JPH04277750A - Processing method for electrophotographic sensitive body - Google Patents

Processing method for electrophotographic sensitive body

Info

Publication number
JPH04277750A
JPH04277750A JP3998391A JP3998391A JPH04277750A JP H04277750 A JPH04277750 A JP H04277750A JP 3998391 A JP3998391 A JP 3998391A JP 3998391 A JP3998391 A JP 3998391A JP H04277750 A JPH04277750 A JP H04277750A
Authority
JP
Japan
Prior art keywords
sensitivity
photoreceptor
rays
irradiation
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3998391A
Other languages
Japanese (ja)
Inventor
Kenji Akami
研二 赤見
Soji Tsuchiya
土屋 宗次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3998391A priority Critical patent/JPH04277750A/en
Publication of JPH04277750A publication Critical patent/JPH04277750A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To improve the sensitivity, stabilization and printing resistance of the electrophotographic sensitive body to be used for printers and copying machines. CONSTITUTION:The org. photosensitive body of a single layer type or multilayered type of a separated function type is irradiated with X-rays or electron beams, by which the sensitivity, stability and printing resistance are improved. The irradiation effect is further improved by incorporating metals or metal oxides into this body in the case of irradiation with X-rays.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、帯電−露光−現像−除
電等のプロセスをとる電子写真感光体の光感度の向上を
可能とする電子写真感光体の処理方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for processing an electrophotographic photoreceptor, which makes it possible to improve the photosensitivity of the electrophotographic photoreceptor, which involves processes such as charging, exposure, development, and neutralization.

【0002】0002

【従来の技術】有機感光体(以下OPCと略す)は、無
機感光体に比べ分子設計により色々な波長に高感度を有
する材料を合成できること、無公害であること、生産性
、経済性に優れ、安価であること、等の特徴を有してお
り、現在活発な研究開発が行われている。そして、従来
、OPCの問題点とされていた耐久性や感度の面でも著
しい改良がなされ、そのいくつかは実用化に至っており
、現在、電子写真用感光体の主力となりつつある。
[Prior Art] Compared to inorganic photoreceptors, organic photoreceptors (hereinafter abbreviated as OPC) have the advantage of being able to synthesize materials with high sensitivity to various wavelengths through molecular design, being non-polluting, and being superior in productivity and economy. It has characteristics such as being inexpensive and is currently being actively researched and developed. Significant improvements have also been made in terms of durability and sensitivity, which were conventionally regarded as problems with OPC, and some of these improvements have been put into practical use, and are now becoming the mainstay of photoreceptors for electrophotography.

【0003】OPCは通常、光を吸収してキャリアを発
生させる電荷発生層(CGLと略す)と生成したキャリ
アを移動させる電荷移動層(CTLと略す)の2重層構
造で使用され、その高感度化が図られている。
[0003] OPC is usually used with a double layer structure consisting of a charge generation layer (abbreviated as CGL) that absorbs light and generates carriers and a charge transfer layer (abbreviated as CTL) that moves the generated carriers, and its high sensitivity The goal is to

【0004】CGLに使用される材料(CGMと略す)
としては、各種ペリレン系化合物、各種フタロシアニン
系化合物、チアピリリウム系化合物、アンスアンスロン
系化合物、スクアリリウム系化合物、ビスアゾ系化合物
、トリスアゾ顔料、アズレニウム色素、等のいろいろな
有機材料が検討されている。
Materials used in CGL (abbreviated as CGM)
Various organic materials such as various perylene compounds, various phthalocyanine compounds, thiapyrylium compounds, anthanthrone compounds, squarylium compounds, bisazo compounds, trisazo pigments, and azulenium dyes have been investigated.

【0005】一方、CTLに使用される材料(CTMと
略す)としては、各種ヒドラゾン系化合物、オキサゾー
ル系化合物、トリフェニルメタン系化合物、アリールア
ミン系化合物、等が開発されている。
On the other hand, various hydrazone compounds, oxazole compounds, triphenylmethane compounds, arylamine compounds, and the like have been developed as materials for use in CTL (abbreviated as CTM).

