JPH04276700A - Radio wave anechoic chamber - Google Patents

Radio wave anechoic chamber

Info

Publication number
JPH04276700A
JPH04276700A JP3821191A JP3821191A JPH04276700A JP H04276700 A JPH04276700 A JP H04276700A JP 3821191 A JP3821191 A JP 3821191A JP 3821191 A JP3821191 A JP 3821191A JP H04276700 A JPH04276700 A JP H04276700A
Authority
JP
Japan
Prior art keywords
radio wave
floor
anechoic chamber
approximately
antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3821191A
Other languages
Japanese (ja)
Inventor
Nobufumi Miyahara
宮原 信文
Kuniyasu Kaneki
金木 邦保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanki Denshi Kogyo KK
Original Assignee
Sanki Denshi Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanki Denshi Kogyo KK filed Critical Sanki Denshi Kogyo KK
Priority to JP3821191A priority Critical patent/JPH04276700A/en
Publication of JPH04276700A publication Critical patent/JPH04276700A/en
Pending legal-status Critical Current

Links

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

PURPOSE:To provide a radio wave anechoic chamber in which a volume and an installation area are relatively small, a composite wave of a direct wave and a reflected wave from a floor can be measured and an accurately measured value can be obtained. CONSTITUTION:A radio wave reflecting plate 2 is provided on a floor, and radio wave reflecting plates 31, 32, 33, 34 in which a lower edge is brought into contact with the reflecting surface of the plate 2 and the surface is formed obliquely upward, are provided on an entire inner side of the inner wall of a peripheral wall electromagnetically opened at its top to constitute a radio wave dark chamber. In the chamber, when a trial unit 5 and an antenna 4 are provided at a suitable interval, part of electromagnetic noise radiated from the unit 4 directly reaches the antenna 4, and the noise directed toward a floor is reflected on the plate 2 so that the part reaches the antenna 4. Part of the noise radiated from the unit 5 and the part of the noise reflected on the plate 2 are reflected toward the top of the chamber via the plates 31, 32, 33, 34, and not returned again to the chamber.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、各種電子機器の電磁場
適合性(ELECTROMAGNETIC COMPA
TIBILITY)、すなわち、各種電子機器が電磁場
環境のもとで、予定された効率で十分動作し得る能力(
以下、ノイズ耐性という)の測定、又は各種電子機器の
内部から発生する電磁雑音による電磁障害(ELECT
ROMAGNETIC INTERFERENCE) 
等の測定を行って、電磁環境対策の資料を得るため等に
用いられる電波暗室(電波無反射室)に関するものであ
る。
[Industrial Application Field] The present invention relates to electromagnetic field compatibility of various electronic devices (ELECTROMAGNETIC COMPA).
TIBILITY), that is, the ability of various electronic devices to operate satisfactorily at a planned efficiency in an electromagnetic field environment (
Measurement of electromagnetic interference (hereinafter referred to as noise tolerance) or electromagnetic interference (ELECT) due to electromagnetic noise generated from inside various electronic devices.
ROMAGNETIC INTERFERENCE)
This relates to a radio anechoic chamber (radio wave non-reflection chamber) that is used to perform measurements such as the above and obtain data on electromagnetic environment countermeasures.

【0002】0002

【従来の技術】前記電磁環境対策の資料を得るために、
従来は、米国連邦通信委員会(F.C.C)の勧告規格
による屋外測定場(オープンエリアテストサイト)が用
いられており、又、前記屋外測定場におけると同等の測
定を行い得るように構成された屋内測定場、すなわち、
周壁の内面全域及び天井壁面全域に、例えば発泡ポリエ
チレン中に適量の炭素を含ませて角錐状に形成した電波
吸収体を設けて構成された電波暗室が用いられている。
[Prior Art] In order to obtain data on the electromagnetic environment countermeasures,
Conventionally, outdoor measurement sites (open area test sites) based on the recommended standards of the U.S. Federal Communications Commission (FCC) have been used. The indoor measurement field configured, i.e.
An anechoic chamber is used in which a pyramid-shaped radio wave absorber made of, for example, foamed polyethylene containing an appropriate amount of carbon is provided over the entire inner surface of the peripheral wall and the entire ceiling wall surface.

【0003】更に、前記屋外測定場及び電波暗室におけ
る各欠点を除く目的で、図17に平面図を、図18に図
17のA−A断面図を、図19に図17のB−B断面図
を、それぞれ示すような電波暗室及び図20に図21の
B−B断面図を、図21に図20のA−A断面図を、図
22に図21のC−C断面図を、それぞれ示すような電
波暗室が提案されている(特願昭63−105900号
,特開平2−153598号)。図17ないし図22に
おいて、11は周壁、13は電波反射板、14はアンテ
ナ、15は供試機器、16は供試機器15の載置台、1
7は反射波遮断スクリーン、18は空隙、19は電波吸
収体である。
Furthermore, in order to eliminate various defects in the outdoor measurement field and the anechoic chamber, FIG. 17 shows a plan view, FIG. 18 shows a sectional view taken along line A-A in FIG. 17, and FIG. 20 shows a sectional view taken along the line BB in FIG. 21, FIG. 21 shows a sectional view taken along the AA line in FIG. 20, and FIG. A radio anechoic chamber as shown in FIG. 17 to 22, 11 is a peripheral wall, 13 is a radio wave reflecting plate, 14 is an antenna, 15 is a device under test, 16 is a mounting table for the device under test 15, and 1
7 is a reflected wave blocking screen, 18 is a gap, and 19 is a radio wave absorber.

【0004】0004

【発明が解決しようとする課題】米国連邦通信委員会(
F.C.C)の勧告による屋外測定場の規格の要点を列
記すると、 (1)送信又は受信アンテナと供試機器間の距離:3m
、10m又は30m (2)使用周波数:30MHzないし1000MHz(
3)送信又は受信アンテナと供試機器の環境条件:長軸
が2D(Dは送信又は受信アンテナと供試機器間の距離
)、短軸がほぼ1.732Dのほぼ楕円形の境界線内に
おいて長軸上に送信又は受信アンテナと供試機器を配設
し、送信又は受信アンテナと境界線間の距離及び供試機
器と境界線間の距離をそれぞれD/2とし、境界線の外
側には、なるべく広い範囲にわたって電波反射体が存在
しないような場所を選ぶと共に、境界線内の地面は十分
に平坦であること。 とあるから、いま、送信又は受信アンテナと供試機器間
の距離Dを3mとすると、ほぼ楕円形の境界線の長軸2
Dは6m、短軸はほぼ5.2mとなる。
[Problem to be solved by the invention] United States Federal Communications Commission (
F. C. The main points of the outdoor measurement field standards based on recommendation C) are listed below: (1) Distance between transmitting or receiving antenna and equipment under test: 3 m
, 10m or 30m (2) Usage frequency: 30MHz to 1000MHz (
3) Environmental conditions of the transmitting or receiving antenna and the device under test: Within the border of a nearly elliptical shape with the long axis being 2D (D is the distance between the transmitting or receiving antenna and the device under test) and the short axis being approximately 1.732D. The transmitting or receiving antenna and the device under test are arranged on the long axis, and the distance between the transmitting or receiving antenna and the boundary line and the distance between the device under test and the boundary line are respectively D/2, and the distance outside the boundary line is D/2. , Choose a location where there are no radio wave reflectors over as wide a range as possible, and the ground within the boundaries to be sufficiently flat. Therefore, if the distance D between the transmitting or receiving antenna and the equipment under test is 3 m, then the long axis 2 of the almost elliptical boundary line
D is 6 m, and the short axis is approximately 5.2 m.

【0005】境界線の外側において電波反射体の存在し
ないことを要求される範囲については、なるべく広い範
囲とされているのみで、具体的な数値は示されていない
が、例えば「不要電波対策協議会」発行の「昭和63年
度測定調査報告書」における「測定場の現状と問題点に
関する調査」の項に、実験に使用した屋外測定場に関し
て「この実験に使用した屋外測定場は、大地面に幅約6
m、長さ約36mにわたって鉄板を敷き、……周囲の建
築物等からの反射を避けるための電波無反射領域は規定
通りに確保されているが、その楕円の外側、受信アンテ
ナの後方約20mの所に受信用の三角鉄塔があり、垂直
偏波の測定時に多少の反射妨害を与えることが懸念され
る程度である。」との記載があり、これを参考として楕
円境界線の外側20mの範囲内に電波反射体の存在しな
い領域を想定し、この領域を含んで屋外測定場の所要面
積を、計算の便宜上、所要面積の形状を矩形として求め
て見ると、 長辺=6m+20m×2=46m 短辺≒5.2m+20m×2=45.2mしたがって、
所要面積は 46m×45.2m≒2080m2 となる。
[0005] Regarding the area outside the boundary line where the absence of radio wave reflectors is required, it is only stated that it is as wide as possible, and no specific numerical value is given. Regarding the outdoor measuring field used in the experiment, in the ``FY1986 Measurement Survey Report'' published by the ``Measurement Survey Report'', there is a statement regarding the outdoor measuring field used for the experiment: ``The outdoor measuring field used for this experiment was located on the ground surface. Width approx. 6
A steel plate is laid over a length of approximately 36 m, and a non-reflective area for radio waves is secured as specified to avoid reflection from surrounding buildings, etc., but the area outside the ellipse, approximately 20 m behind the receiving antenna. There is a triangular receiving tower at the site, and there is some concern that it may cause some reflected interference when measuring vertically polarized waves. ”, and using this as a reference, assume an area where there are no radio wave reflectors within a range of 20 meters outside the ellipse boundary line, and calculate the required area of the outdoor measurement site including this area for convenience of calculation. If we look at the shape of the area as a rectangle, the long side = 6m + 20m x 2 = 46m, the short side = 5.2m + 20m x 2 = 45.2m. Therefore,
The required area is 46m x 45.2m ≒ 2080m2.

