance when vibrations are applied to the device. Ta. The present invention has been made in view of the above points, and is based on a magnetic layer made of metal, oxide, nitride, etc.
By forming a highly hard and tough protective coating layer with excellent adhesion to the magnetic layer, we are able to create magnetic recording media with excellent abrasion resistance and suitable for high-density recording, as well as highly reliable large-capacity magnetic storage devices. The purpose is to provide.

【0005】[0005]

【課題を解決するための手段】本発明は上記目的を達成
するために、磁性層上に少なくとも1層の保護被覆層を
設け、該保護被覆層中に残留する内部応力の絶対値を1
GPa以下としたものである。また、このような磁気記
録媒体と磁気コアの一部に金属磁性合金を少なくとも含
み、実質的にジルコニアもしくはフェライトを磁気コア
の主たる成分とする磁気ヘッドとを組み合わせることに
より、記憶容量が従来に比べ1.5倍以上大きい磁気記
憶装置を作製できる。ここで上記保護被覆層上に少なく
とも1つの吸着性末端基を有する潤滑剤層を存在せしめ
ることで耐摺動性、耐食性を著しく向上できるのでさら
に好ましい。上記保護被覆層中に残留する内部応力の絶
対値を0.5GPa以下にすることがさらに望ましく、
0.3GPa以下とすれば、耐摺動性がより向上するの
で特に望ましい。さらに上記保護被覆層の膜厚を3nm
以上60nm以下、より望ましくは3nm以上40nm
以下、さらに望ましくは5nm以上30nm以下とする
ことで耐摺動性を高く保つと共に記録再生特性も良好に
できるので特に望ましい。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides at least one protective coating layer on a magnetic layer, and reduces the absolute value of internal stress remaining in the protective coating layer to 1.
GPa or less. In addition, by combining such a magnetic recording medium with a magnetic head that contains at least a metal magnetic alloy in a part of the magnetic core and whose magnetic core is substantially made of zirconia or ferrite, the storage capacity can be increased compared to conventional ones. A magnetic storage device that is 1.5 times larger can be manufactured. Here, it is more preferable to provide a lubricant layer having at least one adsorbent end group on the protective coating layer, since the sliding resistance and corrosion resistance can be significantly improved. It is more desirable that the absolute value of the internal stress remaining in the protective coating layer is 0.5 GPa or less,
A pressure of 0.3 GPa or less is particularly desirable because it further improves sliding resistance. Furthermore, the thickness of the above protective coating layer was increased to 3 nm.
60 nm or more, more preferably 3 nm or more and 40 nm
The thickness is more preferably 5 nm or more and 30 nm or less, which is particularly desirable because it keeps the sliding resistance high and also improves the recording and reproducing characteristics.

【0006】また、上記磁気記憶装置に使用する磁気ヘ
ッドは金属磁性合金を少なくとも磁気コアの一部として
含み、実質的にジルコニアもしくはフェライトを磁気コ
ア部の主たる成分とすることにより磁気記憶装置の信頼
性を著しく高めることができので特に望ましい。
Furthermore, the magnetic head used in the magnetic storage device includes a metal magnetic alloy as at least a part of the magnetic core, and by making zirconia or ferrite the main component of the magnetic core, the reliability of the magnetic storage device is improved. It is particularly desirable because it can significantly improve the performance.

【0007】[0007]

【作用】上記効果は以下の作用による。C系保護被覆層
を用いた場合、また、WCを保護被覆層として用いた場
合や、Si,Zr,Hf,Ti,Ta,Nb,Wの窒化
物あるいは炭化物を保護被覆層として用いた場合、また
Zr,Ti,Ta,Hfの酸化物,窒化物,炭化物,硼
化物を保護被覆層として用いた場合には、これら材料が
高い硬度を示すため原理的には磁気記録媒体の薄膜保護
被覆層として使用可能である。ところが、上記材料を保
護被覆層として形成した磁気記録媒体の耐摺動性に関し
て検討した結果、衝撃のような高荷重時に場合によって
はこれらの磁気記録媒体は充分な耐摺動性を示さないこ
とがあることが明らかになった。これは、保護被覆層が
脆く、また一般に保護被覆層中に残留する内部応力が大
きく、したがって磁性層との密着力も小さいため、磁気
ヘッドの摺動により機械的外力が加わった場合、保護被
覆層内および磁性層と保護被覆層の界面に亀裂を生じ、
剥離、破壊に至り易いためである。
[Action] The above effect is due to the following action. When a C-based protective coating layer is used, when WC is used as a protective coating layer, or when nitrides or carbides of Si, Zr, Hf, Ti, Ta, Nb, and W are used as a protective coating layer, Furthermore, when oxides, nitrides, carbides, and borides of Zr, Ti, Ta, and Hf are used as the protective coating layer, these materials exhibit high hardness, so in principle, the thin film protective coating layer of the magnetic recording medium can be used. It can be used as However, as a result of examining the sliding resistance of magnetic recording media formed with the above-mentioned materials as a protective coating layer, it was found that these magnetic recording media do not exhibit sufficient sliding resistance in some cases when subjected to high loads such as impacts. It became clear that there is. This is because the protective coating layer is brittle, and the internal stress that remains in the protective coating layer is generally large, so the adhesion force with the magnetic layer is also small. Cracks occur inside the magnetic layer and at the interface between the magnetic layer and the protective coating layer.
This is because it is easy to peel off and break.

