JPH042774A - Method and apparatus for formation of transparent conductive film - Google Patents

Method and apparatus for formation of transparent conductive film

Info

Publication number
JPH042774A
JPH042774A JP10338790A JP10338790A JPH042774A JP H042774 A JPH042774 A JP H042774A JP 10338790 A JP10338790 A JP 10338790A JP 10338790 A JP10338790 A JP 10338790A JP H042774 A JPH042774 A JP H042774A
Authority
JP
Japan
Prior art keywords
film
target
electrode
negatively charged
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10338790A
Other languages
Japanese (ja)
Inventor
Takeshi Miyashita
武 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP10338790A priority Critical patent/JPH042774A/en
Publication of JPH042774A publication Critical patent/JPH042774A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain the transparent conductive film of low specific resistance even in low temp. and to prevent the generation of traces of abnormal electric discharge in DC magnetron sputtering by preventing negative-charged particles from rushing into a base plate on which film is to be formed. CONSTITUTION:The electrode 10 for catching the negative-charged particles which is formed in an annular shape made of high melting point metallic wire, such as wire of Mo, of 1mmphi thickness is provided in the middle between an ITO target 1 and a base plate holder 3 in the vacuum vessel 4 of a DC magnetron sputtering apparatus used for the formation of ITO film. The diameter of annular electrode 10 is smaller than that of the target, and set almost right above the errosion area of the target 10. The electrode 10 is kept in earth potential or in positive potential. By this method, the negative-charged particles rushing into the base plate 2 on which film is to be formed from the plasma generated in the vicinity of the target 1 are caught, and the object is achieved.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、透明導電膜の形成方法及び形成装置に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method and apparatus for forming a transparent conductive film.

[従来の技術1 従来、透明導電膜の形成は、直流または高周波ナグネト
ロンスパッタ、CVD、スプレー法、等が用いられてい
る。特に、単純マトリクス等の液晶デイスプレーの透明
導1iaiによる配置t極には、[流マグネトロンスパ
ッタによるITO膜が広く用いられている。第6図に一
般的なITO成膜に用いられる直流マグネトロンスパッ
タ装置の従来例を示す、真空容器4内に、ターゲット1
と基板ホルダー3が対向して配置され、基板ホルダー3
にガラス等の絶縁物からなる被成膜基板2を固定する。
[Prior Art 1] Conventionally, direct current or high frequency nagnetron sputtering, CVD, a spray method, etc. have been used to form a transparent conductive film. In particular, an ITO film formed by flow magnetron sputtering is widely used for the t-pole arranged by a transparent conductor 1iai of a liquid crystal display such as a simple matrix. FIG. 6 shows a conventional example of a DC magnetron sputtering apparatus used for general ITO film formation.
and the substrate holder 3 are arranged facing each other, and the substrate holder 3
A film-forming substrate 2 made of an insulating material such as glass is fixed to the substrate.

成膜中の加熱は、ヒーター5によって行う、真空容器4
内は、Arガスに数%の02ガスを導入し、数百mPa
の圧力に保つ、ターゲット1には、直流電源6が配設さ
れ、負電圧を印加することでグロー放電を発生させる。
Heating during film formation is performed by a heater 5 in a vacuum container 4.
Inside, a few percent of 02 gas was introduced into the Ar gas, and the pressure was increased to several hundred mPa.
A DC power supply 6 is disposed on the target 1, which is maintained at a pressure of , and a glow discharge is generated by applying a negative voltage to the target 1.