【0006】更に、近年はレーザープリンター等のデジ
タル記録用の感光体として、これらのOPCを半導体レ
ーザー光(780ー830nm)に対応した近赤外領域
で使用したい、と言う要望が高まり、この領域で高感度
な特性をもつOPCの開発が盛んである。
Furthermore, in recent years, there has been an increasing demand for the use of these OPCs in the near-infrared region, which corresponds to semiconductor laser light (780-830 nm), as photoreceptors for digital recording in laser printers and the like. The development of OPC with high sensitivity characteristics is active.

【0007】この様な領域の感光体として有機感光体は
無機感光体に比べ感度の点から有利である。これらの材
料は、バインダー高分子とともに比較的簡単な塗布法で
ドラムやベルト、等の基板上に形成される。この様な目
的に使用されるバインダー高分子としては、ポリエステ
ル樹脂、ポリカーボネート樹脂、アクリル樹脂、アクリ
ル−スチレン樹脂、等がある。
Organic photoreceptors are advantageous in terms of sensitivity than inorganic photoreceptors in such areas. These materials are formed on a substrate such as a drum or belt by a relatively simple coating method together with a binder polymer. Binder polymers used for this purpose include polyester resins, polycarbonate resins, acrylic resins, acrylic-styrene resins, and the like.

【0008】一般に、2重層構造では高感度化のために
CGL層は1ミクロン程度の厚さで塗布され、一方、C
TL層は10〜20ミクロンの厚さで塗布される。この
ときその強度、耐刷性、等の理由からCGL層は基板側
に、CTL層は表面側に形成されるのが普通である。こ
の様な構成においては、CTMが正孔の移動により作動
するもののみ実用化されているので、その2重層感光体
は負帯電方式となる。
Generally, in a double-layer structure, the CGL layer is coated to a thickness of about 1 micron to increase sensitivity;
The TL layer is applied at a thickness of 10-20 microns. At this time, for reasons such as strength and printing durability, the CGL layer is usually formed on the substrate side and the CTL layer is formed on the surface side. In such a structure, since only a CTM in which the CTM operates by the movement of holes has been put into practical use, the double layer photoreceptor is of a negatively charged type.

【0009】しかしながら、この様な負帯電方式では、
(1)帯電に用いられる負電荷により空気中の酸素がオ
ゾンになる、(2)帯電が不安定である、(3)ドラム
表面の影響を受けやすい、と言う問題があった。オゾン
は人体にとって有害であるばかりでなく、しばしば感光
体と反応して感光体の寿命を短くする。また、帯電の不
安定性はしばしば画質の低下を招き、ドラム表面の影響
が大きい事はドラムを鏡面仕上げにするか、あるいはア
ンダーコートを必要とし、製造コストの向上につながる
。更に、この様な2層方式においては、(4)製造工程
が複雑になり、歩留まりが悪くなる、(5)層間の剥離
等によりその安定性が問題になる、等の問題があった。
However, in such a negative charging method,
There were problems in that (1) oxygen in the air turned into ozone due to the negative charge used for charging, (2) charging was unstable, and (3) it was easily affected by the drum surface. Ozone is not only harmful to the human body, but also often reacts with photoreceptors, shortening the life of the photoreceptor. In addition, the instability of charging often leads to a decline in image quality, and the fact that the drum surface is greatly affected requires the drum to be given a mirror finish or an undercoat, leading to an increase in manufacturing costs. Furthermore, such a two-layer system has problems such as (4) the manufacturing process becomes complicated and the yield is poor, and (5) stability becomes a problem due to peeling between layers.

【0010】感光体、特に単層構造の有機感光体(OP
C)は、初期の光感度が悪く、連続繰り返し使用すると
徐々に光感度が良くなる傾向がある。光感度の悪い初期
においては、通常の現像では白地部にカブリを生じ、ま
た反転現像ではべた黒部に白抜けを生じるという問題が
あった。この対策として、複写を始める前に、感光体に
波長300〜800nmの光を照射するか、帯電・光除
電を何回か繰り返す予備運転を行ない、光感度を良くす
る感光体の改良法が採用されている。さらに、最近は無
機感光体と同様な高寿命で高感度な有機感光体が要望さ
れている。
[0010] Photoreceptors, especially single-layer organic photoreceptors (OP
C) has poor photosensitivity at the initial stage, but tends to gradually improve when used continuously and repeatedly. In the early stages of poor photosensitivity, there were problems in that normal development resulted in fogging in white background areas, and reversal development resulted in white spots in solid black areas. As a countermeasure to this problem, a method of improving the photoconductor has been adopted to improve the photosensitivity by irradiating the photoconductor with light with a wavelength of 300 to 800 nm or by performing a preliminary operation of charging and photo-neutralizing the photoconductor several times before starting copying. has been done. Furthermore, recently there has been a demand for organic photoreceptors that have a long life and high sensitivity similar to inorganic photoreceptors.

