JPH04277A - Ultrasonic motor - Google Patents

Ultrasonic motor

Info

Publication number
JPH04277A
JPH04277A JP9098112A JP9811290A JPH04277A JP H04277 A JPH04277 A JP H04277A JP 9098112 A JP9098112 A JP 9098112A JP 9811290 A JP9811290 A JP 9811290A JP H04277 A JPH04277 A JP H04277A
Authority
JP
Japan
Prior art keywords
sec
longitudinal
torsional
ultrasonic motor
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9098112A
Other languages
Japanese (ja)
Other versions
JP2536661B2 (en
Inventor
Osamu Myoga
修 冥加
Takeshi Inoue
武志 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP2098112A priority Critical patent/JP2536661B2/en
Publication of JPH04277A publication Critical patent/JPH04277A/en
Application granted granted Critical
Publication of JP2536661B2 publication Critical patent/JP2536661B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a high efficiency and a high torque by driving the title motor so that a longitudinal resonance frequency coincides perfectly with the torsional resonance frequency upon high field driving. CONSTITUTION:The stator of an ultrasonic motor is constituted of a composite longitudinal and torsional oscillator, in which respective members arranged in the sequence of a head mass 12a, a longitudinal oscillation driving piezoelectric element 10, first and second ring members, a torsional oscillation driving piezo-electric element 11 and a rear mass 13 are clamped by a nut 14 and a bolt 15. The first ring member on the side of the longitudinal oscillation driving piezo-electric element 10 is designated so that the product of the density thereof by the speed of sound is higher than 27.28kg/ m<2>.sec and lower than 50.66kg/m<2>.sec while the second ring member on the side of the torsional oscillation driving piezo-electric element 11 is designated so that the product of the density thereof by the speed of sound is higher than 18.71kg/m<2>.sec and lower than 34.75kg/m<2>.sec. The rear mass 13 is designed so that the product of the density thereof and the speed of sound is higher than 18.71kg/m<2>.sec and lower than 34.75kg/m<2>.sec. The node of the longitudinal and torsional oscillation can be positioned at the center of the longitudinal oscillation driving piezo-electric element whereby the resonance frequency of respective members can be designed so as to coincide.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、回転トルクの発生源として、縦・捩り複合振
動子をステータとする超音波モータの改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an improvement in an ultrasonic motor that uses a longitudinal/torsional composite vibrator as a stator as a source of rotational torque.

(従来の技術) 縦・捩り複合振動子をステータとする従来の超音波モー
タは、ステンレス鋼製リング、縦振動駆動用圧電素子、
支持具、捩り振動駆動用圧電素子、ステンレス鋼製リア
マスの順で配置された部材を前記ステンレス鋼製リング
と当接する側に配置したアルミニュウム合金製ヘッドマ
スと該リアマスと当接する側に配置したステンレス鋼製
ナツトでボルトを介して締め付ける構成の縦・捩り複合
振動子をステータとして使用しており、ステータ全長に
縦及び捩り振動駆動用圧電素子の長さ比が大きい。
(Prior technology) A conventional ultrasonic motor that uses a vertical/torsional compound vibrator as a stator has a stainless steel ring, a piezoelectric element for driving longitudinal vibration,
A support, a piezoelectric element for driving torsional vibration, and a stainless steel rear mass are arranged in this order, and an aluminum alloy head mass is arranged on the side that comes into contact with the stainless steel ring, and a stainless steel head mass is arranged on the side that comes into contact with the rear mass. A vertical and torsional composite vibrator that is tightened with a bolt made of nuts is used as the stator, and the length ratio of the piezoelectric element for driving the vertical and torsional vibrations to the total length of the stator is large.

また、縦及び捩り振動用圧電素子は駆動圧電を低くする
ために薄いリング状圧電セラミックを積層して製作され
ている。
Further, piezoelectric elements for vertical and torsional vibration are manufactured by laminating thin ring-shaped piezoelectric ceramics in order to lower the driving piezoelectricity.