これによりターゲット1をスパッタリングし、被成膜基
板2上にスパッタリングされたITOが成膜する。低比
抵抗のITO膜を得るためには、Ar雰囲気中の最適な
酸素分圧と、被成膜基板の高温加熱が必要である。−射
的には、2XlO−’Ω・Cm程度の比抵抗の膜を得る
には、300℃以上の高温加熱を行っている。
As a result, the target 1 is sputtered, and a sputtered ITO film is formed on the film-forming substrate 2. In order to obtain an ITO film with low resistivity, an optimal oxygen partial pressure in the Ar atmosphere and high temperature heating of the substrate on which the film is to be formed are required. -Radiographically, in order to obtain a film with a specific resistance of about 2XlO-'Ω·Cm, high-temperature heating of 300° C. or higher is performed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし前述の従来技術による直流マグネトロンスパッタ
では、ターゲット近傍で発生したプラズマが被成膜基板
にまで広がり、プラズマ中の特に負荷電粒子の突入によ
るITO膜の損傷を受け、2XIO’″4Ω・cm以下
の比抵抗のITO膜を容易に得ることが出来ない、した
がって、近年、液晶デイスプレーの大型化と表示素子の
微細化が進むにつれ、ITO配線電極の微細化が進む一
方、必然的に配線電極内の抵抗値増加をもたらしており
、電圧降下による表示品質が劣化するという問題点を有
する。さらに、有機膜上にITOを成膜する場合、20
0℃以下でなければならないという有機膜の加熱温度の
制限により、低比抵抗の工To膜を得るための障壁とな
っており、表示品質のみならずプロセス設計が困難にな
るという問題点を有する。
However, in the conventional DC magnetron sputtering method described above, the plasma generated near the target spreads to the substrate on which the film is to be deposited, and the ITO film is damaged by the inrush of negatively charged particles in the plasma, resulting in 2XIO'''4Ωcm or less. Therefore, in recent years, as liquid crystal displays have become larger and display elements have become smaller, ITO wiring electrodes have become smaller and smaller. This results in an increase in the resistance value of the ITO film, which has the problem of deterioration of display quality due to voltage drop.Furthermore, when ITO is formed on an organic film, 20
The restriction on the heating temperature of the organic film, which must be below 0°C, is a barrier to obtaining a low resistivity film, which poses problems not only in display quality but also in process design. .

また、ITOの成膜中にプラズマにさらされることによ
って帯電した被成膜基板の電位と、接地電位である基板
ホルダーの電位差によって生じる絶縁破壊が、ITO膜
上に異常放電を誘発させ、その放電痕が稲妻状に残り、
歩留りや品質に著しく影響を及ぼしコストを増加させる
という問題点を有する。
In addition, dielectric breakdown caused by the potential difference between the potential of the substrate to be filmed, which is charged due to exposure to plasma during ITO film formation, and the substrate holder, which is the ground potential, induces abnormal discharge on the ITO film, and the discharge A mark remains in the shape of a lightning bolt,
This has the problem of significantly affecting yield and quality and increasing costs.

そこで本発明はこのような問題点を解決するもので、そ
の目的とするところは、高部成膜のみならず低温成膜に
於いても低比抵抗の透明導電膜な得、さらに被成膜基板
上で生じる絶縁破壊による異常放電痕の発生を防止する
ことの出来る、透明導電膜の形成方法及び形成装置を提
供するところにある。
The present invention is intended to solve these problems, and its purpose is to provide a transparent conductive film with low specific resistance not only in high-layer film formation but also in low-temperature film formation. An object of the present invention is to provide a method and apparatus for forming a transparent conductive film that can prevent abnormal discharge marks from occurring due to dielectric breakdown occurring on a substrate.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の透明導電膜の形成方法および形成装置は、直流
マグネトロンスパッタに於いて、ターゲットと該ターゲ
ットに対向している前記被成膜基板との間に、負荷電粒
子捕捉用電極を具備し、前記負荷電粒子捕捉用電極を接
地電位または正電位に保持する手段を具備し、ターゲッ
ト近傍に発生しているプラズマから被成膜基板に突入し
てくる負荷電粒子を前記被成膜基板の前段で捕捉し、前
記負荷電粒子の前記被成膜基板突入を防止しながら成膜
することを特徴とする。
The method and apparatus for forming a transparent conductive film of the present invention include, in DC magnetron sputtering, a negatively charged particle trapping electrode is provided between a target and the film-forming substrate facing the target; A means for holding the negatively charged particle trapping electrode at a ground potential or a positive potential is provided, and the negatively charged particles rushing into the substrate to be deposited from the plasma generated near the target are captured in the front stage of the substrate to be deposited. The film is formed while preventing the negatively charged particles from entering the substrate on which the film is formed.