【0008】これに対し本発明者らの検討によれば、内
部に残留する応力の絶対値を1GPa以下にした保護被
覆層を用いると、磁性層と保護被服層の実質的な密着性
に優れるため、耐摺動性を向上することができることが
明らかになった。
On the other hand, according to the studies of the present inventors, using a protective coating layer in which the absolute value of internal stress is 1 GPa or less results in excellent adhesion between the magnetic layer and the protective coating layer. Therefore, it has become clear that the sliding resistance can be improved.

【0009】ここでさらに、本発明の実施例1を例に、
上記内部応力の範囲について説明する。図2に示すよう
に、内部応力の絶対値を1GPa以下とした場合には、
摺動後の傷幅が40μm以下、0.5GPa以下とした
場合には傷幅が25μm以下、さらに、0.3GPa以
下とした場合には傷幅が20μm以下となった。本発明
者らの検討によると、傷幅40μm,25μm,20μ
mは、それぞれ耐CSS(コンタクト、スタ−ト、スト
ップ)特性の略1万回,5万回,10万回以上に相当す
る。したがって、内部応力の絶対値が1GPa以下のと
きCSS1万回以上と実用上十分な耐摺動性が確保でき
るため望ましい。内部応力の絶対値が0.5GPa以下
になるとさらに耐摺動性が向上するためより望ましく、
0.3GPa以下ではCSS10万回以上と高い耐摺動
性を確保できるため特に望ましい。
[0009] Here, further, taking Example 1 of the present invention as an example,
The range of the above internal stress will be explained. As shown in Figure 2, when the absolute value of internal stress is 1 GPa or less,
When the flaw width after sliding was 40 μm or less and 0.5 GPa or less, the flaw width was 25 μm or less, and when it was 0.3 GPa or less, the flaw width was 20 μm or less. According to the inventors' study, the scratch width was 40 μm, 25 μm, and 20 μm.
m corresponds to approximately 10,000 times, 50,000 times, and 100,000 times or more of CSS (contact, start, stop) characteristics, respectively. Therefore, it is preferable that the absolute value of the internal stress is 1 GPa or less because it is possible to ensure practically sufficient sliding resistance of 10,000 CSS cycles or more. It is more desirable that the absolute value of the internal stress is 0.5 GPa or less, as this further improves the sliding resistance.
A pressure of 0.3 GPa or less is particularly desirable because high sliding resistance of 100,000 CSS cycles or more can be ensured.

【0010】次に、保護被服層の膜厚の好適な範囲につ
いて説明する。上記保護被覆層の膜厚は3nm以上60
nm以下であることが望ましい。なぜならば、膜厚が3
nmより小さい保護被覆層では磁気記録媒体の耐摺動性
向上に十分な寄与をなし得ず、逆に膜厚が60nmより
大きい保護被覆層では、磁性層と磁気ヘッドの距離を不
必要に隔てることになり、記録再生特性の低下を招くこ
とになるからである。記録再生特性を高め、実用上の耐
摺動性を保つためには、保護被覆層の膜厚は3nm以上
40nm以下、さらには5nm以上30nm以下とする
ことがより望ましい。
Next, the preferred range of the thickness of the protective coating layer will be explained. The thickness of the above protective coating layer is 3 nm or more 60
It is desirable that it be less than nm. This is because the film thickness is 3
A protective coating layer with a thickness of less than 60 nm cannot make a sufficient contribution to improving the sliding resistance of a magnetic recording medium, and conversely, a protective coating layer with a thickness of more than 60 nm unnecessarily separates the distance between the magnetic layer and the magnetic head. This is because the recording and reproducing characteristics will deteriorate. In order to improve recording/reproducing characteristics and maintain practical sliding resistance, the thickness of the protective coating layer is preferably 3 nm or more and 40 nm or less, more preferably 5 nm or more and 30 nm or less.