(発明が解決しようとする課題) 縦及び捩り振動は各々の節の位置で歪が最大であり、縦
及び捩り振動駆動用圧電素子は各々の振動の節の位置に
配置されることが望ましい。節の位置から離れて配置さ
れた圧電素子はステータを効率よく励振することができ
ない。またリング状圧電セラミックの積層数を多くし、
各圧電セラミックを電気的に並列に接続した縦及び捩り
駆動用圧電素子は電気的なインピーダンスが小さくなる
(Problems to be Solved by the Invention) In longitudinal and torsional vibration, the strain is maximum at each node position, and it is desirable that the piezoelectric element for driving longitudinal and torsional vibrations be arranged at each vibration node position. A piezoelectric element located far from the node position cannot efficiently excite the stator. In addition, the number of laminated ring-shaped piezoelectric ceramics is increased,
A piezoelectric element for vertical and torsional driving in which piezoelectric ceramics are electrically connected in parallel has a small electrical impedance.

従って、上記従来の超音波モータは圧電素子の材料費及
び製造費の占める割合が大きく、高価な超音波モータと
なる。また、必要以上に電流が流入して消費電力が大き
くなる。以上の問題点は超音波モータの低価格化及び高
効率化のために解決すべき重要な課題である。
Therefore, in the conventional ultrasonic motor described above, the material cost and manufacturing cost of the piezoelectric element account for a large proportion, resulting in an expensive ultrasonic motor. Furthermore, more current flows than necessary, increasing power consumption. The above problems are important issues to be solved in order to reduce the cost and increase the efficiency of ultrasonic motors.

縦、捩り複合振動子をステータとする超音波モータは、
モータ効率を高めるために、縦及び捩り振動の共振周波
数を一致させ、更に縦振動の節及び捩り振動の節を各々
縦振動用圧電素子及び捩り振動用圧電素子の長手方向の
中央部に位置するように構成されている。上記問題点を
解決するために、従来の超音波モータに配置されている
縦及び捩り振動駆動用圧電素子の長さを短くして各々の
振動の節を圧電セラミック素子の中央部に位置させると
、縦振動の位相速度が捩りの位相速度の1.6倍はど大
きいために共振周波数を一致させることは不可能である
The ultrasonic motor uses a vertical and torsional compound vibrator as a stator.
In order to increase motor efficiency, the resonant frequencies of longitudinal and torsional vibrations are matched, and the nodes of longitudinal vibration and torsional vibration are located in the longitudinal center of the piezoelectric element for longitudinal vibration and the piezoelectric element for torsional vibration, respectively. It is configured as follows. In order to solve the above problems, the length of the piezoelectric element for driving vertical and torsional vibrations arranged in a conventional ultrasonic motor is shortened, and each vibration node is positioned in the center of the piezoelectric ceramic element. , it is impossible to match the resonance frequencies because the phase velocity of longitudinal vibration is 1.6 times larger than the phase velocity of torsion.

(課題を解決するための手段) 本発明は、ヘッドマス、縦振動駆動用圧電素子、第1お
よび第2のリング部材、捩り振動駆動用圧電素子、リア
マスの順で配置された各部材をナツトとボルトで締め付
ける構成の縦・捩り複合振動子をステータとする超音波
モータであって、縦振動駆動用圧電素子側の第1リング
部材は密度と音速の積が27.28kg/m2・sec
以上で50.66kg/m2・sec以下であり、捩り
振動駆動用圧電素子側の第2のリング部材の密度と音速
の積は18.71kg/m2・SeC以上で34.75
kg/m2・sec以下であり、リアマスの密度と音速
の積は18.71kg/m2・sec以上で34.75
kg/m2−sec以下であることを特徴とする超音波
モータである。縦及び捩り振動の節を縦及び振動駆動用
圧電素子の中央部に位置することができ、各々の共振周
波数を一致させることが出来る。
(Means for Solving the Problems) The present invention provides a head mass, a piezoelectric element for longitudinal vibration drive, first and second ring members, a piezoelectric element for torsional vibration drive, and a rear mass, which are arranged in the order of a nut. This is an ultrasonic motor whose stator is a longitudinal/torsional compound vibrator that is tightened with bolts, and the first ring member on the side of the piezoelectric element for driving longitudinal vibration has a product of density and sound speed of 27.28 kg/m2・sec.
The above is 50.66 kg/m2・sec or less, and the product of the density of the second ring member on the side of the piezoelectric element for torsional vibration drive and the sound speed is 34.75 at 18.71 kg/m2・SeC or more.
kg/m2・sec or less, and the product of rear mass density and sound speed is 34.75 at 18.71 kg/m2・sec or more.
The ultrasonic motor is characterized in that it is less than kg/m2-sec. The vertical and torsional vibration nodes can be located at the center of the vertical and vibration driving piezoelectric elements, and their respective resonance frequencies can be matched.