【0006】比較的狭く設定したと思われる場合におい
ても、前述のような広い面積を必要とする屋外測定場の
欠陥に鑑みて提案実用されている屋内測定場、すなわち
、角錐状の電波吸収体を、周壁の内面全域及び天井壁面
の全域に設けて成る電波暗室においても、次のような問
題がある。米国連邦通信委員会(F.C.C)の勧告に
基づいて、電波暗室内において、各種電子機器のノイズ
耐性又は各種電子機器の内部から放射される電磁雑音に
よる電磁障害等の測定を行う場合、現に使用されている
電波の周波数は、ほぼ30MHzからほぼ1000MH
z(波長で、ほぼ10メートルからほぼ0.3メートル
)の範囲であるから、電波暗室の周壁の内面全域及び天
井壁面の全域に設けられる角錐状の電波吸収体の高さは
、電波の最大波長の1/2から1/4の高さ(ほぼ5m
からほぼ2.5m)が必要で、個々の電波吸収体が大形
となるから、電波暗室の容積も大となり、電波暗室を建
設するために要する敷地面積もまた比較的大となる問題
がある。
[0006] Even when the setting is considered to be relatively narrow, in view of the drawbacks of outdoor measurement sites that require a large area as described above, an indoor measurement site has been proposed and put into practical use, that is, a pyramid-shaped radio wave absorber. Even in an anechoic chamber that is provided over the entire inner surface of the peripheral wall and the entire ceiling wall surface, there are the following problems. When measuring the noise resistance of various electronic devices or electromagnetic interference due to electromagnetic noise emitted from inside various electronic devices in an anechoic chamber based on the recommendations of the U.S. Federal Communications Commission (FCC). The frequency of radio waves currently in use ranges from approximately 30MHz to approximately 1000MHz.
z (in terms of wavelength, from approximately 10 meters to approximately 0.3 meters), the height of the pyramid-shaped radio wave absorber provided on the entire inner surface of the peripheral wall and the entire ceiling wall of the anechoic chamber is the maximum of the radio wave. The height is 1/2 to 1/4 of the wavelength (approximately 5 m)
Since each radio wave absorber is large in size, the volume of the anechoic chamber is also large, and the site area required to construct the anechoic chamber is also relatively large. .

【0007】屋外測定場及び前記電波暗室に比し、所要
面積を更に小ならしめることを目的の一つとして提案さ
れた電波暗室、すなわち、図17ないし図22に示した
電波暗室においても以下述べるような問題がある。図1
7ないし図22に示した電波暗室については、例えば供
試機器15において発生放射された電波のうち、直接ア
ンテナ14に到達する電波以外の電波は、反射波遮断ス
クリーン17及び電波反射板13で反射されて上方に向
かい、天井に設けた電波に対する吹き抜け部分から天空
に向かい、又は天井に設けた電波吸収体19に吸収され
て電波暗室内に再び戻ることがないから、供試機器15
からアンテナ14に達する電波は直接波のみとなると説
明されている。
The anechoic chambers shown in FIGS. 17 to 22, which have been proposed for the purpose of further reducing the required area compared to the outdoor measurement field and the anechoic chamber described above, will also be described below. There is a problem like this. Figure 1
Regarding the radio wave anechoic chambers shown in FIGS. 7 to 22, for example, among the radio waves generated and radiated by the device under test 15, radio waves other than those that directly reach the antenna 14 are reflected by the reflected wave blocking screen 17 and the radio wave reflecting plate 13. The device under test 15 will not travel upwards through the ceiling-mounted atrium for radio waves toward the sky, or will be absorbed by the radio-wave absorber 19 mounted on the ceiling and return to the anechoic chamber.
It is explained that the radio waves that reach the antenna 14 are only direct waves.

【0008】図23は、UHF帯における前記電波暗室
(図17ないし図19に示した電波暗室)の伝送減衰特
性の実測値の一例を、直接波の自由空間理論値と比較し
て示した曲線図である。
FIG. 23 is a curve showing an example of actually measured values of the transmission attenuation characteristics of the anechoic chamber (the anechoic chambers shown in FIGS. 17 to 19) in the UHF band in comparison with the free space theoretical value of direct waves. It is a diagram.

【0009】この図は前記電波暗室におけるアンテナ1
4を広帯域アンテナで形成すると共に、供試機器15の
代わりに広帯域アンテナを仮設し、両アンテナ間の距離
を3mに保ち、いずれか一方のアンテナを送信アンテナ
、他方のアンテナを受信アンテナとし、送信側のアンテ
ナ高を1mに、受信側のアンテナ高を1.5mに、それ
ぞれ固定し、電波反射板13の下縁によって囲まれる長
方形の床面の短辺を2.5m、長辺を7mに形成し、こ
の床面の短辺に下縁が接する2個の電波反射板の床面に
対する各傾斜角(以下、単に傾斜角と記載する)を45
°、床面の長辺に下縁が接する2個の電波反射板の各傾
斜角を60°となし、送信側から300MHzないし1
000MHzの電波(水平偏波)を一定出力で放射し、
適宜周波数間隔を隔てた各周波数毎の受信電界強度をプ
ロットして得られたもので、実線は前記電波暗室におけ
る特性、一点鎖線は直接波の自由空間理論値をそれぞれ
示す曲線図で、横軸は周波数fを300MHzないし1
000MHzにわたって等間隔目盛で表わし、縦軸は減
衰量ATT(dB)である。
This figure shows the antenna 1 in the anechoic chamber.
4 is formed by a broadband antenna, and a broadband antenna is temporarily installed in place of the equipment under test 15, the distance between both antennas is kept at 3 m, and one of the antennas is used as a transmitting antenna and the other antenna as a receiving antenna. The height of the side antenna is fixed at 1 m, and the height of the receiving side antenna is fixed at 1.5 m. The short side of the rectangular floor surrounded by the lower edge of the radio wave reflector 13 is set at 2.5 m and the long side at 7 m. The angle of inclination (hereinafter simply referred to as the inclination angle) of the two radio wave reflectors with respect to the floor surface whose lower edges touch the short sides of the floor surface is 45.
°, the angle of inclination of each of the two radio wave reflectors whose lower edges touch the long sides of the floor is 60°, and the frequency from the transmitting side is 300MHz to 1
000MHz radio waves (horizontal polarization) are emitted at a constant output,
It was obtained by plotting the received electric field strength for each frequency separated by an appropriate frequency interval. The solid line is a curve diagram showing the characteristics in the anechoic chamber, the dashed-dotted line is the theoretical free space value of the direct wave, and the horizontal axis is the curve diagram. sets the frequency f to 300MHz or 1
It is expressed on a scale with equal intervals over 000 MHz, and the vertical axis is the attenuation amount ATT (dB).

【0010】図23から明らかなように、UHF帯にお
いては前記電波暗室の特性は直接波の自由空間理論値と
同様の傾向を示す。これは、使用電波の波長に対して前
記電波暗室に設けられた電波反射板13及び反射波遮断
スクリーン17の各寸法が十分に大で、光線とほぼ同様
の反射が行われる結果、反射波遮断スクリーン17によ
って床面からの反射波が有効に反射遮断されると共に、
不要反射波が電波反射波13により反射され、天井の吹
き抜け部分から天空に向って放射されて再び戻ることな
く、したがって、定在波の立つことがないことによるも
のと思われる。しかし、直接波の自由空間理論値に対し
て前記電波暗室における伝送減衰特性の減衰が大で、こ
の理由の詳細は明らかでないが、直接波の一部が反射波
遮断スクリーン17によって遮断される結果ではないか
と思われる。
As is clear from FIG. 23, in the UHF band, the characteristics of the anechoic chamber exhibit a tendency similar to the free space theoretical value of direct waves. This is because the dimensions of the radio wave reflecting plate 13 and the reflected wave blocking screen 17 provided in the anechoic chamber are sufficiently large for the wavelength of the radio waves used, and as a result, the reflected waves are blocked in almost the same way as light beams. The screen 17 effectively reflects and blocks reflected waves from the floor, and
This seems to be because the unnecessary reflected waves are reflected by the radio wave reflected waves 13 and are radiated toward the sky from the atrium of the ceiling and do not return again, so that no standing waves are created. However, the attenuation of the transmission attenuation characteristic in the anechoic chamber is large compared to the free space theoretical value of the direct wave, and although the details of this reason are not clear, it is as a result that a part of the direct wave is blocked by the reflected wave blocking screen 17. I think so.

【0011】この推定が正しいとすれば、反射波遮断ス
クリーン17の開口部の形状寸法及び反射波遮断スクリ
ーン17の設置個所等を適宜調整して最適条件を見出す
ことにより、減衰特性を改善する可能性があるものと思
われる。
If this estimation is correct, it is possible to improve the attenuation characteristics by appropriately adjusting the shape and dimensions of the opening of the reflected wave blocking screen 17 and the installation location of the reflected wave blocking screen 17 to find optimal conditions. It seems that there is something sexual.

【0012】反射波遮断スクリーン17の開口部の形状
寸法及び反射波遮断スクリーン17の設置個所等の最適
条件を見出して減衰特性を改善することは、電波反射源
がアンテナのように点放射源である場合には可能である
が、供試機器15において発生放射される電磁雑音によ
る電磁障害測定を行う場合には実際上不可能である。
[0012] Improving the attenuation characteristics by finding the optimum conditions such as the shape and dimensions of the opening of the reflected wave blocking screen 17 and the installation location of the reflected wave blocking screen 17 is possible if the radio wave reflecting source is a point radiation source such as an antenna. Although this is possible in some cases, it is practically impossible when measuring electromagnetic interference due to electromagnetic noise generated and radiated by the equipment under test 15.