【0011】[0011]

【発明が解決しようとする課題】これらの対策としては
原材料の開発あるいは材料の処理が考えられる。材料処
理の例としては前述したように紫外あるいは可視光を照
射する例がある。しかしこの場合は、一度光感度が良く
なっても一定時間経過すると、光感度がある程度もとに
戻ってしまうために、複写を行う際、予備運転を毎回行
わなければならないという課題があった。
[Problems to be Solved by the Invention] As countermeasures to these problems, development of raw materials or processing of materials can be considered. Examples of material processing include irradiation with ultraviolet or visible light, as described above. However, in this case, even if the photosensitivity improves once, after a certain period of time, the photosensitivity returns to its original level to some extent, so there is a problem in that a preliminary operation must be performed each time copying is performed.

【0012】本発明は上記課題を解決するもので、感光
体にエネルギ−の高い電離放射線を照射することによっ
て、光感度を向上させ、かつそれを長時間に亘って持続
でき、複写前の光感度を良くするための予備運転を必要
としない、電子写真感光体の処理方法の提供を目的とす
るものである。
The present invention solves the above problems, and by irradiating the photoreceptor with high-energy ionizing radiation, the photosensitivity can be improved and maintained for a long time, and the light before copying can be improved. The object of the present invention is to provide a method for processing an electrophotographic photoreceptor that does not require preliminary operation to improve sensitivity.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するため
、本発明は有機感光体に波長300〜800nmの光よ
りもエネルギ−の高い電離放射線であるX線あるいは電
子線を照射するものである。
[Means for Solving the Problems] In order to achieve the above object, the present invention irradiates an organic photoreceptor with X-rays or electron beams, which are ionizing radiation with higher energy than light with a wavelength of 300 to 800 nm. .

【0014】光照射の場合は材料自身の構造には特殊な
官能基を有さない限り何等の変化はない。X線あるいは
電子線は高エネルギ−であるため、ある量以上を照射す
ると有機材料は架橋反応や分解反応を生じる。このよう
な反応を不可逆的に起こさせることにより有機感光体の
感度や安定性の改良をはかることができた。
In the case of light irradiation, there is no change in the structure of the material itself unless it has a special functional group. Since X-rays or electron beams have high energy, when irradiated with more than a certain amount, organic materials undergo crosslinking reactions and decomposition reactions. By irreversibly causing such a reaction, it was possible to improve the sensitivity and stability of the organic photoreceptor.

【0015】X線の場合は有機物の吸収率は小さいので
反応効率も小さい。そこで感光体中にX線吸収の大きい
金属元素を、金属粉末あるいは金属化合物の形で混入さ
せておくとX線照射は効果的である。電荷発生剤として
知られているフタロシアニンは金属錯体としてよく知ら
れているがこの場合は金属粉末をさらに加える必要はな
い。金属フタロシアニンのような有機錯体を金属粉末の
かわりに用いても同様な効果が得られる。金属粉末ある
いは金属化合物としては感光体を構成するバインダ−樹
脂や化合物との相溶性がよくて特に感光特性を低下させ
るようなものでなければよい。たとえばAl、In、S
n、Cu、Pb等のほか、これらの酸化物、La、Co
、Si、Wなどの酸化物も用いられる。X線は透過性が
良いため感光体の構成する層の組成が均一であればその
層の全体がX線の照射効果としても均一に得られる。 感光体の構成が機能分離型で多層からなっている場合は
ある層のみにX線吸収の高い成分にしておけばその層の
みに選択的にX線照射効果をもたらすことができる。単
層型感光体については層全体においてX線効果もたらす
ことができる。
In the case of X-rays, the absorption rate of organic matter is low, so the reaction efficiency is also low. Therefore, X-ray irradiation is effective if a metal element with high X-ray absorption is mixed in the form of metal powder or metal compound into the photoreceptor. Phthalocyanine, which is known as a charge generating agent, is well known as a metal complex, but in this case there is no need to further add metal powder. A similar effect can be obtained by using an organic complex such as metal phthalocyanine in place of the metal powder. The metal powder or metal compound may be one that has good compatibility with the binder resin or compound constituting the photoreceptor and does not particularly deteriorate the photosensitivity. For example, Al, In, S
In addition to n, Cu, Pb, etc., these oxides, La, Co
, Si, W, and other oxides are also used. Since X-rays have good transparency, if the composition of the layers constituting the photoreceptor is uniform, the entire layer can be uniformly irradiated with X-rays. When the photoreceptor is of a functionally separated type and has a multilayer structure, by using a component with high X-ray absorption only in a certain layer, it is possible to selectively bring about the X-ray irradiation effect only in that layer. For single-layer photoreceptors, the entire layer can provide an X-ray effect.