【0011】ジルコニア、フェライト、アルミナのよう
に略0.005cal/sec/cm/deg以上の熱
伝導率を持つ材料を磁気ヘッドのコア材とした場合、熱
歪の発生が少なく、また潤滑剤の熱揮発も少ないので耐
摺動性が向上し特に好ましい。
When a material having a thermal conductivity of about 0.005 cal/sec/cm/deg or more is used as the core material of a magnetic head, such as zirconia, ferrite, or alumina, thermal distortion occurs less, and lubricant It is particularly preferred because it has less thermal volatilization and improves sliding resistance.

【0012】0012

【実施例】実施例1 図1は本発明の実施例1の磁気記録媒体の構成図である
Embodiments Embodiment 1 FIG. 1 is a block diagram of a magnetic recording medium according to Embodiment 1 of the present invention.

【0013】NiPをメッキし、その表面に、略円周方
向に中心線平均面粗さで10nmの凹凸を設けた130
mmφのAl−Mg合金基板11上にRFマグネトロン
スパッタ法で、基板温度300℃、アルゴンガス圧2m
Torr、投入電力10W/cm2で膜厚50nmのC
r非磁性下地層12,12’、膜厚70nmのCo0.
86Cr0.12Ta0.02磁性層13,13’を形
成した後、(W0.9Co0.1)0.5C0.5保護
被覆層14,14’をDCマグネトロンスパッタ法で、
非磁性下地層、磁性層と同一条件、もしくは基板温度2
50℃、アルゴンガス圧2〜15mTorr、投入電力
0.5〜5W/cm2と、成膜条件を非磁性下地層、磁
性層のそれと変えて30nm形成し、さらに末端に吸着
性のエステル基を有するパ−フルオロアルキルポリエ−
テル潤滑層を4nm設けて磁気ディスクとした。保護被
覆層中の残留内部応力の評価には、保護被覆層のX線回
折ピ−クの位置を詳細に測定する方法、及び、別にシリ
コンウェハ上に上記磁気ディスクと同構成で作製した試
料で保護被覆層が存在する場合としない場合のシリコン
ウェハのたわみ量を測定する方法とを採用した。耐摺動
性の評価には、曲率30mmのジルコニア球面摺動子を
荷重10gfで磁気ディスク表面に押し付け、摺動子と
の相対速度10m/sで磁気ディスクを回転させて、摺
動3600回時の磁気ディスク表面に生じた傷幅を測定
する方法を採用した。保護被覆層中の残留内部応力の絶
対値と耐摺動性の関係を図2に示す。
[0013] 130 plated with NiP and provided with unevenness approximately in the circumferential direction on the surface with a center line average surface roughness of 10 nm.
The substrate temperature was 300°C and the argon gas pressure was 2 m on an Al-Mg alloy substrate 11 with a diameter of mm by RF magnetron sputtering.
Torr, input power 10W/cm2, film thickness 50nm C
r Nonmagnetic underlayers 12, 12', Co0.
After forming the 86Cr0.12Ta0.02 magnetic layers 13, 13', (W0.9Co0.1)0.5C0.5 protective coating layers 14, 14' are formed by DC magnetron sputtering.
Same conditions as non-magnetic underlayer and magnetic layer, or substrate temperature 2
The film forming conditions were changed from those of the non-magnetic underlayer and magnetic layer to form a 30 nm thick film at 50° C., argon gas pressure of 2 to 15 mTorr, and input power of 0.5 to 5 W/cm2, and it also had an adsorbent ester group at the end. Perfluoroalkyl polyester
A magnetic disk was prepared by providing a 4 nm thick lubrication layer. The residual internal stress in the protective coating layer can be evaluated by measuring the position of the X-ray diffraction peak in the protective coating layer in detail, or by separately fabricating a sample on a silicon wafer with the same configuration as the above-mentioned magnetic disk. A method of measuring the amount of deflection of a silicon wafer with and without a protective coating layer was adopted. To evaluate the sliding resistance, a zirconia spherical slider with a curvature of 30 mm was pressed against the surface of the magnetic disk with a load of 10 gf, and the magnetic disk was rotated at a relative speed of 10 m/s with the slider for 3600 sliding movements. A method was adopted to measure the width of scratches that occurred on the surface of magnetic disks. FIG. 2 shows the relationship between the absolute value of residual internal stress in the protective coating layer and the sliding resistance.