〔作 用] 本発明の上記の構成によれば、ターゲット近傍に発生し
ているプラズマから被成膜基板に突入してくる負荷電粒
子を捕捉するため、被成膜基板上に成膜されたITO膿
に突入する負荷電粒子が減少し、ITO膜のダメージが
低減するため膜の結晶性が損なわれず、低温に於いても
低抵抗化が計れる。また、負荷電粒子の突入に起因する
被成膜基板の帯電電位を制御することが出来るため、異
常放電を制御することが出来る。
[Function] According to the above configuration of the present invention, in order to capture negatively charged particles that rush into the deposition target substrate from the plasma generated near the target, the film formed on the deposition target substrate is Since the number of negatively charged particles that enter the ITO pus is reduced and the damage to the ITO film is reduced, the crystallinity of the film is not impaired and the resistance can be lowered even at low temperatures. Further, since the charged potential of the substrate to be film-formed due to the inrush of negatively charged particles can be controlled, abnormal discharge can be controlled.

〔実 施 例〕〔Example〕

以下1本発明の図面に基づいて詳細に説明する。 Hereinafter, one embodiment of the present invention will be explained in detail based on the drawings.

第1図は本発明の第1実施例であるが、第6図の従来例
に対応する部分については同一の符号を用い、その詳細
な説明は省略する。
Although FIG. 1 shows a first embodiment of the present invention, the same reference numerals are used for parts corresponding to the conventional example shown in FIG. 6, and detailed explanation thereof will be omitted.

すなわち、本実施例の負荷電粒子捕捉用電極10は、太
さ1mmφのモリブデン等の高融点金属のワイヤーによ
りリング状に形成され、第1図に示されるようにターゲ
ット1と基板ホルダー3との中間に設置する。また、負
荷電粒子捕捉用電極10のリング直径は、ターゲット直
径より小さく、ターゲットlのエロージョン領域のほぼ
直上に設置している。そして直流電源6はターゲット1
に配設され真空容器4の接地電位に対し負の電圧を印加
し、直流電源11は負荷電粒子捕捉用電極10に配設さ
れ接地電位に対し正の電圧を印加するよう構成されてい
る。
That is, the negatively charged particle trapping electrode 10 of this embodiment is formed into a ring shape with a wire made of a high melting point metal such as molybdenum and has a thickness of 1 mm, and is connected to the target 1 and the substrate holder 3 as shown in FIG. Place it in the middle. Further, the ring diameter of the negatively charged particle capturing electrode 10 is smaller than the target diameter, and is installed almost directly above the erosion area of the target l. And DC power supply 6 is target 1
The DC power supply 11 is arranged at the negatively charged particle trapping electrode 10 and is configured to apply a negative voltage with respect to the ground potential of the vacuum vessel 4, and the DC power supply 11 is arranged at the negatively charged particle capturing electrode 10 and is configured to apply a positive voltage with respect to the ground potential.

次に、本実施例の作用について説明する。第2図は、第
1図の装置構成を用いた時の、負荷電粒子捕捉用電極1
0に流れる電流の、直流電源11による印加電圧依存性
である。ターゲット1には、定電流制御された直流電源
6により一定電流が流れており、直流電源11の電圧を
上昇させていくことで、負荷電粒子捕捉電極10に流れ
る電流が増加し、ターゲット1に流れている電流値とほ
ぼ等しくなると飽和する。すなわち、ターゲットlと負
荷電粒子捕捉用電極lOとの間で閉じた系の電流回路を
構成している。
Next, the operation of this embodiment will be explained. Figure 2 shows the negatively charged particle trapping electrode 1 when using the device configuration shown in Figure 1.
This is the dependence of the current flowing through the DC power supply 11 on the voltage applied by the DC power supply 11. A constant current is flowing through the target 1 from a DC power supply 6 that is controlled by a constant current, and by increasing the voltage of the DC power supply 11, the current flowing through the negatively charged particle trapping electrode 10 increases, and the current flowing through the target 1 is increased. It saturates when it becomes approximately equal to the flowing current value. That is, a closed current circuit is formed between the target l and the negatively charged particle trapping electrode lO.