【0013】すなわち、電子機器の形状寸法は電子機器
の種類によって異なるばかりでなく、同一種類の電子機
器の場合においても電磁雑音の漏洩放射源が一定個所と
は限られず、更に、この漏洩放射源は点放射源ではなく
一般に面放射源であるから、反射波遮断スクリーン17
の開口部の形状寸法及び反射波遮断スクリーン17の設
置個所等の最適条件を求めることは不可能に近く、仮に
、供試機器毎の最適条件を求め得たとしても、供試機器
毎に反射波遮断スクリーン17を取り換えることは実際
上不可能で、反射波遮断スクリーン17による直接波の
一部遮断に基づく測定誤差を除くことはできない。
[0013] In other words, not only do the shapes and dimensions of electronic equipment differ depending on the type of electronic equipment, but even in the case of electronic equipment of the same type, the leakage radiation source of electromagnetic noise is not limited to a fixed location; is generally a surface radiation source rather than a point radiation source, so the reflected wave blocking screen 17
It is almost impossible to determine the optimal conditions such as the shape and dimensions of the opening and the installation location of the reflected wave blocking screen 17. Even if it were possible to determine the optimal conditions for each device under test, the reflection It is practically impossible to replace the wave blocking screen 17, and measurement errors due to the partial blocking of direct waves by the reflected wave blocking screen 17 cannot be eliminated.

【0014】ところで、各種電子機器からの漏洩放射電
磁雑音の規制限界値は、屋外測定場における測定値、す
なわち、直接波と床面からの反射波との合成波で示され
ている。したがって、床面からの反射波を遮断するため
の反射波遮断スクリーンを設けた前記電波暗室によって
供試機器からの漏洩放射電磁雑音を測定する場合には、
その測定値は直接波のみの測定値であるから、この測定
値に床面からの反射波成分に相当する値を付加して補正
を行う必要がある。
[0014] By the way, the regulatory limit values for leakage and radiation electromagnetic noise from various electronic devices are indicated by measured values at outdoor measurement sites, that is, composite waves of direct waves and reflected waves from the floor surface. Therefore, when measuring leakage radiated electromagnetic noise from the equipment under test using the anechoic chamber equipped with a screen for blocking reflected waves from the floor surface,
Since the measured value is a measured value of only direct waves, it is necessary to perform correction by adding a value corresponding to the reflected wave component from the floor surface to this measured value.

【0015】しかしながら、放射源がアンテナのように
、点放射源で放射源の位置も特定されているような場合
には、放射源が点放射源である場合の実測値又は放射源
を点放射源であるとして求めた理論値を付加することに
よって補正が可能であるが、各種電子機器からの漏洩放
射電磁雑音の測定の場合のように、電子機器の形状寸法
及び放射源の位置が一定でないばかりか、放射源が点放
射源ではなく面放射源の場合には、点放射源からの放射
波の実測値又は放射源を点放射源として求めた理論計算
値を、そのまま補正値とすることは適当でないとするの
が定説となっており、これを受けて、国際電気標準会議
(IEC)の下部組織である国際無線障害特別委員会(
CISPR)で定めた国際規格Pub.16においても
、「サイトアッテネーション特性の実測値と理論値間の
差異は、サイトの適否に対してのみ用いるべきで、実測
された供試機器の放射値に対する補正値として用いては
ならない。」と明記されている。
However, when the radiation source is a point radiation source such as an antenna, and the position of the radiation source is also specified, the actual measurement value when the radiation source is a point radiation source or the point radiation source is Correction is possible by adding a theoretical value determined as a source, but as in the case of measuring leakage radiated electromagnetic noise from various electronic devices, the shape and dimensions of the electronic device and the position of the radiation source are not constant. In addition, if the radiation source is not a point radiation source but a surface radiation source, the actual measured value of the radiation wave from the point radiation source or the theoretically calculated value obtained from the radiation source as a point radiation source should be used as the correction value. In response to this, the International Special Committee on Radio Interference (IEC), a subordinate organization of the International Electrotechnical Commission (IEC),
International standard Pub. 16, ``The difference between the measured value and the theoretical value of the site attenuation characteristics should be used only for the suitability of the site, and should not be used as a correction value for the actually measured radiation value of the equipment under test.'' It is clearly stated.

【0016】したがって、各種電子機器から放射される
電磁雑音の測定は、床面反射のある測定場で測定するこ
とが義務付けられることとなり、反射波遮断スクリーン
を設けて床面からの反射波を遮断するように構成した図
17ないし図22に示した電波暗室は、各種電子機器か
ら放射される電磁雑音の測定には不適である。
[0016] Therefore, when measuring electromagnetic noise emitted from various electronic devices, it is mandatory to measure it in a measurement field where there is reflection from the floor, and it is necessary to install a reflected wave blocking screen to block the reflected waves from the floor. The anechoic chambers shown in FIGS. 17 to 22 configured to do this are unsuitable for measuring electromagnetic noise emitted from various electronic devices.

【0017】図24は、図17ないし図19に示した電
波暗室のVHF帯における伝送減衰特性の一例を示す実
測値に基づく曲線図で、使用電波の周波数が30MHz
ないし300MHz(波長で10mないし1m)である
他は、図23に示した伝送減衰特性の測定時と同一条件
で測定したもので、横軸は周波数f(MHz)、縦軸は
減衰量ATT(dB)である。
FIG. 24 is a curve diagram based on actual measurements showing an example of the transmission attenuation characteristics in the VHF band of the anechoic chamber shown in FIGS. 17 to 19, where the frequency of the radio waves used is 30 MHz.
to 300 MHz (10 m to 1 m in wavelength), measurements were made under the same conditions as when measuring the transmission attenuation characteristics shown in Fig. 23. The horizontal axis is the frequency f (MHz), and the vertical axis is the attenuation amount ATT ( dB).

【0018】図25は、図17ないし図19に示した電
波暗室のVHF帯における伝送特性の一例を示す実測値
に基づく曲線図で、床面の短辺を2m、長辺を7mに形
成した他は、図24に示した伝送減衰特性の測定時と同
一条件で測定した結果で、横軸は周波数f(MHz)、
縦軸は相対利得G(dB)である。
FIG. 25 is a curve diagram based on actual measurements showing an example of the transmission characteristics in the VHF band of the anechoic chamber shown in FIGS. 17 to 19, in which the short side of the floor surface is 2 m and the long side is 7 m. The other results are the results measured under the same conditions as when measuring the transmission attenuation characteristics shown in Figure 24, where the horizontal axis is the frequency f (MHz),
The vertical axis is relative gain G (dB).

【0019】図26もまた図17ないし図19に示した
電波暗室のVHF帯における伝送特性の一例を示す実測
値に基づく曲線図で、送信側及び受信側の両アンテナ高
を、それぞれ1mに固定した他は、図25に示した伝送
特性の測定時と同一条件で測定した結果で、横軸及び縦
軸は図25と同様である。
FIG. 26 is also a curve diagram based on actual measurements showing an example of the transmission characteristics in the VHF band of the anechoic chamber shown in FIGS. Other than that, the results were measured under the same conditions as when measuring the transmission characteristics shown in FIG. 25, and the horizontal and vertical axes are the same as in FIG. 25.

【0020】図24ないし図26から明らかなように、
アンテナ高及び床面の寸法を変えて測定したいずれの場
合にも、特性曲線には減衰の大きなうねりと多数の特定
周波数において鋭い減衰ピークが認められる。
As is clear from FIGS. 24 to 26,
In all cases where measurements were taken with different antenna heights and floor dimensions, large attenuation undulations and sharp attenuation peaks at a number of specific frequencies were observed in the characteristic curves.

【0021】これは電波反射板13及び反射波遮断スク
リーン17の各寸法が、使用電波の波長に極めて近いか
、波長より小なるために、電波反射板13及び反射波遮
断スクリーン17における電波の反射が、光線の反射と
同様とはならず、その結果、不要反射波のすべてが天井
の吹き抜け部分から天空へ放射されることなく、又、天
井に設けた電波吸収体19に不要反射波のすべてが吸収
されることなく、電波暗室内に残留した不要乱反射成分
の干渉によるものと思われ、このような伝送減衰特性で
は、各種電子機器から漏洩放射される電磁雑音の測定評
価に利用することはできない。
This is because the dimensions of the radio wave reflecting plate 13 and the reflected wave blocking screen 17 are very close to or smaller than the wavelength of the radio waves being used, so that the radio wave reflection on the radio wave reflecting plate 13 and the reflected wave blocking screen 17 is extremely small. However, the reflection is not the same as that of a light ray, and as a result, all of the unnecessary reflected waves are not radiated to the sky from the ceiling atrium, and all of the unnecessary reflected waves are not radiated to the sky from the ceiling atrium. This is thought to be due to the interference of unnecessary diffuse reflection components remaining in the anechoic chamber without being absorbed.With such transmission attenuation characteristics, it is difficult to use them for measuring and evaluating electromagnetic noise leaked and radiated from various electronic devices. Can not.

【0022】前記従来の電波暗室は、各種電子機器のノ
イズ耐性の測定にも不適である。すなわち、国際電気標
準会議(IEC)においては、各種電子機器のノイズ耐
性の測定を行う場合には、電波完全無響室を用いるか、
又は、周壁及び天井に電波吸収体を設け、床面には電波
反射板を設けて成る電波半無響室を用いる場合には、床
面に設けた電波反射板の上に電波吸収体を並べて測定を
行うように勧めている。
The conventional anechoic chamber is also unsuitable for measuring the noise resistance of various electronic devices. In other words, the International Electrotechnical Commission (IEC) recommends that when measuring the noise resistance of various electronic devices, a completely anechoic chamber should be used;
Alternatively, when using a semi-anechoic chamber with radio wave absorbers on the surrounding walls and ceiling and a radio wave reflector on the floor, arrange the radio wave absorbers on the radio wave reflector on the floor. We recommend that you take measurements.