【0016】これに対して電子線の場合は吸収係数が高
いため表面のみしか照射効果は得られない。従ってこの
場合はX線照射の場合のように金属の混入効果はない。 しかしながら、機能分離型において表面に電荷発生層あ
るいは電荷輸送層がある場合においても感度、安定性耐
刷性おいて電子線照射により改良がみられた。同様に単
層型感光体、たとえばバインダ−樹脂とフタロシアニン
系からのみなる感光体に電子線を照射したところにやは
り感度、安定性、耐刷性に改良がみられた。
On the other hand, in the case of an electron beam, since the absorption coefficient is high, the irradiation effect can be obtained only on the surface. Therefore, in this case, unlike in the case of X-ray irradiation, there is no effect of metal contamination. However, even when the functionally separated type had a charge generation layer or a charge transport layer on the surface, improvements in sensitivity, stability, and printing durability were observed by electron beam irradiation. Similarly, when a single-layer type photoreceptor, for example, a photoreceptor made only of a binder resin and a phthalocyanine system, was irradiated with an electron beam, improvements in sensitivity, stability, and printing durability were also observed.

【0017】[0017]

【作用】上記のように有機感光体にX線あるいは電子線
を照射することにより感度の向上、その特性の安定化、
耐刷性の向上などが図れる。
[Action] As mentioned above, by irradiating the organic photoreceptor with X-rays or electron beams, the sensitivity is improved, its characteristics are stabilized,
Printing durability can be improved.

【0018】[0018]

【実施例】以下に本発明の実施例を比較例と対比させな
がら詳細に説明する。
[Examples] Examples of the present invention will be explained in detail below while comparing them with comparative examples.

【0019】(実施例1)機能分離型の二層構造の有機
感光体について実験を行った。電荷発生剤としてはτ型
Cuフタロシアニン、X型無金属フタロシアニンを用い
、バインダ−樹脂としてはポリブチラ−ルを用いた。 混合は重量比で1:1とした。膜厚は約0.3μとした
。電荷移動剤はヒドラゾン化合物の一種であるCTC−
236(亜南香料製)を用いた。バインダ−樹脂として
はポリエステルを用い、混合比は重量比で4:5とした
。感光体としては電荷移動層がAl基板の下部にある負
帯電方式と上部にある正帯電方式両者を作製した。X線
としてはCuの白色X線を、電子線はSEMをもちいて
照射を行った。感光特性の測定には川口電機株式会社製
EPA−8100ペ−パ−アナライザを用いて行った。 負帯電方式の感光体について照射量と感度特性の結果を
(表1)に示す。感度はE1/2で示す。測定波長は7
80nmである。
(Example 1) An experiment was conducted on a functionally separated type organic photoreceptor having a two-layer structure. As the charge generating agent, τ-type Cu phthalocyanine and X-type metal-free phthalocyanine were used, and as the binder resin, polybutyral was used. The weight ratio of the mixture was 1:1. The film thickness was approximately 0.3μ. The charge transfer agent is CTC- which is a type of hydrazone compound.
236 (manufactured by Anan Kogyo Co., Ltd.) was used. Polyester was used as the binder resin, and the mixing ratio was 4:5 by weight. As photoreceptors, both a negative charging type in which the charge transfer layer is located below the Al substrate and a positive charging type in which the charge transfer layer is located above the Al substrate were prepared. Irradiation was performed using Cu white X-rays as the X-rays and an SEM as the electron beam. The photosensitive characteristics were measured using an EPA-8100 paper analyzer manufactured by Kawaguchi Electric Co., Ltd. Table 1 shows the results of the irradiation amount and sensitivity characteristics of the negatively charged photoreceptor. Sensitivity is expressed as E1/2. The measurement wavelength is 7
It is 80 nm.