負荷電粒子捕捉用電極10を設置することによるプラズ
マへの作用について説明する。第3図はζプラズマ発生
条件を、放電圧力は0.6PaでArのみを導入し、放
電電流は0.4Aに設定した時の、負荷電粒子捕捉用電
極lOを境にして、ターゲット1−負荷電粒子捕捉用電
極10間のプラズマと負荷電粒子捕捉用電極1〇−被成
膜基板2間のプラズマについて、発光分光により計測し
たArの発光強度の負荷電粒子捕捉用電極10の印加電
圧依存性である。負荷電粒子捕捉用電極10を設置して
いない従来例に比べ、本実施例では、負荷電粒子捕捉用
電極10の印加電圧にともないターゲット1−負荷電粒
子捕捉用電極10間のプラズマの発光強度は緩やかに増
加していくのに対し、負荷電粒子捕捉用電極l〇−被成
膜基板2間のプラズマの発光強度は、顕著な低下が計測
された1本現象は、負荷電粒子捕捉用電極1〇−被成膜
基板2間のプラズマ密度の減少を意味するものであり、
被成膜基板2近傍のプローブ計測に於いても、同様なプ
ラズマ密度の減少を確認した。
The effect on plasma caused by installing the negatively charged particle trapping electrode 10 will be explained. Figure 3 shows the ζ plasma generation conditions, with the discharge pressure set at 0.6 Pa, only Ar introduced, and the discharge current set at 0.4 A. The voltage applied to the negatively charged particle capturing electrode 10 of the Ar emission intensity measured by emission spectroscopy for the plasma between the negatively charged particle capturing electrode 10 and the plasma between the negatively charged particle capturing electrode 10 and the film formation substrate 2 It is dependence. Compared to the conventional example in which the negatively charged particle trapping electrode 10 is not installed, in this example, the emission intensity of the plasma between the target 1 and the negatively charged particle trapping electrode 10 increases as the voltage applied to the negatively charged particle trapping electrode 10 increases. One phenomenon in which the plasma emission intensity between the negatively charged particle trapping electrode l〇 and the film-forming substrate 2 was measured to decrease gradually was that the negative charged particle trapping electrode 1 This means a decrease in plasma density between the electrode 10 and the film-forming substrate 2,
A similar decrease in plasma density was also confirmed in the probe measurement near the film-forming substrate 2.

また、第4図は、プローブ計測において得た。Moreover, FIG. 4 was obtained by probe measurement.

被成膜基板2近傍の空間電位及び浮遊電位の負荷電粒子
捕捉用電極10の印加電圧依存性である。
This is the dependence of the space potential and floating potential near the film-forming substrate 2 on the voltage applied to the negatively charged particle capturing electrode 10.

従来例に比べ、空間電位および浮遊電位が上昇していく
ことが解る。被成膜基板2の帯電電位は、浮遊電位にほ
ぼ等しいことが知られており、接地電位と浮遊電位の電
位差は、接地されている基板ホルダー3と被成膜基板2
の電位差に相当するものである。異常放電の発生は、接
地されている基板ホルダー3と浮t1を位に帯電してい
る被成膜基板2との間に発生する絶縁破壊が主要因であ
り、接地電位である基板ホルダー3と被成膜基板2の電
位差が絶縁破壊電圧のしきい値以上であると発生し、こ
のしきい値はプラズマの状態によっても異なる。しかし
ながら、本実施例によれば、接地電位と浮遊電位の電位
差を、従来例に比べ小さくすることが出来、電位差をな
くすことも可能である。
It can be seen that the space potential and floating potential increase compared to the conventional example. It is known that the charged potential of the substrate 2 to be film-formed is almost equal to the floating potential, and the potential difference between the ground potential and the floating potential is the difference between the grounded substrate holder 3 and the substrate 2 to be film-formed.
This corresponds to the potential difference of . The main cause of abnormal discharge is dielectric breakdown that occurs between the substrate holder 3, which is grounded, and the film-forming substrate 2, which is charged to a floating level t1. This occurs when the potential difference of the film-forming substrate 2 is equal to or higher than the dielectric breakdown voltage threshold, and this threshold value also differs depending on the state of the plasma. However, according to this embodiment, the potential difference between the ground potential and the floating potential can be made smaller than in the conventional example, and it is also possible to eliminate the potential difference.