【0014】一般に成膜時のガス圧が高いほど、もしく
は相対的に低温で成膜することで保護被覆層中に残留す
る内部応力の絶対値を小さくできる。内部応力の絶対値
が1GPa以上の保護被覆層の場合、エッチング等によ
って非磁性下地層、磁性層を除去し、エッチング液に不
溶の保護被覆層を遊離させると保護被覆層がその大きな
内部応力のため、細かな糸状になるまでカ−ルした。こ
れに対して、内部応力の絶対値が0.5GPa以下の保
護被覆層はほとんどカ−ルしなかった。このことからも
内部応力が小さければ摺動によってもたらされる表面の
微小な傷等に対しても、保護被覆層が安定に存在するこ
とが理解できる。逆に本方法によって保護被覆層中の残
留内部応力を知ることもできる。
Generally, the absolute value of the internal stress remaining in the protective coating layer can be reduced by increasing the gas pressure during film formation or by forming the film at a relatively low temperature. In the case of a protective coating layer with an absolute value of internal stress of 1 GPa or more, if the non-magnetic underlayer and magnetic layer are removed by etching etc. and the protective coating layer insoluble in the etching solution is released, the protective coating layer will be able to absorb the large internal stress. Therefore, it was curled into a fine string. On the other hand, the protective coating layer whose absolute value of internal stress was 0.5 GPa or less hardly curled. From this, it can be understood that if the internal stress is small, the protective coating layer will remain stable even against minute scratches on the surface caused by sliding. Conversely, the residual internal stress in the protective coating layer can also be determined by this method.

【0015】実施例2 次に、図1に示す構造の磁気ディスクでさらに別の実施
例について説明する。NiPをメッキし、その表面に、
円周方向に中心線平均面粗さで10nmの凹凸を設けた
130mmφのAl−Mg合金基板11上にRFマグネ
トロンスパッタ法で、基板温度300℃、アルゴンガス
圧3mTorr、投入電力5W/cm2で膜厚60nm
のCr0.9Ti0.1非磁性下地層12,12’、膜
厚40nmのCo0.83Cr0.12Pt0.05磁
性層13,13’を形成した後、カ−ボン保護被覆層1
4,14’をDCマグネトロンスパッタ法で、基板温度
100℃、アルゴンガス圧15mTorr、投入電力1
W/cm2で30nm形成し、末端にエステル基を有す
るパ−フルオロアルキルポリエ−テル系潤滑層を4nm
設けて磁気ディスクとした。
Embodiment 2 Next, another embodiment of the magnetic disk having the structure shown in FIG. 1 will be described. NiP is plated on the surface,
A film was formed by RF magnetron sputtering on a 130 mmφ Al-Mg alloy substrate 11 with irregularities of 10 nm in centerline average surface roughness in the circumferential direction at a substrate temperature of 300° C., an argon gas pressure of 3 mTorr, and an input power of 5 W/cm2. Thickness 60nm
After forming Cr0.9Ti0.1 nonmagnetic underlayers 12, 12' and Co0.83Cr0.12Pt0.05 magnetic layers 13, 13' with a film thickness of 40 nm, a carbon protective coating layer 1 is formed.
4 and 14' by DC magnetron sputtering, substrate temperature 100°C, argon gas pressure 15 mTorr, input power 1.
A perfluoroalkyl polyether lubricating layer having a terminal ester group was formed to a thickness of 30 nm at W/cm2 and a thickness of 4 nm.
It was installed as a magnetic disk.