【0023】これは、放射アンテナに面する供試機器の
表面を含む垂直面内の電界強度を規定値±3dB以内に
おいて均一ならしめるためであるが、前記従来の電波暗
室のうち、図20ないし図22に示した電波暗室の床面
に電波吸収体を設けたとしても、使用電波の周波数が3
00MHz以下の場合には、前述の理由によって不要電
波のすべてが天井に設けた電波吸収体19に吸収される
ことなく、電波暗室内に残留した不要乱反射成分の干渉
によって電界の均一性を保持することが不可能で、各種
電子機器のノイズ耐性の測定には不適である。
This is to make the electric field strength in the vertical plane including the surface of the equipment under test facing the radiation antenna uniform within the specified value ±3 dB. Even if a radio wave absorber is installed on the floor of the anechoic chamber shown in Figure 22, the frequency of the radio waves used is 3.
In the case of 00 MHz or less, for the above-mentioned reason, all unnecessary radio waves are not absorbed by the radio wave absorber 19 installed on the ceiling, and the uniformity of the electric field is maintained by the interference of unnecessary diffuse reflection components remaining in the anechoic chamber. Therefore, it is not suitable for measuring the noise immunity of various electronic devices.

【0024】本発明は、このような問題を解消するため
なされたもので、容積や敷地面積が比較的小さく、直接
波と床面からの反射波との合成波が測定でき、正確な測
定値が得られる電波暗室を提供することを目的とするも
のである。
The present invention has been made to solve these problems, and has a relatively small volume and site area, can measure a composite wave of direct waves and reflected waves from the floor surface, and can provide accurate measurement values. The purpose of this is to provide an anechoic chamber in which the following can be obtained.

【0025】[0025]

【課題を解決するための手段】本発明は、前記目的を達
成するため、図17ないし図22に示した従来の電波暗
室におけるような反射波遮断スクリーンを設けることな
く、寸法の比較的大なる電波反射板を床面に設けると共
に、周壁の内側全域に反射面を斜め上向きにした電波反
射板を設けるもので、詳しくは電波暗室を次の(1)な
いし(8)のとおりに構成するものである。
[Means for Solving the Problems] In order to achieve the above-mentioned object, the present invention provides a relatively large-sized anechoic chamber without providing a reflected wave blocking screen as in the conventional anechoic chambers shown in FIGS. 17 to 22. In addition to installing a radio wave reflecting plate on the floor, a radio wave reflecting plate with the reflecting surface facing diagonally upward is provided all over the inside of the surrounding wall, and in detail, the anechoic chamber is configured as shown in (1) to (8) below. It is.

【0026】(1)床面に設けた電波反射板と、上部を
電磁気的に開放した周壁の内側全域に、下縁を前記床面
に設けた電波反射板の反射面に接触せしめ反射面を斜め
上向きにして設けた電波反射板とを備えた電波暗室。
(1) A radio wave reflecting plate provided on the floor surface and a reflective surface are formed on the entire inner side of the peripheral wall whose upper part is electromagnetically open, by making the lower edge contact the reflecting surface of the radio wave reflecting plate provided on the floor surface. A radio anechoic chamber equipped with a radio wave reflector that is oriented diagonally upward.

【0027】(2)床面に設けた電波反射板の反射面を
、短辺がほぼ3.375m以上、長辺がほぼ8m以上の
長方形に形成した前記(1)記載の電波暗室。
(2) The radio anechoic chamber according to (1) above, wherein the reflecting surface of the radio wave reflecting plate provided on the floor is formed into a rectangle with a short side of about 3.375 m or more and a long side of about 8 m or more.

【0028】(3)反射面を斜め上向きにして設けた電
波反射板の床面に対する傾斜角を、ほぼ25°ないしほ
ぼ70°の間に設定した前記(1)記載の電波暗室。
(3) The radio anechoic chamber according to (1) above, wherein the angle of inclination of the radio wave reflecting plate with respect to the floor surface, which is provided with the reflective surface facing diagonally upward, is set between approximately 25° and approximately 70°.

【0029】(4)床面に設けた電波反射板の反射面を
、短辺がほぼ3.375m、長辺がほぼ8mの長方形に
形成し、反射面を斜め上向きにして設けた電波反射板の
うち、下縁が前記床面に設けた電波反射板における反射
面の短辺に接触する電波反射板の床面に対する傾斜角を
ほぼ45°に、下縁が前記床面に設けた電波反射板にお
ける反射面の長辺に接触する電波反射板の床面に対する
傾斜角をほぼ60°に、それぞれ形成した前記(1)記
載の電波暗室。
(4) The radio wave reflector provided on the floor has a rectangular reflecting surface with a short side of about 3.375 m and a long side of about 8 m, with the reflecting surface facing diagonally upward. Among them, the radio wave reflecting plate whose lower edge is in contact with the short side of the reflecting surface of the radio wave reflecting plate provided on the floor surface has an inclination angle of approximately 45° with respect to the floor surface, and the lower edge is provided on the floor surface. The radio wave anechoic chamber according to (1) above, wherein the radio wave reflecting plates that contact the long sides of the reflecting surfaces of the plates are formed with an inclination angle of approximately 60° with respect to the floor surface.

【0030】(5)床面に設けた電波反射板と、周壁の
内側全域に、下縁を前記床面に設けた電波反射板の反射
面に接触せしめ反射面を斜め上向きにして設けた電波反
射板と、天井壁面全域に設けた電波吸収体とを備えた電
波暗室。
(5) A radio wave reflector provided on the floor and a radio wave provided throughout the inner side of the peripheral wall with the lower edge in contact with the reflective surface of the radio wave reflector provided on the floor with the reflective surface facing diagonally upward. An anechoic chamber equipped with a reflector and a radio wave absorber installed on the entire ceiling and wall surface.

【0031】(6)床面に設けた電波反射板の反射面を
、短辺がほぼ3.375m以上、長辺がほぼ8m以上の
長方形に形成した前記(5)記載の電波暗室。
(6) The radio wave anechoic chamber according to (5) above, wherein the reflecting surface of the radio wave reflecting plate provided on the floor is formed into a rectangle with a short side of about 3.375 m or more and a long side of about 8 m or more.

【0032】(7)反射面を斜め上向きにして設けた電
波反射板の床面に対する傾斜角を、ほぼ25°ないしほ
ぼ70°の間に設定した前記(5)記載の電波暗室。
(7) The radio anechoic chamber according to (5) above, wherein the angle of inclination of the radio wave reflecting plate with respect to the floor surface, which is provided with the reflective surface facing diagonally upward, is set between approximately 25° and approximately 70°.

【0033】(8)床面に設けた電波反射板の反射面を
、短辺がほぼ3,375m、長辺がほぼ8mの長方形に
形成し、反射面を斜め上向きにして設けた電波反射板の
うち、下縁が前記床面に設けた電波反射板における反射
面の短辺に接触する電波反射板の床面に対する傾斜角を
ほぼ45°に、下縁が前記床面に設けた電波反射板にお
ける反射面の長辺に接触する電波反射板の床面に対する
傾斜角をほぼ60°に、それぞれ形成した前記(5)記
載の電波暗室。
(8) The radio wave reflector provided on the floor has a rectangular reflecting surface with a short side of about 3,375 m and a long side of about 8 m, with the reflecting surface facing diagonally upward. Among them, the radio wave reflecting plate whose lower edge is in contact with the short side of the reflecting surface of the radio wave reflecting plate provided on the floor surface has an inclination angle of approximately 45° with respect to the floor surface, and the lower edge is provided on the floor surface. The radio wave anechoic chamber according to (5) above, wherein the radio wave reflecting plates in contact with the long sides of the reflecting surfaces of the plates are formed at an angle of inclination of approximately 60° with respect to the floor surface.

【0034】[0034]

【作用】前記(1)ないし(8)の構成によれば、その
電波暗室内に供試機器及びアンテナを互いに適宜間隔を
隔てて設けると、供試機器内において発生放射された電
磁雑音(電波)の一部は、アンテナに直接到達するとと
もに、床面に向かった電磁雑音は床面に設けた電波反射
板で反射されその一部はアンテナに到達する。又、供試
機器から放射された電磁雑音の一部及び床面に設けた電
波反射板で反射された電磁雑音の一部は、周壁の内側全
域に反射面を斜め上向きにして設けた電波反射板により
、電波暗室の上部に向かって反射される。
[Operation] According to the configurations (1) to (8) above, when the equipment under test and the antenna are installed at appropriate intervals in the anechoic chamber, electromagnetic noise (radio wave ) reaches the antenna directly, and electromagnetic noise directed toward the floor is reflected by a radio wave reflector installed on the floor, and a portion of it reaches the antenna. In addition, part of the electromagnetic noise emitted from the equipment under test and part of the electromagnetic noise reflected by the radio wave reflection plate installed on the floor surface can be absorbed by a radio wave reflection plate installed inside the surrounding wall with the reflective surface facing diagonally upward. The light is reflected by the plate toward the top of the anechoic chamber.

【0035】そして(1)ないし(4)の場合には、電
波暗室の上部に向かった反射波は上部開放部から天空に
放射されるが、天空は電波の理想的な吸収体であるから
上方に向った反射波が再び電波暗室内に戻ることはない
。又、(5)ないし(8)の場合には、電波暗室の上部
に向かった反射波は、電波吸収体に吸収されることとな
る。
In cases (1) to (4), the reflected waves toward the top of the anechoic chamber are radiated to the sky from the open top, but since the sky is an ideal absorber of radio waves, the waves are radiated upward. The reflected waves heading toward the anechoic chamber will never return to the anechoic chamber. Furthermore, in cases (5) to (8), the reflected waves directed toward the top of the anechoic chamber will be absorbed by the radio wave absorber.

【0036】[0036]

【実施例】以下本発明を実施例により詳しく説明する。 図1は、本発明の第1実施例である“電波暗室”の平面
図、図2は、図1のA−A断面図、図3は、図1のB−
B断面図で、各図において、1は電波暗室の周壁、2は
床面に設けた電波反射板、31 ないし34 は周壁1
の内側全域に反射面を斜め上向きにして設けた電波反射
板、4は高さの調整可能なアンテナで、図には棒状アン
テナを例示してあるが、例えばバイコニカルアンテナ又
はログペリオディックアンテナ等任意の広帯域アンテナ
を用いることができる。5は供試機器、6は供試機器5
の載置台で、例えば絶縁体によって形成されたターンテ
ーブルより成る。
[Examples] The present invention will be explained in detail below using examples. 1 is a plan view of an "anechoic chamber" which is a first embodiment of the present invention, FIG. 2 is a sectional view taken along line AA in FIG. 1, and FIG. 3 is a sectional view taken along line B--
In each figure, 1 is the peripheral wall of the anechoic chamber, 2 is the radio wave reflecting plate provided on the floor, and 31 to 34 are the peripheral walls 1.
4 is a height-adjustable antenna, such as a biconical antenna or a log periodic antenna, although a rod-shaped antenna is shown as an example in the figure. Any wideband antenna can be used. 5 is the device under test, 6 is the device under test 5
The mounting table is made of, for example, a turntable made of an insulator.