従来の超音波モータは、捩り振動の共振周波数の方が縦
振動の共振周波数より高く、ロータとステータの圧接力
に対して捩り振動の共振周波数は僅かに増加して飽和し
、縦振動の共振周波数は著しく増加して捩り振動の共振
周波数に接近し、圧接力を更に増加させると各々の共振
周波数が一致する。しかし、圧接力がかなり大きいと振
動振幅が抑制され、超音波モータは回転しなくなる。従
って、程々の圧接力で縦及び捩り振動の共振周波数を一
致させる必要がある。
In conventional ultrasonic motors, the resonant frequency of torsional vibration is higher than the resonant frequency of longitudinal vibration, and the resonant frequency of torsional vibration slightly increases and becomes saturated with the pressure contact force between the rotor and stator, and the resonance frequency of longitudinal vibration increases. The frequency increases significantly and approaches the resonant frequency of torsional vibration, and when the pressure contact force is further increased, the respective resonant frequencies match. However, if the pressure contact force is considerably large, the vibration amplitude is suppressed and the ultrasonic motor stops rotating. Therefore, it is necessary to match the resonance frequencies of the longitudinal and torsional vibrations with a moderate contact force.

次に部材の材質を限定した理由を説明する。Next, the reason for limiting the materials of the members will be explained.

縦及び捩り振動の共振周波数を一致させるためには、捩
り振動の共振周波数を減少させるか、縦振動の共振周波
数を増加させるかの2通りの方法がある。縦振動の共振
周波数を増加させるには、ヘッドマスの材質をステンレ
ス鋼のような密度と音速の積(pc積)の大きい材料に
すればよいが、振動振幅が小さくなると言う欠点がある
。従って、リアマスの材質を選択する方が適当である。
In order to match the resonance frequencies of longitudinal and torsional vibrations, there are two methods: decreasing the resonance frequency of torsional vibrations or increasing the resonance frequencies of longitudinal vibrations. In order to increase the resonance frequency of longitudinal vibration, the material of the head mass can be made of a material with a large density-sound velocity product (pc product), such as stainless steel, but this has the disadvantage that the vibration amplitude becomes small. Therefore, it is more appropriate to select the material for the rear mass.

捩り振動の共振周波数を減少させるには、リアマスの材
質をpc積の小さい材料にすればよい。しかし、pC積
が18.71kg/m2・secを下回わる材料では縦
振動と捩り振動の共振周波数が一致する圧接力が著しく
低くなり、34.75kg/m2・secを上回る材料
では縦振動と捩り振動の共振周波数が一致する圧接力が
著しく高くなる。捩り振動駆動用圧電素子側に配置する
リング材質もリアマスの場合と同様である。縦振動駆動
用圧電素子側に配置するリング材質のpc積が27.2
8kg/m2・secを下回る材料では縦振動と捩り振
動の共振周波数が一致する圧接力が著しく低くなり、5
0.66kg/m2・secを上回る材料では縦振動と
捩り振動の共振周波数が一致する圧接力が著しく高くな
る。
In order to reduce the resonance frequency of torsional vibration, the rear mass may be made of a material with a small pc product. However, for materials whose pC product is less than 18.71 kg/m2・sec, the contact force at which the resonance frequencies of longitudinal vibration and torsional vibration coincide will be significantly lower, and for materials whose pC product is greater than 34.75 kg/m2・sec, longitudinal vibration and When the resonance frequencies of torsional vibrations match, the contact force increases significantly. The material of the ring disposed on the side of the torsional vibration driving piezoelectric element is also the same as that of the rear mass. The pc product of the ring material placed on the side of the piezoelectric element for longitudinal vibration drive is 27.2.
For materials below 8 kg/m2・sec, the pressure welding force at which the resonance frequencies of longitudinal vibration and torsional vibration match becomes significantly lower, and 5
For materials exceeding 0.66 kg/m2·sec, the pressure contact force at which the resonance frequencies of longitudinal vibration and torsional vibration coincide becomes significantly high.

(実施例) 以下、本発明に基づく超音波モータの実施例を図面に従
って説明する。
(Example) Hereinafter, an example of an ultrasonic motor based on the present invention will be described with reference to the drawings.