【0016】実施例3 次に、図1に示す構造の磁気ディスクでさらに別の実施
例について説明する。NiPをメッキし、その表面に、
円周方向に中心線平均面粗さで10nmの凹凸を設けた
63.5mmφのAl−Mg合金基板11上にRFマグ
ネトロンスパッタ法で、基板温度250℃、アルゴンガ
ス圧5mTorr、投入電力5W/cm2で膜厚100
nmのCr非磁性下地層12,12’、膜厚50nmの
Co0.85Cr0.10Pt0.05磁性層13,1
3’を形成した後、(W0.6Mo0.3Co0.1)
0.5C0.5保護被覆層14,14’をDCマグネト
ロンスパッタ法で、基板温度200℃、アルゴンガス圧
15mTorr、投入電力1W/cm2で20nm形成
し、末端にOH基を有するパ−フルオロアルキルポリエ
−テル系潤滑層を5nm設けて磁気ディスクとした。
Embodiment 3 Next, another embodiment of the magnetic disk having the structure shown in FIG. 1 will be described. NiP is plated on the surface,
A 63.5 mmφ Al-Mg alloy substrate 11 with unevenness of 10 nm in centerline average surface roughness in the circumferential direction was coated by RF magnetron sputtering at a substrate temperature of 250° C., an argon gas pressure of 5 mTorr, and an input power of 5 W/cm 2 . film thickness 100
nm Cr nonmagnetic underlayer 12, 12', 50 nm thick Co0.85Cr0.10Pt0.05 magnetic layer 13,1
After forming 3', (W0.6Mo0.3Co0.1)
The 0.5C0.5 protective coating layers 14 and 14' were formed to a thickness of 20 nm by DC magnetron sputtering at a substrate temperature of 200°C, an argon gas pressure of 15 mTorr, and an input power of 1 W/cm2, and were made of perfluoroalkyl polyester having an OH group at the end. - A magnetic disk was prepared by providing a 5 nm thick Teru-based lubricating layer.

【0017】実施例4 次に、図1に示す構造の磁気ディスクでさらに別の実施
例について説明する。表面を化学的エッチング処理によ
り、略無秩序で、中心線平均面粗さで5nmの凹凸を設
けた89mmφの強化ガラス基板11上にDCマグネト
ロンスパッタ法で、基板温度300℃、アルゴンガス圧
1mTorr、投入電力10W/cm2で膜厚50nm
のCr非磁性下地層12,12’、膜厚60nmのCo
0.84Cr0.13Ta0.03磁性層13,13’
を形成した後、(Zr0.45Nb0.45Co0.1
)0.5O0.5保護被覆層14,14’をRFマグネ
トロンスパッタ法で、基板温度150℃、アルゴン50
vol%酸素50vol%混合ガス圧13mTorr、
投入電力1W/cm2で20nm形成し、CNを含む吸
着性極性基を有するパ−フルオロアルキルポリエ−テル
系潤滑層を7nm設けて磁気ディスクとした。
Embodiment 4 Next, another embodiment of the magnetic disk having the structure shown in FIG. 1 will be described. The substrate temperature was 300° C. and the argon gas pressure was 1 mTorr using the DC magnetron sputtering method on a reinforced glass substrate 11 of 89 mm diameter whose surface was roughly disordered and had irregularities of 5 nm in centerline average surface roughness by chemical etching. Film thickness 50nm at power 10W/cm2
Cr nonmagnetic underlayers 12, 12', 60 nm thick Co
0.84Cr0.13Ta0.03 magnetic layer 13, 13'
After forming (Zr0.45Nb0.45Co0.1
) 0.5O0.5 protective coating layers 14, 14' were formed by RF magnetron sputtering at a substrate temperature of 150°C and 50% argon.
vol% oxygen 50vol% mixed gas pressure 13mTorr,
A magnetic disk was prepared by forming a 20 nm thick layer using an input power of 1 W/cm 2 and providing a 7 nm thick perfluoroalkyl polyether lubricating layer having an adsorptive polar group containing CN.

【0018】比較例1 次に、図1に示す構造の磁気ディスクで比較例について
説明する。
Comparative Example 1 Next, a comparative example using a magnetic disk having the structure shown in FIG. 1 will be explained.

【0019】NiPをメッキし、その表面に、円周方向
に中心線平均面粗さで10nmの凹凸を設けた130m
mφのAl−Mg合金基板11上にRFマグネトロンス
パッタ法で、基板温度200℃、アルゴンガス圧1.5
mTorr、投入電力1W/cm2で膜厚300nmの
Cr非磁性下地層12,12’、膜厚70nmのCo0
.60Ni0.35Zr0.05磁性層13,13’を
形成した後、カ−ボン保護被覆層14,14’をDCマ
グネトロンスパッタ法で、基板温度150℃、アルゴン
ガス圧2mTorr、投入電力15W/cm2で30n
m形成し、末端にエステル基を有するパ−フルオロアル
キルポリエ−テル系潤滑層を4nm設けて磁気ディスク
とした。
[0019] NiP was plated, and the surface was uneven with a center line average surface roughness of 10 nm in the circumferential direction.
mφ Al-Mg alloy substrate 11 was sputtered by RF magnetron sputtering at a substrate temperature of 200°C and an argon gas pressure of 1.5.
mTorr, input power of 1 W/cm2, 300 nm thick Cr nonmagnetic underlayer 12, 12', 70 nm thick Co0
.. After forming the 60Ni0.35Zr0.05 magnetic layers 13, 13', the carbon protective coating layers 14, 14' were formed by DC magnetron sputtering at a substrate temperature of 150°C, an argon gas pressure of 2 mTorr, and an input power of 15 W/cm2 for 30 nm.
A magnetic disk was prepared by forming a perfluoroalkyl polyether lubricant layer having a thickness of 4 nm and having an ester group at the end.