本実施例の構成によれば、ターゲット1−負荷電粒子捕
捉用電極10間のプラズマ密度は保存または増加させた
まま、負荷電粒子捕捉用電極10−被成膜基板2間のプ
ラズマ密度を減少させることができ、被成膜基板2上に
成膜されるITO膜のプラズマからの損傷を低減するこ
とができる。
According to the configuration of this embodiment, the plasma density between the target 1 and the negatively charged particle capturing electrode 10 is maintained or increased, while the plasma density between the negatively charged particle capturing electrode 10 and the deposition substrate 2 is reduced. As a result, damage to the ITO film formed on the film-forming substrate 2 from plasma can be reduced.

また、電子捕捉電極の印加電圧により浮遊電位を制御で
き、接地電位である基板ホルダー3と被成膜基板2の電
位差の絶縁電位差を小さくすることができる。
Furthermore, the floating potential can be controlled by the voltage applied to the electron trapping electrode, and the insulation potential difference between the substrate holder 3 and the film-forming substrate 2, which are at ground potential, can be reduced.

従来例で、例えば成膜条件を、放電圧力0.6PaでA
rのみを導入し、放電電流0.4A、成膜温度150℃
とした時に得られたITO膜の比抵抗は6X10−’Ω
・cm程度であったのに対し、本実施例では、同成膜条
件に加久、電子捕捉電圧10の印加電圧を18Vとした
時に得られたITO膜は、4X10−’Ω・cmもの膜
が得られた。また、従来例では、ガラス基板面のITO
上には、はぼ、100%近くの確率で、異常放電による
膜面の異常放電痕が確認されたのに対し、本実施例に於
いては、全く発生しなかった。
In the conventional example, for example, the film forming conditions were A with a discharge pressure of 0.6 Pa.
Introducing only r, discharge current 0.4A, film forming temperature 150℃
The specific resistance of the ITO film obtained when
・In contrast, in this example, when the same film-forming conditions were used and the applied voltage of 10 V and the electron trapping voltage was 18 V, the ITO film obtained was as large as 4×10-'Ω・cm. was gotten. In addition, in the conventional example, ITO on the glass substrate surface
On the other hand, abnormal discharge marks on the film surface due to abnormal discharge were confirmed with a probability of nearly 100%, whereas in this example, no abnormal discharge marks occurred at all.

第5図は、本発明の第2実施例を示すものであるが、第
1実施例に対応する部分については同一の符号を用い、
その詳細な説明は省略する。
FIG. 5 shows a second embodiment of the present invention, and parts corresponding to the first embodiment are designated by the same reference numerals.
A detailed explanation thereof will be omitted.

本実施例では、負荷電粒子捕捉用電極10の設置は第1
実施例と同様であるが、直流電源6の+電流側を負荷電
粒子捕捉用電極lOに配設し、直流電源11の十電極と
短絡させている0本実施例の構成によっても、負荷電粒
子捕捉用電極10の印加電圧を直流電源11により制御
でき、第1実施例に述べた効果を奏でるものである。
In this embodiment, the negatively charged particle capturing electrode 10 is installed in the first
Although it is similar to the embodiment, the positive current side of the DC power supply 6 is arranged in the negatively charged particle capturing electrode lO, and the structure of this embodiment is also short-circuited with the electrode 10 of the DC power supply 11. The voltage applied to the particle trapping electrode 10 can be controlled by the DC power supply 11, and the effects described in the first embodiment can be achieved.

以上本発明の各実施例について説明したが、もちろん本
発明はこれらに限定されることなく、本発明の技術的思
想に基づく様々の変形が可能である。
Although each embodiment of the present invention has been described above, the present invention is of course not limited to these, and various modifications can be made based on the technical idea of the present invention.