第1図に示す本発明に基づいて製作された超音波モータ
は、全長が45.15mmである。ヘッドマス12aは
アルミニュウム合金製で直径12mm、長さ7mmであ
る。ヘッドマス12bはステンレス鋼製で直径13mm
、長さ3mmのリング、ボルト15はステンレス鋼製で
直径4mm、長さ25.1mmであり、ヘッドマス12
aに一体化されている。縦振動駆動用圧電素子10は厚
さ1mmで直径12mmのリングを2枚接着して構成し
ている。捩り振動駆動用圧電素子11は厚さ1mmで直
径12mmのリングを2枚接着して構成している。縦振
動駆動用圧電素子10と捩り振動駆動用圧電素子11の
間の縦振動駆動用圧電素子10側にステンレス鋼(pc
積38.97kg/m2・5ee)製の直径12mm、
長さ2.9mmの中間シリンダ16a、捩り振動駆動用
圧電素子2側に真鋳(pc積26.73kg/m2・5
ee)製の直径12mm。
The ultrasonic motor manufactured according to the present invention shown in FIG. 1 has a total length of 45.15 mm. The head mass 12a is made of aluminum alloy and has a diameter of 12 mm and a length of 7 mm. The head mass 12b is made of stainless steel and has a diameter of 13 mm.
, a ring with a length of 3 mm, and a bolt 15 made of stainless steel with a diameter of 4 mm and a length of 25.1 mm, and a head mass 12.
It is integrated into a. The vertical vibration driving piezoelectric element 10 is constructed by bonding two rings each having a thickness of 1 mm and a diameter of 12 mm. The torsional vibration driving piezoelectric element 11 is constructed by bonding two rings each having a thickness of 1 mm and a diameter of 12 mm. Stainless steel (PC
38.97kg/m2・5ee) diameter 12mm,
The intermediate cylinder 16a with a length of 2.9 mm is made of brass (pc area: 26.73 kg/m2・5
ee) diameter 12mm.

長さ2.9mmの中間シリンダ16bを配置し、該中間
シリンダの間に0.5厚さのステンレ鋼製支持具17を
挾んで、これらの部材をヘッドマス3aと直径12mm
、長さ11.5mmの真鋳(pc積26.73kg/m
2・5ec)製リアマス13で挟み、ステンレス鋼製ナ
ツト14で強固に締め付けられている。以上の構成のス
テータに直径12mm、高さ10mmのロータ18がヘ
ッドマス12aに一体になっているシャフトを中心とし
て回転するように、ベアリングを介してスプリングでロ
ータ18をステータに圧接している。
An intermediate cylinder 16b with a length of 2.9 mm is arranged, a stainless steel support 17 with a thickness of 0.5 is sandwiched between the intermediate cylinders, and these members are connected to the head mass 3a with a diameter of 12 mm.
, length 11.5mm brass casting (pc area 26.73kg/m
It is sandwiched between rear masses 13 made of 2.5ec) and firmly tightened with nuts 14 made of stainless steel. The rotor 18, which has a diameter of 12 mm and a height of 10 mm, is pressed against the stator with a spring via a bearing so that the rotor 18 rotates around a shaft integrated with the head mass 12a.

本発明の超音波モータの縦振動及び捩り振動駆動用圧電
素子に、機械振動の位相差が90度になるように同時に
各々実効値で50Mを印加し、周波数特性を測定した。
An effective value of 50 M was simultaneously applied to the piezoelectric elements for driving longitudinal vibration and torsional vibration of the ultrasonic motor of the present invention so that the phase difference of mechanical vibration was 90 degrees, and frequency characteristics were measured.

ロータとステータの圧接力を変化させた場合の各々の共
振周波数をプロットすると第2図に示す結果が得られた
。その結果、本発明の超音波モータは、圧接力20kg
fで縦及び捩り振動の共振周波数が一致した。この超音
波モータの圧接力、駆動周波数及び縦と捩り振動駆動用
圧電素子に印加する電圧の位相差をロータ回転数が最大
になるように調節し、回転数−トルク特性及び効率を測
定すると、第3図に示す性能が得られた。
When the respective resonance frequencies were plotted when the contact force between the rotor and stator was changed, the results shown in FIG. 2 were obtained. As a result, the ultrasonic motor of the present invention has a pressure contact force of 20 kg.
The resonance frequencies of the longitudinal and torsional vibrations matched at f. The pressure contact force, drive frequency, and phase difference between the voltages applied to the vertical and torsional vibration drive piezoelectric elements of this ultrasonic motor are adjusted so that the rotor rotation speed is maximized, and the rotation speed-torque characteristics and efficiency are measured. The performance shown in FIG. 3 was obtained.