【0037】電波反射板31 ないし34 の傾斜角は
、角度が小なるほど、又、反射面の上縁の高さが高いほ
ど電磁気的効果を大ならしめることができる。しかしな
がら、経済性を考慮すると、電波反射板31 ないし3
4 の傾斜角をほぼ25°からほぼ70°の間に選ぶこ
とが望ましく、又、反射面の上縁の高さはアンテナ4の
上縁より適宜高くなるように形成する。電波反射板31
 ないし34 の材質は、電波を透過することなく、反
射面を平滑に形成し得るものであればどんな材質でもよ
いが、例えばアルミニューム板,鉄板,銅板等の金属板
又は板状金網等を用いて形成するか、市販の建築用板材
等の表面に導電性シートを貼付して形成してもよい。床
面に設けた電波反射板2は、斜めの電波反射板31 な
いし34と同様の材質で形成する。
The smaller the angle of inclination of the radio wave reflecting plates 31 to 34 is, and the higher the height of the upper edge of the reflecting surface, the greater the electromagnetic effect. However, considering economic efficiency, the radio wave reflector 31 or 3
It is desirable that the inclination angle of antenna 4 is selected between approximately 25° and approximately 70°, and the height of the upper edge of the reflecting surface is appropriately higher than the upper edge of antenna 4. Radio wave reflector 31
The material of 34 to 34 may be any material as long as it does not transmit radio waves and can form a smooth reflective surface, but for example, metal plates such as aluminum plates, iron plates, copper plates, or plate-like wire mesh may be used. Alternatively, it may be formed by attaching a conductive sheet to the surface of a commercially available construction board material or the like. The radio wave reflecting plate 2 provided on the floor is made of the same material as the diagonal radio wave reflecting plates 31 to 34.

【0038】図には周壁1の上部を電磁気的及び機械的
に開放状態に保った場合を例示したが、電波の透過を妨
げることなく、雨雪を防ぎ得る材質より成る屋根を設け
ることが望ましい。
Although the figure shows an example in which the upper part of the peripheral wall 1 is kept open electromagnetically and mechanically, it is desirable to provide a roof made of a material that can prevent rain and snow without interfering with the transmission of radio waves. .

【0039】次に、本実施例電波暗室の作動について説
明する。供試機器5内において発生放射された電磁雑音
のうち、アンテナ4に向かう直接波及び床面に設けた電
波反射板2で反射してアンテナ4に向かう反射波は合成
されてアンテナ4に受信され、供試機器5から放射され
て供試機器5の側方及び後方等に向かう電磁雑音は、斜
めの電波反射板31 ないし34 で反射されて上方に
向かい、電波暗室の上部開放部から天空に放射されるが
、天空は電波の理想的な吸収体であるから上方に向った
電波が再び電波暗室に戻ることはない。
Next, the operation of the anechoic chamber of this embodiment will be explained. Of the electromagnetic noise generated and radiated within the equipment under test 5, a direct wave directed toward the antenna 4 and a reflected wave reflected by the radio wave reflector 2 provided on the floor and directed toward the antenna 4 are combined and received by the antenna 4. , electromagnetic noise emitted from the device under test 5 and directed to the sides and rear of the device under test 5 is reflected by the diagonal radio wave reflectors 31 to 34 and directed upward, and is emitted into the sky through the open upper part of the anechoic chamber. However, since the sky is an ideal absorber of radio waves, the radio waves that travel upward will never return to the anechoic chamber.

【0040】したがって、供試機器5からアンテナ4に
向かう伝搬電波成分は直接波及び床面に設けた電波反射
板2で反射された反射波のみとなるから、アンテナ4の
高さを調整して、両波の伝搬経路長の差を適当ならしめ
ることにより、両波は同相で受信され、受信電界強度を
最大に保って正確な受信電界強度を測定することができ
る。
Therefore, since the propagating radio wave components from the equipment under test 5 toward the antenna 4 are only direct waves and reflected waves reflected by the radio wave reflector 2 provided on the floor, the height of the antenna 4 is adjusted. By adjusting the difference in the propagation path lengths of both waves appropriately, both waves are received in the same phase, and the received electric field strength can be kept at the maximum and the received electric field strength can be measured accurately.

【0041】電波の伝搬は可逆的であるから、アンテナ
4から放射されて供試機器5に到達する伝搬電波も全く
同様に直接波及び床面に設けた電波反射板2で反射され
た反射波のみとなるので、例えば供試機器5のノイズ耐
性の試験を適正に行うことができる。
Since the propagation of radio waves is reversible, the propagating radio waves radiated from the antenna 4 and reaching the equipment under test 5 are both direct waves and reflected waves reflected by the radio wave reflecting plate 2 provided on the floor. Therefore, for example, the noise resistance of the device under test 5 can be properly tested.

【0042】図4は、図1ないし図3に示した本発明電
波暗室における伝送減衰特性の一例を示す実測値に基づ
く曲線図で、床面に設けた電波反射板2を長辺が7m、
短辺が2.5mの長方形の金属板で形成し、斜めの電波
反射板31ないし34 をそれぞれ金網で形成し、下縁
が電波反射板2の短辺に接して電波反射板2の長辺方向
に対向する斜めの電波反射板31 及び32 の各傾斜
角を45°、下縁が電波反射板2の長辺に接して電波反
射板2の短辺方向に対向する電波反射板33 及び34
の各傾斜角を60°、電波反射板31 ないし34 の
各上縁の高さを4mに形成すると共に、供試機器5の代
わりに広帯域アンテナ(ログペリオディックアンテナ)
を仮説し、広帯域アンテナ(ログペリオディックアンテ
ナ)4と仮説広帯域アンテナ間の距離を3mに保ち、い
ずれか一方の広帯域アンテナを送信アンテナ、他方の広
帯域アンテナを受信アンテナとすると共に、送信側のア
ンテナ高を1mに固定し、受信側のアンテナ高を1mな
いし4mの範囲で可変ならしめ、送信側から300MH
zないし1000MHzの電波(水平偏波)を一定出力
で放射せしめ、受信側のアンテナ高を適宜調整して適宜
周波数間隔を隔てた各周波数毎の受信電界強度を最大な
らしめた際の受信出力をプロットして得られたもので、
横軸は周波数fを300MHzから1000MHzに亙
って等間隔目盛で表わし、縦軸は減衰量ATT(dB)
で、1目盛10dBである。
FIG. 4 is a curve diagram based on actual measurements showing an example of the transmission attenuation characteristics in the anechoic chamber of the present invention shown in FIGS. 1 to 3.
It is formed of a rectangular metal plate with a short side of 2.5 m, and each of the diagonal radio wave reflecting plates 31 to 34 is formed of a wire mesh, and the lower edge touches the short side of the radio wave reflecting plate 2, and the long side of the radio wave reflecting plate 2 The oblique radio wave reflectors 31 and 32 facing each other have an inclination angle of 45°, and the radio wave reflectors 33 and 34 have lower edges touching the long sides of the radio wave reflector 2 and face the short sides of the radio wave reflector 2.
The inclination angle of each is 60°, the height of each upper edge of the radio wave reflecting plates 31 to 34 is 4 m, and a broadband antenna (log periodic antenna) is used instead of the device under test 5.
Assuming that the distance between the wideband antenna (log periodic antenna) 4 and the hypothesized wideband antenna is 3 m, one of the wideband antennas will be used as the transmitting antenna and the other wideband antenna will be used as the receiving antenna. The antenna height on the receiving side is fixed at 1m, and the antenna height on the receiving side is made variable in the range of 1m to 4m, and 300MH from the transmitting side.
z to 1000MHz radio waves (horizontally polarized waves) are radiated at a constant output, and the antenna height on the receiving side is adjusted appropriately to maximize the received electric field strength for each frequency separated by an appropriate frequency interval. What was obtained by plotting,
The horizontal axis represents the frequency f from 300MHz to 1000MHz on a scale with equal intervals, and the vertical axis represents the attenuation amount ATT (dB).
So, one scale is 10 dB.

【0043】図5は、段落番号0002及び0004の
項で説明した面積寸法の屋外測定場を使用し、アンテナ
間の距離、アンテナ高及び使用周波数については、前記
本実施例電波暗室の伝送減衰特性を測定した場合と同一
条件で測定した屋外測定場の伝送減衰特性の一例を実測
値で示す曲線図で、横軸及び縦軸は、図4と同様である
FIG. 5 shows the transmission attenuation characteristics of the anechoic chamber of this embodiment using the outdoor measurement field with the area dimensions explained in paragraphs 0002 and 0004, and the distance between antennas, antenna height, and frequency used. 4 is a curve diagram showing an example of the transmission attenuation characteristic in an outdoor measurement field measured under the same conditions as when measuring . The horizontal axis and the vertical axis are the same as in FIG. 4.

【0044】図4及び図5の各伝送減衰特性曲線を比較
すると両曲線は極めてよく一致しており、使用電波の周
波数が300MHzより高い場合には、本実施例電波暗
室は前記屋外測定場と同等の性能を有すること明らかで
ある。
Comparing the transmission attenuation characteristic curves in FIGS. 4 and 5, the two curves match extremely well, and when the frequency of the radio waves used is higher than 300 MHz, the anechoic chamber of this embodiment is compatible with the outdoor measurement field. It is clear that they have equivalent performance.