【0020】比較例2 次に、図1に示す構造の磁気ディスクでさらに別の比較
例について説明する。表面を化学的エッチング処理によ
り、略無秩序で、中心線平均面粗さで5nmの凹凸を設
けた89mmφの強化ガラス基板11上にRFマグネト
ロンスパッタ法で、基板温度350℃、アルゴンガス圧
1mTorr、投入電力3W/cm2で膜厚250nm
のCr非磁性下地層12,12’、膜厚50nmのCo
0.87Cr0.10Ta0.03磁性層13,13’
を形成した後、Ti0.5C0.5保護被覆層14,1
4’をDCマグネトロンスパッタ法で、基板温度250
℃、アルゴンガス圧5mTorr、投入電力10W/c
m2で30nm形成し、末端にベンゼン環を含む吸着基
を有するパ−フルオロアルキルポリエ−テル系潤滑層を
5nm設けて磁気ディスクとした。
Comparative Example 2 Next, another comparative example using the magnetic disk having the structure shown in FIG. 1 will be described. An 89 mm diameter tempered glass substrate 11 whose surface has been chemically etched to be roughly disordered and has unevenness of 5 nm in centerline average surface roughness is heated by RF magnetron sputtering at a substrate temperature of 350° C. and an argon gas pressure of 1 mTorr. Film thickness 250nm with power 3W/cm2
Cr nonmagnetic underlayers 12, 12', 50 nm thick Co
0.87Cr0.10Ta0.03 magnetic layer 13, 13'
After forming Ti0.5C0.5 protective coating layer 14,1
4' by DC magnetron sputtering at a substrate temperature of 250
°C, argon gas pressure 5mTorr, input power 10W/c
A magnetic disk was prepared by forming a 30 nm thick perfluoroalkyl polyether lubricant layer having a benzene ring-containing adsorption group at the end.

【0021】上記実施例2〜4、比較例1,2の磁気デ
ィスクについてCSSにより耐摺動性を評価した。結果
を表1に示す。
The sliding resistance of the magnetic disks of Examples 2 to 4 and Comparative Examples 1 and 2 was evaluated by CSS. The results are shown in Table 1.

【0022】[0022]

【表1】[Table 1]

【0023】表1に示すように本実施例の磁気ディスク
の耐CSS特性は比較例のそれに比べて格段に優れ、良
好な耐摩耗性を示した。
As shown in Table 1, the CSS resistance of the magnetic disk of this example was much superior to that of the comparative example, and showed good wear resistance.

【0024】ここで、基板11にはNiPメッキAl合
金,強化ガラス,結晶化ガラス,プラスチック,セラミ
ックス,表面ガラスコ−トセラミックス等、非磁性下地
層12,12’にはCr,Mo,W,Cr−Ti,Cr
−Si,Cr−W等、磁性層13,13’にはCo−N
i,Co−Ni−Cr,Co−Ni−Zr,Co−Ni
−Pt,Co−Cr,Co−Cr−Ta,Co−Cr−
Pt等、保護被覆層14,14’にはカ−ボン、炭化物
、窒化物、酸化物、硼化物等を用いることができ、いず
れの組合せでも同様の効果が得られる。吸着性の有機系
潤滑剤層をさらにこの上に設けると耐摺動性が著しく向
上するので好ましい。
Here, the substrate 11 is made of NiP-plated Al alloy, tempered glass, crystallized glass, plastic, ceramics, surface glass coated ceramics, etc., and the non-magnetic underlayers 12 and 12' are made of Cr, Mo, W, Cr, etc. -Ti, Cr
-Si, Cr-W, etc., and Co-N for the magnetic layers 13 and 13'.
i, Co-Ni-Cr, Co-Ni-Zr, Co-Ni
-Pt, Co-Cr, Co-Cr-Ta, Co-Cr-
Carbon, carbide, nitride, oxide, boride, etc., such as Pt, can be used for the protective coating layers 14, 14', and similar effects can be obtained with any combination. It is preferable to further provide an adsorbent organic lubricant layer thereon, since this significantly improves the sliding resistance.