例えば、以上の実施例では負荷電粒子捕捉用電極10に
太さ1mmφmm型−を用いたが、成膜速度に多少影響
するかもしれないが板状の電極であってもかまわない、
また、負荷電粒子捕捉用電極の形状は、円形のリングに
限らず多角形でもよく、ターゲット周辺を囲う箱型であ
ってもかまわない。
For example, in the above embodiment, a 1 mmφmm type electrode with a thickness of 1 mm was used for the negatively charged particle capturing electrode 10, but a plate-shaped electrode may also be used, although this may affect the film formation rate to some extent.
Further, the shape of the negatively charged particle capturing electrode is not limited to a circular ring, but may be polygonal, or may be box-shaped surrounding the target.

また、以上の実施例における負荷電粒子捕捉用電極の材
料には、ステンレス鋼等の加工用金属材料を用いても良
い、ただし、負荷電粒子を捕捉することにより高温にな
るため熱膨張係数の小さい材料で、蒸発による膜汚染を
防止するためには高融点金属が好ましい。
Furthermore, as the material of the electrode for capturing negatively charged particles in the above embodiments, a metal material for processing such as stainless steel may be used. However, since capturing the negatively charged particles increases the temperature, A metal with a high melting point is preferable because it is a small material and prevents film contamination due to evaporation.

また、静止対向型直流マグネトロンスパッタ装置に限ら
ず、通過型直流マグネトロンスパッタ装置に於いても同
様な効果が得られることは言うまでもない。
Furthermore, it goes without saying that similar effects can be obtained not only in a stationary opposing type DC magnetron sputtering apparatus but also in a passing type DC magnetron sputtering apparatus.

[発明の効果] 以上述べたように本発明によれば、従来に比べ低比抵抗
のITO膜を低温で得ることができ、大型液晶パネル及
びカラー表示等の品質を向上させることが出来る。さら
に、異常放電痕による不良発生がなくなり、歩留りを向
上させ、パネルコストを低下できるという効果を有する
[Effects of the Invention] As described above, according to the present invention, it is possible to obtain an ITO film with a lower specific resistance at a lower temperature than in the past, and it is possible to improve the quality of large liquid crystal panels, color displays, etc. Furthermore, the occurrence of defects due to abnormal discharge traces is eliminated, yields are improved, and panel costs can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の第1実施例による直流マグネトロン
スパッタ装置構成断面図である。 第2図は、実施例の作用を説明するためのグラフである
。 第3図は、実施例の作用を説明するためのグラフである
。 第4図は、実施例の作用を説明するためのグラフである
。 第5図は、本発明の第2実施例によるマグネトロンスパ
ッタ装置構成断面図である。 第6図は、従来例の直流マグネトロンスパッタ装置構成
断面図である。 l・・・・・・ITOターゲット 被成膜基板 基板ホルダー 真空容器 直流電源 マグネット 負荷電粒子捕捉用電極 以上 出願人 セイコーエプソン株式会社 代理人 弁理士 鈴 木 喜三部(他1名)急?2m!
オ立う−i由゛十足用嘆ン本i師11a電斤 [V] 第 第 図 第 図 汀妙 弔 霞
FIG. 1 is a sectional view of the structure of a DC magnetron sputtering apparatus according to a first embodiment of the present invention. FIG. 2 is a graph for explaining the effect of the embodiment. FIG. 3 is a graph for explaining the effect of the embodiment. FIG. 4 is a graph for explaining the effect of the embodiment. FIG. 5 is a sectional view of the structure of a magnetron sputtering apparatus according to a second embodiment of the present invention. FIG. 6 is a sectional view of the configuration of a conventional DC magnetron sputtering apparatus. ITO target Substrate to be deposited Substrate holder Vacuum container DC power supply Magnet Electrode for capturing negatively charged particles Applicant Seiko Epson Corporation Representative Patent attorney Kizobe Suzuki (1 other person) Urgent? 2m!
Standing up - i Yujuku for 11a Denka [V]

Claims (2)