【0045】しかしながら、使用周波数が300MHz
以下の場合には、電波反射板31 ないし34 の寸法
が波長に極めて近いか、小となるため、光線と同様の反
射が行われず、図4に関して説明した各部の寸法の場合
には、不要反射板のすべてが天空に放射されることなく
、残留反射波が乱反射を繰返すためであろうと推定され
、図6ないし図10に示すように、伝送減衰特性曲線に
細かいリップルが重畳すると共に、ほぼ50MHz以下
において減衰ピークを生ずる結果となった。
[0045] However, the frequency used is 300MHz.
In the following cases, the dimensions of the radio wave reflecting plates 31 to 34 are very close to the wavelength or are small, so the same reflection as the light beam does not occur, and in the case of the dimensions of each part explained in relation to FIG. It is estimated that this is because the residual reflected waves repeat diffuse reflection without all of the board being radiated to the sky, and as shown in Figures 6 to 10, small ripples are superimposed on the transmission attenuation characteristic curve, and the frequency of approximately 50MHz This resulted in attenuation peaks below.

【0046】図6は、使用周波数が30MHzないし3
00MHz、アンテナがバイコニカルアンテナである他
は、図4に示した伝送減衰特性の測定時と同一条件で測
定した結果を示す曲線図、図7は、送信側のアンテナ高
を2mに固定した他は、図6に示した伝送減衰特性の測
定時と同一条件で測定した結果を示す曲線図、図8は、
送信側及び受信側の両アンテナ間の距離を3mに保った
まま、送信側及び受信側の両アンテナ間の中心位置を送
信側アンテナの方向に1m移動せしめた他は、図6に示
した伝送減衰特性の測定時と同一条件で測定した結果を
示す曲線図、図9は、送信側のアンテナ高を2mに固定
した他は、図8に示した伝送減衰特性の測定時と同一条
件で測定した結果を示す曲線図、図10は、床面に設け
た電波反射板2の長辺を7m、短辺を2mに形成した他
は、図6に示した伝送減衰特性の測定時と同一条件で測
定した結果を示す曲線図である。
FIG. 6 shows that the operating frequency is between 30 MHz and 30 MHz.
00MHz, the antenna is a biconical antenna, but the curve diagram shows the results measured under the same conditions as when measuring the transmission attenuation characteristics shown in Figure 4. Figure 7 is a curve diagram showing the results measured under the same conditions as when measuring the transmission attenuation characteristics shown in Figure 4. is a curve diagram showing the results measured under the same conditions as when measuring the transmission attenuation characteristics shown in Figure 6, and Figure 8 is a curve diagram showing the results measured under the same conditions as when measuring the transmission attenuation characteristics shown in Figure 6.
The transmission shown in Figure 6 was the same except that the center position between the transmitting and receiving antennas was moved 1m in the direction of the transmitting antenna while keeping the distance between the transmitting and receiving antennas at 3m. A curve diagram showing the results measured under the same conditions as when measuring the attenuation characteristics. Figure 9 is a curve diagram showing the results measured under the same conditions as when measuring the transmission attenuation characteristics shown in Figure 8, except that the antenna height on the transmitting side was fixed at 2 m. Figure 10 is a curve diagram showing the results obtained under the same conditions as when measuring the transmission attenuation characteristics shown in Figure 6, except that the long side of the radio wave reflecting plate 2 provided on the floor was 7 m long and the short side was 2 m long. It is a curve diagram showing the results measured by.

【0047】図6ないし図10から明らかなように、測
定条件の一部を種々変更して測定したいずれの伝送減衰
特性曲線においても、細かいリップル及びほぼ50MH
z以下における減衰ピークを除くことが不可能であった
。 特に、図10に示した伝送減衰特性曲線は、他の伝送減
衰特性曲線に較べて曲線の乱れが著しいが、図10に示
した伝送減衰特性の測定条件のうち、他と大きく異なる
条件は、床面に設けた電波反射板2の短辺の長さを、他
の測定時の2.5mから2mに短縮したことである。床
面に設けた電波反射板2の短辺の長さを縮小した結果、
斜めの電波反射板33 及び34 の対向間隔が狭まる
こととなり、電波反射板31 ないし34 の寸法が波
長に極めて近いか、小なるために、光線と同様の反射が
行われず、不要反射波のすべてが天空に放射されること
なく、残留反射波が乱反射を繰返すことにより生じた定
在波のエネルギが、斜めの電波反射板33 及び34 
の対向間隔の狭まりに応じて増加したためであると思わ
れる。
As is clear from FIGS. 6 to 10, in all of the transmission attenuation characteristic curves measured by changing some of the measurement conditions, fine ripples and approximately 50MHz
It was not possible to eliminate the attenuation peak below z. In particular, the transmission attenuation characteristic curve shown in FIG. 10 has more significant curve distortion than other transmission attenuation characteristic curves, but among the measurement conditions for the transmission attenuation characteristic shown in FIG. 10, the conditions that are significantly different from the others are: The length of the short side of the radio wave reflecting plate 2 provided on the floor was shortened from 2.5 m in other measurements to 2 m. As a result of reducing the length of the short side of the radio wave reflector 2 installed on the floor,
The distance between the diagonal radio wave reflectors 33 and 34 narrows, and since the dimensions of the radio wave reflectors 31 to 34 are very close to the wavelength or are small, the same reflection as a light beam does not occur, and all unnecessary reflected waves are is not radiated to the sky, and the energy of the standing waves generated by repeated diffuse reflections of the residual reflected waves is transmitted to the diagonal radio wave reflectors 33 and 34.
This is thought to be due to an increase in the distance between the opposing faces.

【0048】そこで、逆に、床面に設けた電波反射板2
の寸法を、長辺が8m、短辺が3.375mとなるよう
に拡大して測定した結果を、図11及び図12に示して
ある。
Therefore, on the contrary, the radio wave reflecting plate 2 provided on the floor
The measurement results are shown in FIGS. 11 and 12 after enlarging the dimensions so that the long side is 8 m and the short side is 3.375 m.

【0049】図11は、床面に設けた電波反射板2の寸
法を前記のように拡大した他は、図6に示した伝送減衰
特性の測定時と同一の条件で測定を行ったものであり、
図12は、送信側のアンテナ高を2mに固定し、床面に
設けた電波反射板2の寸法を前記のように拡大した他は
、図6に示した伝送減衰特性の測定条件と同一ならしめ
て測定したもので、両図における横軸及び縦軸は、いず
れも図6と同様である。
In FIG. 11, measurements were taken under the same conditions as when measuring the transmission attenuation characteristics shown in FIG. 6, except that the dimensions of the radio wave reflecting plate 2 provided on the floor were enlarged as described above. can be,
Figure 12 shows the same measurement conditions as the transmission attenuation characteristics shown in Figure 6, except that the antenna height on the transmitting side was fixed at 2 m and the dimensions of the radio wave reflector 2 provided on the floor were expanded as described above. The horizontal and vertical axes in both figures are the same as in FIG. 6.

【0050】図13は、送信側及び受信側の両アンテナ
間の距離、各アンテナ高及び使用周波数を図11に示し
た伝送減衰特性の測定時と同一にして、段落番号000
4,0005の項で説明した寸法面積の屋外測定場で測
定した結果を示す曲線図で、横軸及び縦軸は、図6と同
様である。
FIG. 13 shows paragraph number 000 with the distance between the transmitting side and receiving side antennas, the height of each antenna, and the frequency used being the same as when measuring the transmission attenuation characteristics shown in FIG.
6 is a curve diagram showing the results of measurement at the outdoor measuring field of the dimensions and areas described in Section 4,0005, and the horizontal and vertical axes are the same as in FIG. 6.

【0051】図11ないし図13から明らかなように、
床面に設けた電波反射板2の長辺及び短辺の寸法を長く
した場合には、屋外測定場における測定結果と同等の結
果を得ることができた。これは、床面に設けた電波反射
板2の長辺及び短辺の寸法を長くした結果、斜めの電波
反射板31 と32 の対向間隔及び33 と34 の
対向間隔がいずれも拡大され、残留反射波により生じた
定在波のエネルギが減衰するためと思われる。なお、図
11及び図12の伝送減衰特性の測定条件のうち、使用
周波数を300MHzないし1000MHzの範囲に変
更した場合における伝送減衰特性もまた屋外測定場とほ
ぼ同様であった。
As is clear from FIGS. 11 to 13,
When the long and short sides of the radio wave reflecting plate 2 provided on the floor were made longer, results comparable to those obtained at the outdoor measurement site could be obtained. This is because as a result of lengthening the long and short sides of the radio wave reflector 2 provided on the floor, the opposing distance between the diagonal radio wave reflectors 31 and 32 and the opposing distance between 33 and 34 are both enlarged. This seems to be because the energy of the standing wave caused by the reflected wave is attenuated. Note that among the transmission attenuation characteristics measurement conditions shown in FIGS. 11 and 12, the transmission attenuation characteristics when the operating frequency was changed to a range of 300 MHz to 1000 MHz were also almost the same as those at the outdoor measurement site.

【0052】図14は、本発明の第2実施例を示す断面
図(図15のB−B断面図)、図15は、図14のA−
A断面図、図16は、図15のC−C断面図で、各図に
おいて、1は周壁、2は床面に設けた電波反射板、31
 ないし34 は反射面を斜め上向きにして設けた電波
反射板、4はアンテナ、5は供試機器、6は供試機器5
の載置台で、これらは図1ないし図3に示す第1実施例
と同様の構成である。7は電波吸収体で、従来と同様構
成の吸収体より成り、天井壁面の全域に設けてある。
FIG. 14 is a sectional view (BB sectional view in FIG. 15) showing a second embodiment of the present invention, and FIG. 15 is a sectional view taken along A--
A sectional view and FIG. 16 are CC sectional views of FIG.
34 to 34 are radio wave reflecting plates provided with reflective surfaces diagonally upward, 4 is an antenna, 5 is the equipment under test, and 6 is the equipment under test 5
These mounting tables have the same structure as the first embodiment shown in FIGS. 1 to 3. Reference numeral 7 denotes a radio wave absorber, which is composed of an absorber having the same structure as the conventional one, and is provided over the entire ceiling wall surface.