第4図に示す従来の超音波モータは、全長が37.3m
mである。ヘッドマス12aはアルミニュウム合金製で
直径12mm、長さ7mmである。ヘッドマス12bは
ステンレス鋼製で直径13mm、長さ3mmのリング、
ボルト15はステンレス鋼製で直径4mm、長さ18.
3mmであり、ヘッドマス12aに一体化されている。
The conventional ultrasonic motor shown in Figure 4 has a total length of 37.3 m.
It is m. The head mass 12a is made of aluminum alloy and has a diameter of 12 mm and a length of 7 mm. The head mass 12b is made of stainless steel and has a diameter of 13 mm and a length of 3 mm.
The bolt 15 is made of stainless steel and has a diameter of 4 mm and a length of 18.
3 mm, and is integrated into the head mass 12a.

縦振動駆動用圧電素子10は厚さ1mmで直径12mm
のリングを4枚接着して構成している。捩り振動駆動用
圧電素子11は厚さ1mmで直径12mmのリングを4
枚接着して構成している。縦振動駆動用圧電素子10と
捩り振動駆動用圧電素子11の間に0.5厚さステンレ
ス鋼製支持具17を挾み、これら部材をヘッドマス12
aと直径12mm、長さ1mmのステンレス鋼製リアマ
ス13で挾み、ナツト14で強固に締め付けられている
。以上の構成のステータに直径12mm、高さ10mm
のロータ18がヘッドマス12aに一体になっているシ
ャフトを中心として回転するように、ベアリングを介し
てスプリングでロータ18をステータに圧接している。
The vertical vibration driving piezoelectric element 10 has a thickness of 1 mm and a diameter of 12 mm.
It is made up of four rings glued together. The piezoelectric element 11 for torsional vibration drive consists of four rings each having a thickness of 1 mm and a diameter of 12 mm.
It is made up of two pieces glued together. A stainless steel support 17 with a thickness of 0.5 is sandwiched between the piezoelectric element 10 for longitudinal vibration drive and the piezoelectric element 11 for torsional vibration drive, and these members are connected to the head mass 12.
a and a stainless steel rear mass 13 with a diameter of 12 mm and a length of 1 mm, and is firmly tightened with a nut 14. The stator with the above configuration has a diameter of 12 mm and a height of 10 mm.
The rotor 18 is pressed against the stator by a spring via a bearing so that the rotor 18 rotates around a shaft integrated with the head mass 12a.

従来の超音波モータの縦振動及び捩り振動駆動用圧電素
子に、機械振動の位相差が90度になるように同時に各
々実効値で50(V)を印加し、周波数特性を測定した
。ロータとステータの圧接力を変化させた場合の各々の
共振周波数をプロットすると第5図に示す結果が得られ
た。その結果、従来の超音波モータは、圧接力23kg
fで縦及び捩り振動の共振周波数が一致した。この超音
波モータの圧接力、駆動周波数、縦及び捩り振動駆動用
圧電素子に印加する電圧の位相差をロータ回転数が最大
になるように調節し、回転数−トルク特性及び効率を測
定すると、第6図に示すように本発明に比べて大幅に劣
った性能しか得られなかった。
An effective value of 50 (V) was simultaneously applied to piezoelectric elements for driving longitudinal vibration and torsional vibration of a conventional ultrasonic motor so that the phase difference of mechanical vibration was 90 degrees, and frequency characteristics were measured. When the respective resonance frequencies were plotted when the pressure contact force between the rotor and the stator was changed, the results shown in FIG. 5 were obtained. As a result, the conventional ultrasonic motor has a pressure force of 23 kg.
The resonance frequencies of the longitudinal and torsional vibrations matched at f. When the pressure contact force, drive frequency, and phase difference of the voltages applied to the vertical and torsional vibration drive piezoelectric elements of this ultrasonic motor are adjusted so that the rotor rotational speed is maximized, and the rotational speed-torque characteristics and efficiency are measured, As shown in FIG. 6, performance was significantly inferior to that of the present invention.