【特許請求の範囲】[Claims] (1)直流マグネトロンスパッタに於いて、ターゲット
近傍に発生するプラズマから被成膜基板に突入してくる
負荷電粒子を、前記被成膜基板の前段で捕捉し、前記負
荷電粒子の前記被成膜基板突入を防止しながら成膜する
ことを特徴とした透明導電膜の形成方法。
(1) In DC magnetron sputtering, negatively charged particles that rush into the substrate to be film-formed from plasma generated near the target are captured at a stage before the substrate to be film-formed, and the negatively charged particles are A method for forming a transparent conductive film characterized by forming the film while preventing the film from penetrating into the substrate.
(2)前記ターゲットと該ターゲットに対向している前
記被成膜基板との間に、負荷電粒子捕捉用電極を具備し
、前記負荷電粒子捕捉用電極を接地電位または正電位に
保持する手段を具備することを特徴とする透明導電膜の
形成装置。
(2) A means for providing a negatively charged particle trapping electrode between the target and the film forming substrate facing the target, and maintaining the negatively charged particle trapping electrode at a ground potential or a positive potential. An apparatus for forming a transparent conductive film, comprising:
JP10338790A 1990-04-19 1990-04-19 Method and apparatus for formation of transparent conductive film Pending JPH042774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10338790A JPH042774A (en) 1990-04-19 1990-04-19 Method and apparatus for formation of transparent conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10338790A JPH042774A (en) 1990-04-19 1990-04-19 Method and apparatus for formation of transparent conductive film

Publications (1)

Publication Number Publication Date
JPH042774A true JPH042774A (en) 1992-01-07

Family

ID=14352669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10338790A Pending JPH042774A (en) 1990-04-19 1990-04-19 Method and apparatus for formation of transparent conductive film

Country Status (1)

Country Link
JP (1) JPH042774A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002129320A (en) * 2000-10-24 2002-05-09 Ulvac Japan Ltd Method and apparatus for sputtering

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002129320A (en) * 2000-10-24 2002-05-09 Ulvac Japan Ltd Method and apparatus for sputtering
JP4553476B2 (en) * 2000-10-24 2010-09-29 株式会社アルバック Sputtering method and sputtering apparatus

Similar Documents

Publication Publication Date Title
US8728285B2 (en) Transparent conductive oxides
JP4597661B2 (en) Plasma processing chamber
KR100757528B1 (en) Plasma processing method and plasma processing apparatus
US4046660A (en) Sputter coating with charged particle flux control
US4362611A (en) Quadrupole R.F. sputtering system having an anode/cathode shield and a floating target shield
TW460599B (en) Method for forming fine wiring pattern
US20210151585A1 (en) Method for producing thin film transistor
JP4240471B2 (en) Method for forming transparent conductive film
US4802968A (en) RF plasma processing apparatus
US6488820B1 (en) Method and apparatus for reducing migration of conductive material on a component
JPH042774A (en) Method and apparatus for formation of transparent conductive film
US6495000B1 (en) System and method for DC sputtering oxide films with a finned anode
JP3686540B2 (en) Manufacturing method of electronic device
JP2006118004A (en) Substrate treatment device, method for monitoring generation of arcing in substrate treatment device, method for depositing tungsten thin film and tungsten thin film depositing device
JPH09170077A (en) Vacuum treatment chamber, magnetron apparatus for vacuum chamber and vacuum sputtering method
CN104213089B (en) Magnetron sputtering apparatus and magnetically controlled sputter method
JP5213739B2 (en) Equipment for processing substrates
JP2006117995A (en) Sputtering apparatus
JP5295994B2 (en) Substrate processing apparatus and arcing occurrence monitoring method in substrate processing apparatus
KR20010089674A (en) Physical vapor deposition of semiconducting and insulating materials
JP5302916B2 (en) Substrate processing equipment
Kitabayashi et al. Charging of glass substrate by plasma exposure
KR20150102564A (en) Sputtering apparatus having insulator for preventing deposition
JPH049465A (en) Method and device for controlling dc potential in thin film forming device
Ma et al. High field characteristics of thin-film metal electrodes