【0053】本実施例においては、上方に向った電波が
電波吸収体7に吸収される点において第1実施例と異な
るが、その他の電波伝搬状態は第1実施例と同様で、ア
ンテナ4(又は供試機器5)には供試機器5(又はアン
テナ4)からの直接波及び床面に設けた電波反射板3か
らの反射波のみが到達することとなる。
This embodiment differs from the first embodiment in that the upward radio waves are absorbed by the radio wave absorber 7, but the other radio wave propagation conditions are the same as in the first embodiment, and the antenna 4 ( Alternatively, only the direct wave from the device under test 5 (or the antenna 4) and the reflected wave from the radio wave reflecting plate 3 provided on the floor surface reach the device under test 5).

【0054】図には示していないが、本実施例において
も必要に応じて天井壁の上部に屋根を設けることが望ま
しい。
Although not shown in the drawings, it is desirable to provide a roof above the ceiling wall if necessary in this embodiment as well.

【0055】なお、図14ないし図16に示した実施例
において、床面に設けた電波反射板2の上に適宜の電波
吸収体を並べて設けることによって、前述の国際電気標
準会議(IEC)の勧めている各種電子機器のノイズ耐
性の測定条件を満足せしめることができる。
In the embodiments shown in FIGS. 14 to 16, by arranging appropriate radio wave absorbers on the radio wave reflecting plate 2 provided on the floor, the above-mentioned International Electrotechnical Commission (IEC) It can satisfy the recommended measurement conditions for noise resistance of various electronic devices.

【0056】[0056]

【発明の効果】以上説明したように、本発明によれば、
供試機器とアンテナ間における直接波及び床面に設けた
電波反射板で反射してアンテナ(又は供試機器)に向か
う電波以外の反射波は上方に向い、請求項(1)ないし
(4)の発明においては、上方に向った反射波は天空に
放射されて再び電波暗室に戻ることなく、請求項(5)
ないし(8)の発明においては、上方に向った反射波は
電波吸収体7に吸収されるから、何れの発明においても
アンテナ(又は供試機器)には直接波及び床面に設けた
電波反射板で反射してアンテナ(又は供試機器)に向か
う電波のみが到達することとなり、電磁障害測定に用い
られている従来の屋外測定場における伝送減衰特性とほ
ぼ同様の伝送減衰特性を得ることができる。
[Effects of the Invention] As explained above, according to the present invention,
The reflected waves other than the direct waves between the equipment under test and the antenna and the radio waves reflected by the radio wave reflecting plate provided on the floor and directed toward the antenna (or the equipment under test) are directed upward, according to claims (1) to (4). In the invention of claim (5), the reflected wave directed upward is radiated into the sky and does not return to the anechoic chamber again.
In the inventions (8) to (8) above, the reflected waves directed upward are absorbed by the radio wave absorber 7, so in any of the inventions, the antenna (or the equipment under test) receives both the direct waves and the radio wave reflection provided on the floor. Only the radio waves that are reflected by the plate and directed toward the antenna (or the equipment under test) will reach the antenna, making it possible to obtain transmission attenuation characteristics that are almost the same as those at conventional outdoor measurement sites used for electromagnetic interference measurements. can.

【0057】又、本発明電波暗室の所要面積を、段落番
号0004,0005の項で説明した屋外測定場の所要
面積2080m2 と比較すると、本発明電波暗室にお
いて床面に設けた電波反射板3の長辺は前記のように8
m、短辺は端数を切り上げて4m、斜めの電波反射板2
の上縁の高さ4m、傾斜角60°と45°であるから、
斜めの電波反射板の上縁によって形成される矩形の長辺
は16m、短辺は8.6mとなり、この矩形の外周に電
波反射体の存在しない領域として4m幅の余裕を取ると
、この領域の外周により形成される矩形の長辺は24m
、短辺は16.6mとなるから、所要面積は、ほぼ39
8,4m2 となり、前記屋外測定場の所要面積208
0m2 のほぼ5.2分の1で、立体的に考えても極め
て小型化することができる。
[0057] Furthermore, when the required area of the anechoic chamber of the present invention is compared with the required area of 2080 m2 of the outdoor measurement field explained in paragraphs 0004 and 0005, it is found that The long side is 8 as mentioned above.
m, the short side is rounded up to 4 m, diagonal radio wave reflector 2
Since the height of the upper edge is 4 m and the angle of inclination is 60° and 45°,
The long side of the rectangle formed by the upper edge of the diagonal radio wave reflector is 16 m, and the short side is 8.6 m. If we take a 4 m width margin around the outer periphery of this rectangle as an area where no radio wave reflector exists, this area The long side of the rectangle formed by the outer circumference of is 24 m.
, the short side is 16.6m, so the required area is approximately 39m.
8.4m2, and the required area of the outdoor measurement site is 208m2.
It is approximately 1/5.2 of 0 m2, making it extremely compact from a three-dimensional perspective.

【0058】又、図17ないし図22に示した従来の電
波暗室においては、床面からの反射波を反射波遮断スク
リーンにより遮断してアンテナ相互間又はアンテナと供
試機器間に直接波のみを伝送せしめることを発想の基本
としているため、反射波遮断スクリーンによる遮断を有
効ならしめるために、反射波遮断スクリーンの形状寸法
を適当ならしめると共に、床面積を狭くして床面からの
反射波を抑えるように構成する結果、全体を小形化する
ことは可能であるが、その反面、使用周波数30MHz
ないし1000MHzにわたって各種電子機器から漏洩
放射される電磁雑音の測定評価及び各種電子機器のノイ
ズ耐性の測定等に不適であるに対して、本発明電波暗室
は、前記従来の電波暗室に比し全体の大きさは多少大形
となるが、各種電子機器から漏洩放射される電磁雑音の
測定評価及び各種電子機器のノイズ耐性の測定等を、米
国連邦通信委員会(F.C.C)の勧告規格にしたがっ
て実施し得るもので、その結果甚だ大である。
Furthermore, in the conventional anechoic chambers shown in FIGS. 17 to 22, reflected waves from the floor are blocked by a reflected wave blocking screen, and only direct waves are transmitted between the antennas or between the antenna and the equipment under test. Since the basic idea is to allow transmission, in order to make the reflected wave blocking screen effective at blocking the reflected wave, the shape and dimensions of the reflected wave blocking screen are made appropriate, and the floor area is narrowed to reduce the amount of reflected waves from the floor surface. As a result of configuring it to suppress
Although the anechoic chamber of the present invention is unsuitable for measuring and evaluating electromagnetic noise leaked and radiated from various electronic devices over a range of 1000 MHz to 1000 MHz, and measuring the noise resistance of various electronic devices, the anechoic chamber of the present invention has a Although the size is somewhat large, it is suitable for measuring and evaluating electromagnetic noise leaked and radiated from various electronic devices, and measuring the noise resistance of various electronic devices, etc., according to the recommended standards of the Federal Communications Commission (FCC) of the United States. This can be done in accordance with the law, and the consequences would be enormous.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】  第1実施例の平面図[Figure 1] Plan view of the first embodiment

【図2】  第1実施例の断面図[Figure 2] Cross-sectional view of the first embodiment

【図3】  第1実施例の断面図[Figure 3] Cross-sectional view of the first embodiment

【図4】  第1実施例における伝送減衰特性の一例を
示す曲線図
[Figure 4] Curve diagram showing an example of transmission attenuation characteristics in the first embodiment

【図5】  従来の屋外測定場における伝送減衰特性の
一例を示す曲線図
[Figure 5] Curve diagram showing an example of transmission attenuation characteristics in a conventional outdoor measurement field

【図6】  第1実施例における伝送減衰特性の一例を
示す曲線図
[Figure 6] Curve diagram showing an example of transmission attenuation characteristics in the first embodiment

【図7】  第1実施例における伝送減衰特性の一例を
示す曲線図
[Figure 7] Curve diagram showing an example of transmission attenuation characteristics in the first embodiment

【図8】  第1実施例における伝送減衰特性の一例を
示す曲線図
[Figure 8] Curve diagram showing an example of transmission attenuation characteristics in the first embodiment

【図9】  第1実施例における伝送減衰特性の一例を
示す曲線図
[Figure 9] Curve diagram showing an example of transmission attenuation characteristics in the first embodiment

【図10】  第1実施例における伝送減衰特性の一例
を示す曲線図
[Figure 10] Curve diagram showing an example of transmission attenuation characteristics in the first embodiment

【図11】  第1実施例における伝送減衰特性の一例
を示す曲線図
[Figure 11] Curve diagram showing an example of transmission attenuation characteristics in the first embodiment

【図12】  第1実施例における伝送減衰特性の一例
を示す曲線図
[Figure 12] Curve diagram showing an example of transmission attenuation characteristics in the first embodiment

【図13】  従来の屋外測定場における伝送減衰特性
の一例を示す曲線図
[Figure 13] Curve diagram showing an example of transmission attenuation characteristics in a conventional outdoor measurement field

【図14】  第2実施例の断面図[Figure 14] Cross-sectional view of the second embodiment

【図15】  第2実施例の断面図[Figure 15] Cross-sectional view of the second embodiment

【図16】  第2実施例の断面図[Figure 16] Cross-sectional view of the second embodiment

【図17】  従来の電波暗室の一例を示す平面図[Figure 17] Plan view showing an example of a conventional anechoic chamber

【図
18】  従来の電波暗室の一例を示す断面図
[Figure 18] Cross-sectional view showing an example of a conventional anechoic chamber

【図19
】  従来の電波暗室の一例を示す断面図
[Figure 19
] Cross-sectional diagram showing an example of a conventional anechoic chamber

【図20】 
 従来の電波暗室の一例を示す断面図
[Figure 20]
A cross-sectional diagram showing an example of a conventional anechoic chamber

【図21】  従
来の電波暗室の一例を示す断面図
[Figure 21] Cross-sectional view showing an example of a conventional anechoic chamber