また本発明の構成でpc積が18.71kg1m2・s
ec下回る金属材料を中間シリンダ16b及びリアマス
として使用した場合、低圧接力条件下で縦振動の共振周
波数の方が捩り振動の共振周波数より高くなってしまっ
た。pc積が34.75kg/m2・secを上回る金
属材料を中間シリンダ16b及びリアマスを使用した場
合、従来の超音波モータより高圧接力条件下でしか縦及
び捩り振動の共振周波数が一致しなかった。さらに、p
C積が27.28kg/m2・secを下回る金属材料
を中間シリンダ16aとして使用した場合、低圧接力条
件下で縦振動の共振周波数の方が捩り振動の共振周波数
より高くなってしまった。pc積が50.66kg/m
2・secを上回る金属材料を中間シリンダ16bとし
て使用した場合、従来の超音波モータより高圧接力条件
下でしか縦及び捩り振動の共振周波数が一致しなかった
Also, with the configuration of the present invention, the pc product is 18.71 kg1m2・s
When a metal material below ec was used for the intermediate cylinder 16b and the rear mass, the resonance frequency of longitudinal vibration became higher than the resonance frequency of torsional vibration under low pressure contact force conditions. When the intermediate cylinder 16b and the rear mass were made of a metal material with a pc product exceeding 34.75 kg/m2·sec, the resonance frequencies of longitudinal and torsional vibrations matched only under conditions of higher contact force than in a conventional ultrasonic motor. Furthermore, p
When a metal material with a C product of less than 27.28 kg/m2·sec was used as the intermediate cylinder 16a, the resonance frequency of longitudinal vibration became higher than the resonance frequency of torsional vibration under low contact force conditions. PC product is 50.66kg/m
When a metal material with a vibration resistance exceeding 2.sec was used as the intermediate cylinder 16b, the resonance frequencies of the longitudinal and torsional vibrations matched only under conditions of a higher pressure contact force than in the conventional ultrasonic motor.

(発明の効果) 以上詳述した如く、本発明に従った構成の超音波モータ
は高電界駆動時において、縦と捩りの共振周波数を完全
に一致させることができ、僅かな消費電力でステータと
ロータの界面に大振幅の楕円振動を発生させることがで
き、高効率、高トルクの超音波モータを実現することが
出来る。従って、本発明に基づく超音波モータの技術的
有用性は計り知れないほど大きく、応用技術、派生技術
の広さも予測しきれないものがある。
(Effects of the Invention) As detailed above, the ultrasonic motor configured according to the present invention can perfectly match the longitudinal and torsional resonance frequencies during high electric field driving, and can synchronize the stator with low power consumption. Large-amplitude elliptical vibration can be generated at the rotor interface, making it possible to realize a high-efficiency, high-torque ultrasonic motor. Therefore, the technical usefulness of the ultrasonic motor based on the present invention is immeasurably large, and the range of applied and derived technologies cannot be predicted.

【図面の簡単な説明】 第1図は本発明の超音波モータの断面図、第2図は実施
例に使用した本発明の超音波モータの共振周波数−圧接
力特性図、第3図は実施例に使用した本発明の超音波モ
ータのモータ特性図、第4図は従来の超音波モータの断
面図、第5図は実施例に使用した従来の超音波モータの
共振周波数−圧接力特性図、第6図は実施例に使用した
従来の超音波モータのモータ特性図を示す。 図において、10・・・縦振動駆動用圧電素子、11−
0.捩り振動駆動用圧電素子、12a・・・アルミニュ
ウム合金製へラドマス、12b・・・ステンレス鋼製ヘ
ッドマスリング、1300.真鋳製リアマス、14・・
・ナンド、15・・・ボルト、16a、 16b・・・
真鋳製中間シリンダー、17・・・支持具、18・・・
ロータを示す。
[Brief Description of the Drawings] Fig. 1 is a cross-sectional view of the ultrasonic motor of the present invention, Fig. 2 is a resonant frequency-pressing force characteristic diagram of the ultrasonic motor of the present invention used in an example, and Fig. 3 is a diagram of an embodiment of the ultrasonic motor. A motor characteristic diagram of the ultrasonic motor of the present invention used in the example, FIG. 4 is a sectional view of a conventional ultrasonic motor, and FIG. 5 is a resonance frequency-pressing force characteristic diagram of the conventional ultrasonic motor used in the example. , FIG. 6 shows a motor characteristic diagram of the conventional ultrasonic motor used in the example. In the figure, 10... piezoelectric element for longitudinal vibration drive, 11-
0. Piezoelectric element for torsional vibration drive, 12a...Aluminum alloy helad mass, 12b...Stainless steel head mass ring, 1300. Brass rear mass, 14...
・Nando, 15... Bolt, 16a, 16b...
Brass intermediate cylinder, 17... Support, 18...
The rotor is shown.