【0025】実施例5 上記実施例2の磁気ディスクを2,4ないし8枚用い、
CoTaZr,FeAlSi合金等をギャップ部に設け
、コア部を多結晶もしくは単結晶のフェライトとしたメ
タルインギャップ型磁気ヘッド、もしくはNiFe,C
oFe,CoTaZr合金等を磁極材とし、コア部をジ
ルコニアを主たる成分とする非磁性材料とした薄膜磁気
ヘッドと組み合わせて磁気ディスク装置を作製した。 エラ−が生じるまでの平均装置寿命を求めたが、いずれ
も従来の磁気ディスクを用いた装置に比べ2〜10倍以
上の寿命となり、高い信頼性が得られた。磁気コアをフ
ェライトとした場合には、単結晶のフェライトを用いた
ときに特に優れた特性が得られた。従来のMn−Znフ
ェライトリングヘッドと組み合わせた磁気ディスク装置
に比べて、トラック幅方向の余分な情報を消去する能力
が高いため、本発明より成る磁気ディスク装置は位相マ
−ジンが広く、記憶容量を1.5倍以上高めることがで
きた。
Example 5 Using 2, 4 to 8 magnetic disks of Example 2,
A metal-in-gap magnetic head in which CoTaZr, FeAlSi alloy, etc. is provided in the gap part and the core part is made of polycrystalline or single crystal ferrite, or NiFe, C
A magnetic disk device was manufactured by combining a thin film magnetic head with a magnetic pole material made of oFe, CoTaZr alloy, etc. and a core made of a nonmagnetic material containing zirconia as a main component. The average device lifespan until an error occurred was determined, and in all cases the lifespan was 2 to 10 times longer than that of devices using conventional magnetic disks, and high reliability was obtained. When the magnetic core was made of ferrite, particularly excellent characteristics were obtained when single crystal ferrite was used. Compared to a magnetic disk device combined with a conventional Mn-Zn ferrite ring head, the ability to erase unnecessary information in the track width direction is higher, so the magnetic disk device of the present invention has a wider phase margin and a higher storage capacity. We were able to increase this by more than 1.5 times.

【0026】[0026]

【発明の効果】本発明の保護被覆層を設けた磁気記録媒
体は耐摺動性に優れるため、高密度記録に適し、実用に
十分な耐摺動性を持つ磁気記録媒体および磁気記憶装置
が得られる。
Effects of the Invention: The magnetic recording medium provided with the protective coating layer of the present invention has excellent sliding resistance, making it suitable for high-density recording, and magnetic recording media and magnetic storage devices having sufficient sliding resistance for practical use. can get.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の実施例1における磁気ディスクの断面
図である。
FIG. 1 is a sectional view of a magnetic disk in Example 1 of the present invention.

【図2】保護被覆層中の残留内部応力の絶対値と耐摺動
性の関係を示す図である。
FIG. 2 is a diagram showing the relationship between the absolute value of residual internal stress in a protective coating layer and sliding resistance.

【符号の説明】[Explanation of symbols]