【図22】  従来の
電波暗室の一例を示す断面図
[Figure 22] Cross-sectional view showing an example of a conventional anechoic chamber

【図23】  従来の電波
暗室における伝送減衰特性の一例を示す曲線図
[Figure 23] Curve diagram showing an example of transmission attenuation characteristics in a conventional anechoic chamber

【図24】  従来の電波暗室における伝送減衰特性の
一例を示す曲線図
[Figure 24] Curve diagram showing an example of transmission attenuation characteristics in a conventional anechoic chamber

【図25】  従来の電波暗室における伝送特性の一例
を示す曲線図
[Figure 25] Curve diagram showing an example of transmission characteristics in a conventional anechoic chamber

【図26】  従来の電波暗室における伝送特性の一例
を示す曲線図
[Figure 26] Curve diagram showing an example of transmission characteristics in a conventional anechoic chamber

【符号の説明】[Explanation of symbols]

1    周壁 2    電波反射板 31   電波反射板 32   電波反射板 33   電波反射板 34   電波反射板 7    電波吸収体 1. Surrounding wall 2 Radio wave reflector 31 Radio wave reflector 32 Radio wave reflector 33 Radio wave reflector 34 Radio wave reflector 7 Radio wave absorber

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】  床面に設けた電波反射板と、上部を電
磁気的に開放した周壁の内側全域に、下縁を前記床面に
設けた電波反射板の反射面に接触せしめ反射面を斜め上
向きにして設けた電波反射板とを備えたことを特徴とす
る電波暗室。
Claim 1: A radio wave reflecting plate provided on the floor surface and a peripheral wall whose upper part is electromagnetically open, the lower edge of which is brought into contact with the reflecting surface of the radio wave reflecting plate provided on the floor surface, and the reflecting surface is tilted. A radio anechoic chamber characterized by comprising a radio wave reflecting plate facing upward.
【請求項2】  床面に設けた電波反射板の反射面を、
短辺がほぼ3.375m以上、長辺がほぼ8m以上の長
方形に形成したことを特徴とする請求項1記載の電波暗
室。
[Claim 2] The reflective surface of the radio wave reflector provided on the floor is
The anechoic chamber according to claim 1, characterized in that it is formed into a rectangle with a short side of about 3.375 m or more and a long side of about 8 m or more.
【請求項3】  反射面を斜め上向きにして設けた電波
反射板の床面に対する傾斜角を、ほぼ25°ないしほぼ
70°の間に設定したことを特徴とする請求項1記載の
電波暗室。
3. The radio anechoic chamber according to claim 1, wherein the angle of inclination of the radio wave reflecting plate with respect to the floor surface, which is provided with the reflecting surface facing diagonally upward, is set between approximately 25° and approximately 70°.
【請求項4】  床面に設けた電波反射板の反射面を、
短辺がほぼ3.375m、長辺がほぼ8mの長方形に形
成し、反射面を斜め上向きにして設けた電波反射板のう
ち、下縁が前記床面に設けた電波反射板における反射面
の短辺に接触する電波反射板の床面に対する傾斜角をほ
ぼ45°に、下縁が前記床面に設けた電波反射板におけ
る反射面の長辺に接触する電波反射板の床面に対する傾
斜角をほぼ60°に、それぞれ形成したことを特徴とす
る請求項1記載の電波暗室。
[Claim 4] The reflective surface of the radio wave reflector provided on the floor is
Among the radio wave reflectors formed in a rectangular shape with a short side of approximately 3.375 m and a long side of approximately 8 m, with the reflective surface facing diagonally upward, the lower edge of the reflective surface of the radio wave reflector provided on the floor surface is The inclination angle with respect to the floor surface of the radio wave reflector whose short side is in contact with the floor surface is approximately 45 degrees, and the inclination angle with respect to the floor surface of the radio wave reflector whose lower edge is in contact with the long side of the reflective surface of the radio wave reflector provided on the floor surface. 2. The anechoic chamber according to claim 1, wherein the anechoic chamber is formed at an angle of approximately 60°.
【請求項5】  床面に設けた電波反射板と、周壁の内
側全域に、下縁を前記床面に設けた電波反射板の反射面
に接触せしめ反射面を斜め上向きにして設けた電波反射
板と、天井壁面全域に設けた電波吸収体とを備えたこと
を特徴とする電波暗室。
5. A radio wave reflecting plate provided on the floor surface, and a radio wave reflecting device provided on the entire inner side of the peripheral wall, with the lower edge in contact with the reflective surface of the radio wave reflecting plate provided on the floor surface, with the reflective surface facing diagonally upward. A radio anechoic chamber characterized by comprising a board and a radio wave absorber provided over the entire ceiling and wall surface.
【請求項6】  床面に設けた電波反射板の反射面を、
短辺がほぼ3.375m以上、長辺がほぼ8m以上の長
方形に形成したことを特徴とする請求項5記載の電波暗
室。
[Claim 6] The reflective surface of the radio wave reflector provided on the floor is
The anechoic chamber according to claim 5, characterized in that it is formed into a rectangle with a short side of approximately 3.375 m or more and a long side of approximately 8 m or more.
【請求項7】  反射面を斜め上向きにして設けた電波
反射板の床面に対する傾斜角を、ほぼ25°ないしほぼ
70°の間に設定したことを特徴とする請求項5記載の
電波暗室。
7. The radio anechoic chamber according to claim 5, wherein the angle of inclination of the radio wave reflecting plate with respect to the floor surface, which is provided with its reflective surface facing diagonally upward, is set between approximately 25° and approximately 70°.
【請求項8】  床面に設けた電波反射板の反射面を、
短辺がほぼ3,375m、長辺がほぼ8mの長方形に形
成し、反射面を斜め上向きにして設けた電波反射板のう
ち、下縁が前記床面に設けた電波反射板における反射面
の短辺に接触する電波反射板の床面に対する傾斜角をほ
ぼ45°に、下縁が前記床面に設けた電波反射板におけ
る反射面の長辺に接触する電波反射板の床面に対する傾
斜角をほぼ60°に、それぞれ形成したことを特徴とす
る請求項5記載の電波暗室。
[Claim 8] The reflective surface of the radio wave reflector provided on the floor is
Among the radio wave reflectors formed in a rectangular shape with a short side of approximately 3,375 m and a long side of approximately 8 m, with the reflective surface facing diagonally upward, the lower edge of the reflective surface of the radio wave reflector provided on the floor surface is The inclination angle with respect to the floor surface of the radio wave reflector whose short side is in contact with the floor surface is approximately 45 degrees, and the inclination angle with respect to the floor surface of the radio wave reflector whose lower edge is in contact with the long side of the reflective surface of the radio wave reflector provided on the floor surface. 6. The anechoic chamber according to claim 5, wherein the anechoic chamber is formed at an angle of approximately 60°.
JP3821191A 1991-03-05 1991-03-05 Radio wave anechoic chamber Pending JPH04276700A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3821191A JPH04276700A (en) 1991-03-05 1991-03-05 Radio wave anechoic chamber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3821191A JPH04276700A (en) 1991-03-05 1991-03-05 Radio wave anechoic chamber

Publications (1)

Publication Number Publication Date
JPH04276700A true JPH04276700A (en) 1992-10-01

Family

ID=12518985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3821191A Pending JPH04276700A (en) 1991-03-05 1991-03-05 Radio wave anechoic chamber

Country Status (1)

Country Link
JP (1) JPH04276700A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104535858A (en) * 2014-12-18 2015-04-22 北京无线电计量测试研究所 Compact field antenna measurement synchronization reflection point region determination method
CN104567764A (en) * 2014-12-25 2015-04-29 北京无线电计量测试研究所 Main reflection point area determining method of antenna measurement darkroom

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02153598A (en) * 1988-04-28 1990-06-13 Moichi Shibuya Electromagnetically shielded room provided with reflective plate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02153598A (en) * 1988-04-28 1990-06-13 Moichi Shibuya Electromagnetically shielded room provided with reflective plate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104535858A (en) * 2014-12-18 2015-04-22 北京无线电计量测试研究所 Compact field antenna measurement synchronization reflection point region determination method
CN104567764A (en) * 2014-12-25 2015-04-29 北京无线电计量测试研究所 Main reflection point area determining method of antenna measurement darkroom

Similar Documents

Publication Publication Date Title
KR970007981B1 (en) Radio-frequency unechoic chamber
US5134405A (en) Electromagnetically anechoic chamber and shield structures therefor
US3448455A (en) Armoured structure antenna
KR101009630B1 (en) Apparatus for measurement of antenna radiation performance and method of designing thereof
CN106597129B (en) Microwave darkroom
CN208889855U (en) Novel axial compresses two-dimensional surface lens antenna
JPH04276700A (en) Radio wave anechoic chamber
CN209150303U (en) Low section is inverted parabolic reflector antenna
JP3280861B2 (en) Electromagnetic wave reflection box for electromagnetic wave environment test and electromagnetic wave environment test method using the same
CN111370866A (en) Low profile inverted parabolic reflector antenna
EP1195848B1 (en) Microwave absorber wall
KR102064103B1 (en) Electro-Magnetic Anechoic Chamber For Testing Electro-Magnetic Interference
TWI807847B (en) Antenna measurement chamber with primary reflection suppression
JP2979898B2 (en) Anechoic chamber
JP2679643B2 (en) Antenna device
KR20110114245A (en) Anechoic chamber having reflecting walls
CN109216933A (en) Novel axial compresses two-dimensional surface lens antenna
KR102053914B1 (en) Interior test apparatus for performance of wireless telecommunication system
JP3475362B2 (en) EMC test site for both fully reflective and non-reflective types
RU143511U1 (en) SMALL ANCHOROUS CAMERA
JPH04140671A (en) Radiation immunity evaluation test field
JP2000138493A (en) Radio wave darkroom
JP3265647B2 (en) Anechoic chamber
JP3265648B2 (en) Anechoic chamber
JP3116928B2 (en) EMI measuring method and device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19960820