【0020】[0020]

【表1】[Table 1]

【0021】この(表1)からわかるようにX線照射に
よって感度2倍程向上しているのがわかる。さらにこの
感度は放置しておいても保持されていることがわかる。 紫外線光を照射した場合も照射後は1.5倍程度感度が
向上する場合があるが放置しておくと照射前の感度同程
度に戻ってしまう。
[0021] As can be seen from this (Table 1), it can be seen that the sensitivity is improved by about twice as much by X-ray irradiation. Furthermore, it can be seen that this sensitivity is maintained even if left alone. Even when irradiated with ultraviolet light, the sensitivity may improve by about 1.5 times after irradiation, but if left untreated, the sensitivity returns to the same level as before irradiation.

【0022】X線照射効果としてフタロシアニンのCu
と無金属の場合を比較するとCuの場合のほうが効果的
であった。(表2)に正帯電方式の場合について電子線
照射を行った場合の結果を示す。この場合も同様に感度
の向上がみられる。
[0022] Cu of phthalocyanine as an X-ray irradiation effect
When compared with the case of no metal, the case of Cu was more effective. (Table 2) shows the results when electron beam irradiation was performed in the case of the positive charging method. In this case as well, an improvement in sensitivity can be seen.

【0023】[0023]

【表2】[Table 2]

【0024】(実施例2)実施例1に示した無金属のフ
タロシアニンを用いた電荷発生層に、Al2O3の粉末
をフタロシアニンの重量に対して5%混入させて負帯電
方式感光体を作製し、実施例1と同様にX線照射を行っ
たところCuフタロシアニンと同じ程度の特性の向上が
みられた。
(Example 2) A negative charging type photoreceptor was prepared by mixing Al2O3 powder in an amount of 5% based on the weight of the phthalocyanine in the charge generation layer using the metal-free phthalocyanine shown in Example 1. When X-ray irradiation was performed in the same manner as in Example 1, the properties were improved to the same extent as Cu phthalocyanine.

【0025】(実施例3)有機感光体は実際の機械で絵
だしを行うと表面摩耗が生じる。新鮮な表面を常に維持
するという意味では多少の摩耗は有効とされているが現
在の一般には表面の耐摩耗性の向上が望まれている。そ
こで複写機を用いて実際に絵だしを行って耐刷性に及ぼ
す照射効果の検討を行った。
(Example 3) Surface abrasion occurs on an organic photoreceptor when printing is performed using an actual machine. Although some abrasion is considered effective in maintaining a fresh surface, it is generally desired to improve the abrasion resistance of the surface. Therefore, we used a copying machine to actually print out the images and investigated the effects of irradiation on printing durability.

【0026】感光体としては無金属フタロシアニンとバ
インダ−樹脂のみからなる正帯電単層型を用いた。初期
膜厚は20μになるように塗布を行った。初期感度は3
.8μJ/cm2であったがX線照射を行ったところ1
.8μJ/cm2となった。X線照射前で実際の機械で
絵だしテストを行ったところ5千枚の印刷で膜厚の減少
が3μm程度あった。同様にX線照射後の試料について
テストを行ったところ膜厚の減少は1.2μm程度とな
り、X線照射による耐摩耗性の向上が確認された。
As the photoreceptor, a positively charged single layer type photoreceptor consisting of only metal-free phthalocyanine and a binder resin was used. Coating was performed so that the initial film thickness was 20 μm. Initial sensitivity is 3
.. It was 8 μJ/cm2, but when X-ray irradiation was performed, 1
.. It became 8 μJ/cm2. When a picture printing test was conducted on an actual machine before X-ray irradiation, the film thickness decreased by about 3 μm after printing 5,000 sheets. Similarly, when a test was conducted on a sample after X-ray irradiation, the film thickness decreased by about 1.2 μm, confirming that the wear resistance was improved by X-ray irradiation.