11…基板、12,12’…非磁性下地層、13,13
’…磁性層、14,14’…保護被覆層。
11...Substrate, 12, 12'...Nonmagnetic underlayer, 13, 13
'...Magnetic layer, 14,14'...Protective coating layer.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】磁性層上に少なくとも1層の保護被覆層を
有する磁気記録媒体において、該保護被覆層中に残留す
る内部応力の絶対値が1GPa以下であることを特徴と
する磁気記録媒体。
1. A magnetic recording medium having at least one protective coating layer on a magnetic layer, wherein the absolute value of internal stress remaining in the protective coating layer is 1 GPa or less.
【請求項2】上記保護被覆層上に少なくとも1つの吸着
性末端基を有する潤滑剤層が存在する請求項1に記載の
磁気記録媒体。
2. The magnetic recording medium of claim 1, wherein a lubricant layer having at least one adsorbent end group is present on the protective coating layer.
【請求項3】保護被覆層中に残留する内部応力の絶対値
が0.5GPa以下である請求項1または2に記載の磁
気記録媒体。
3. The magnetic recording medium according to claim 1, wherein the absolute value of internal stress remaining in the protective coating layer is 0.5 GPa or less.
【請求項4】保護被覆層中に残留する内部応力の絶対値
が0.3GPa以下である請求項3に記載の磁気記録媒
体。
4. The magnetic recording medium according to claim 3, wherein the absolute value of internal stress remaining in the protective coating layer is 0.3 GPa or less.
【請求項5】上記保護被覆層の膜厚は3nm以上60n
m以下である請求項1乃至4のいずれかに記載の磁気記
録媒体。
5. The thickness of the protective coating layer is 3 nm or more and 60 nm.
5. The magnetic recording medium according to claim 1, wherein the magnetic recording medium is less than or equal to m.
【請求項6】上記保護被覆層の膜厚は3nm以上40n
m以下である請求項5に記載の磁気記録媒体。
6. The protective coating layer has a thickness of 3 nm or more and 40 nm.
The magnetic recording medium according to claim 5, wherein the magnetic recording medium is less than or equal to m.
【請求項7】上記保護被覆層の膜厚は5nm以上30n
m以下である請求項6に記載の磁気記録媒体。
7. The thickness of the protective coating layer is 5 nm or more and 30 nm.
7. The magnetic recording medium according to claim 6, wherein the magnetic recording medium is less than or equal to m.
【請求項8】請求項1ないし請求項7のいずれかに記載
の磁気記録媒体を少なくとも1つ有する磁気記録媒体と
金属磁性合金を少なくとも磁気コアの一部として含む磁
気ヘッドとを少なくとも有することを特徴とする磁気記
憶装置。
8. A magnetic recording medium comprising at least one magnetic recording medium according to any one of claims 1 to 7, and a magnetic head containing a metal magnetic alloy as at least a part of the magnetic core. Features of magnetic storage device.
【請求項9】上記磁気ヘッドのコア材が実質的にジルコ
ニアもしくはフェライトを主たる成分とすることを特徴
とする請求項8に記載の磁気記憶装置。
9. The magnetic storage device according to claim 8, wherein the core material of the magnetic head consists essentially of zirconia or ferrite.
JP4160891A 1991-03-07 1991-03-07 Magnetic recording medium and magnetic memory device Pending JPH04278219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4160891A JPH04278219A (en) 1991-03-07 1991-03-07 Magnetic recording medium and magnetic memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4160891A JPH04278219A (en) 1991-03-07 1991-03-07 Magnetic recording medium and magnetic memory device

Publications (1)

Publication Number Publication Date
JPH04278219A true JPH04278219A (en) 1992-10-02

Family

ID=12613074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4160891A Pending JPH04278219A (en) 1991-03-07 1991-03-07 Magnetic recording medium and magnetic memory device

Country Status (1)

Country Link
JP (1) JPH04278219A (en)

Similar Documents

Publication Publication Date Title
US5750230A (en) Magnetic recording media and magnetic recording system using the same
JP3803180B2 (en) Magnetic recording medium, method for manufacturing the same, and magnetic disk drive
JP2003346317A (en) Perpendicular magnetic recording medium
JPH0916941A (en) Magnetic recording medium and manufacture
US6238780B1 (en) Magnetic recording medium comprising multilayered carbon-containing protective overcoats
JPH11339240A (en) Magnetic recording medium and magnetic disk device
JPH10228620A (en) Perpendicular magnetic recording medium
JP2003346318A (en) Magnetic recording medium
JP3564707B2 (en) Magnetic recording media
JP3657196B2 (en) Magnetic recording medium and magnetic disk device
JP2594534B2 (en) Magnetic storage
JPH04278219A (en) Magnetic recording medium and magnetic memory device
JP3705474B2 (en) Magnetic recording medium
JPH0773433A (en) Magnetic recording medium, its production and magnetic recorder
JP2002324313A (en) Manufacturing method of magnetic recording medium
JP4523705B2 (en) Magnetic recording medium, magnetic recording medium manufacturing method, and information reproducing apparatus
JP2000123345A (en) Magnetic recording medium and magnetic disk device
JP3479529B2 (en) Magnetic recording medium, method of manufacturing the same, and magnetic storage device
US20060019125A1 (en) Magnetic recording medium and production method thereof as well as magnetic disc device
JPH05258288A (en) Magnetic recording medium and magnetic recording device
JPH0737237A (en) Magnetic recording medium and its production and magnetic recorder
JP2000348334A (en) Magnetic recording medium and magnetic disk device
JP2861081B2 (en) Magnetic recording media
KR20020009629A (en) Magnetic recording medium, method of manufacture thereof, and magnetic disk device
JP2861150B2 (en) Magnetic recording media