Claims (1)

【特許請求の範囲】  ヘッドマス、縦振動駆動用圧電素子、第1および第2
のリング部材、捩り振動駆動用圧電素子、リアマスの順
で配置された各部材をナットとボルトで締め付ける構成
の縦・捩り複合振動子をステータとする超音波モータで
あって、縦振動駆動用圧電素子側の第1リング部材は密
度と音速の積が 27.28kg/m^2・sec以上で50.66kg
/m^2・sec以下であり、捩り振動駆動用圧電素子
側の第2のリング部材の密度と音速の積は18.71k
g/m^2・sec以上で34.75kg/m^2・s
ec以下であり、リアマスの密度と音速の積は 18.71kg/m^2・sec以上で34.75kg
/m^2・sec以下であることを特徴とする超音波モ
ータ。
[Claims] Head mass, vertical vibration drive piezoelectric element, first and second
An ultrasonic motor whose stator is a vertical/torsional composite vibrator in which each member is arranged in the order of a ring member, a piezoelectric element for driving torsional vibration, and a rear mass, and is tightened with nuts and bolts. The first ring member on the element side is 50.66 kg when the product of density and sound speed is 27.28 kg/m^2・sec or more.
/m^2・sec or less, and the product of the density of the second ring member on the side of the piezoelectric element for torsional vibration drive and the speed of sound is 18.71k.
g/m^2・sec or more: 34.75kg/m^2・s
ec or less, and the product of rear mass density and sound speed is 34.75 kg at 18.71 kg/m^2・sec or more.
/m^2・sec or less.
JP2098112A 1990-04-13 1990-04-13 Ultrasonic motor Expired - Lifetime JP2536661B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2098112A JP2536661B2 (en) 1990-04-13 1990-04-13 Ultrasonic motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2098112A JP2536661B2 (en) 1990-04-13 1990-04-13 Ultrasonic motor

Publications (2)

Publication Number Publication Date
JPH04277A true JPH04277A (en) 1992-01-06
JP2536661B2 JP2536661B2 (en) 1996-09-18

Family

ID=14211241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2098112A Expired - Lifetime JP2536661B2 (en) 1990-04-13 1990-04-13 Ultrasonic motor

Country Status (1)

Country Link
JP (1) JP2536661B2 (en)

Also Published As

Publication number Publication date
JP2536661B2 (en) 1996-09-18

Similar Documents

Publication Publication Date Title
US5051647A (en) Ultrasonic motor
JP3823340B2 (en) Vibration motor
JPS61121777A (en) Piezoelectric supersonic motor
JPH04277A (en) Ultrasonic motor
JPH04278A (en) Ultrasonic motor
JPS62126874A (en) Ultrasonic vibrator and drive controlling method thereof
JPH044766A (en) Ultrasonic motor
JPH0514512B2 (en)
JPS62141980A (en) Ultrasonic vibrator and drive controlling method thereof
JP2615953B2 (en) Ultrasonic motor and its driving method
JPH03284176A (en) Ultrasonic motor
JPH0150196B2 (en)
JP2897259B2 (en) Ultrasonic motor
JP2814583B2 (en) Ultrasonic motor
JPH0522966A (en) Ultrasonic motor
JP2703927B2 (en) Driving method of ultrasonic motor
JP2658233B2 (en) Ultrasonic motor and its driving method
JPH06113566A (en) Ultrasonic motor
JP2615892B2 (en) Ultrasonic motor and its driving method
JP2000069769A (en) Ultrasonic motor, stator and rotor thereof
JP2504197B2 (en) Ultrasonic motor
JPH0522961A (en) Ultrasonic motor
JPH03150080A (en) Ultrasonic motor
JP2003111452A (en) Ultrasonic motor and its stator
JPH03178579A (en) Ultrasonic wave motor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070708

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080708

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 14