【0027】[0027]

【発明の効果】以上のように本発明は有機感光体にX線
、あるいは電子線を照射することにより感度の向上と安
定性、および耐刷性の向上が図られた優れた電子写真用
感光体を提供できるという利点を有するものである。
As described above, the present invention provides an excellent electrophotographic photosensitive material that improves sensitivity, stability, and printing durability by irradiating an organic photoreceptor with X-rays or electron beams. It has the advantage of being able to provide the body.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 有機感光体にX線あるいは電子線を照射
することを特徴とする電子写真感光体の処理方法。
1. A method for processing an electrophotographic photoreceptor, which comprises irradiating the organic photoreceptor with X-rays or electron beams.
【請求項2】 請求項1記載の有機感光体が単層型であ
ることを特徴とする電子写真感光体の処理方法。
2. A method for processing an electrophotographic photoreceptor, wherein the organic photoreceptor according to claim 1 is of a single layer type.
【請求項3】 請求項1又は2記載の有機感光体におい
てX線に対する質量吸収係数の大きい金属元素を含有す
ることを特徴とする電子写真感光体の処理方法。
3. A method for processing an electrophotographic photoreceptor according to claim 1 or 2, wherein the organic photoreceptor contains a metal element having a large mass absorption coefficient for X-rays.
JP3998391A 1991-03-06 1991-03-06 Processing method for electrophotographic sensitive body Pending JPH04277750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3998391A JPH04277750A (en) 1991-03-06 1991-03-06 Processing method for electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3998391A JPH04277750A (en) 1991-03-06 1991-03-06 Processing method for electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPH04277750A true JPH04277750A (en) 1992-10-02

Family

ID=12568183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3998391A Pending JPH04277750A (en) 1991-03-06 1991-03-06 Processing method for electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPH04277750A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009151086A (en) * 2007-12-20 2009-07-09 Canon Inc Method for manufacturing electrophotographic photoreceptor
JP2011013477A (en) * 2009-07-02 2011-01-20 Ricoh Co Ltd Coating liquid for electrophotographic photoreceptor, electrophotographic photoreceptor, method of manufacturing electrophotographic photoreceptor, image forming method, image forming apparatus and process cartridge

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009151086A (en) * 2007-12-20 2009-07-09 Canon Inc Method for manufacturing electrophotographic photoreceptor
JP2011013477A (en) * 2009-07-02 2011-01-20 Ricoh Co Ltd Coating liquid for electrophotographic photoreceptor, electrophotographic photoreceptor, method of manufacturing electrophotographic photoreceptor, image forming method, image forming apparatus and process cartridge

Similar Documents

Publication Publication Date Title
DE60032397T2 (en) Electrophotographic photosensitive member, process for its preparation, process cartridge and electrophotographic apparatus
JPH0727243B2 (en) Photosensitive imaging member containing chloroindium phthalocyanine
KR20130061093A (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JPH1172940A (en) Electrophotographic photoreceptor and electrophotographic image forming device using the same
JP3483976B2 (en) Electrophotographic imaging member
JP2004045996A (en) Method of electrophotography and electrophotographic image forming device
JP2003345049A (en) Electrophotographic photoreceptor, process cartridge and electrophotographic device
JP5719886B2 (en) Electrophotographic photosensitive member and image forming apparatus using the same
JPH04277750A (en) Processing method for electrophotographic sensitive body
EP1054298A1 (en) Positive charging single-layer type electrophotosensitive material.
JPH04277749A (en) Processing method for electrophotographic sensitive body
JPH03246551A (en) Electrophotographic sensitive body and facsimile using the same
JP6779609B2 (en) Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus, and chlorogallium phthalocyanine crystal and its manufacturing method.
JP2934972B2 (en) Electrophotographic photoreceptor and coating solution
JPH07271062A (en) Electrophotographic photoreceptor
JP2004045997A (en) Method of electrophotography and electrophotographic image forming device
JPH06236061A (en) Electrophotoreceptor
JP5718413B2 (en) Electrophotographic photosensitive member and image forming apparatus using the same
JP3471873B2 (en) Image forming method
US5185227A (en) Electrophotographic lithograph printing plate material
JP5297700B2 (en) Single layer type electrophotographic photoreceptor and image forming apparatus having the same
JPH01217360A (en) Image forming method
JPH10312069A (en) Electrophotographic photorecept0r
JP6307708B2 (en) Image forming apparatus
JPH0915887A (en) Electrophotographic organic photoreceptor