JPH0427667B2 - - Google Patents

Info

Publication number
JPH0427667B2
JPH0427667B2 JP5525684A JP5525684A JPH0427667B2 JP H0427667 B2 JPH0427667 B2 JP H0427667B2 JP 5525684 A JP5525684 A JP 5525684A JP 5525684 A JP5525684 A JP 5525684A JP H0427667 B2 JPH0427667 B2 JP H0427667B2
Authority
JP
Japan
Prior art keywords
wall thickness
arc tube
light
sealing
sealed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5525684A
Other languages
Japanese (ja)
Other versions
JPS60200455A (en
Inventor
Yasuki Mori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Lighting and Technology Corp
Original Assignee
Toshiba Lighting and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Lighting and Technology Corp filed Critical Toshiba Lighting and Technology Corp
Priority to JP5525684A priority Critical patent/JPS60200455A/en
Publication of JPS60200455A publication Critical patent/JPS60200455A/en
Publication of JPH0427667B2 publication Critical patent/JPH0427667B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/82Lamps with high-pressure unconstricted discharge having a cold pressure > 400 Torr
    • H01J61/827Metal halide arc lamps

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は屋内照明に好適する100W以下の小形
メタルハライドランプに関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a small metal halide lamp of 100 W or less and suitable for indoor lighting.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近年省エネルギーの見地から、従来一般家庭等
の屋内用照明に多用されていた白熱電球に替わ
り、高効率で高演色正の小形メタルハライドラン
プの開発が要請されている。
In recent years, from the standpoint of energy conservation, there has been a demand for the development of compact metal halide lamps with high efficiency and high positive color rendering to replace incandescent light bulbs, which have traditionally been widely used for indoor lighting in general homes.

従来においては200W以上の中、大形メタルハ
ライドランプが既に知られているが、これら中、
大形メタルハライドランプは光束値が白熱電球に
比べて格段に高く、演色性を要求される屋内で使
用されるとしても光量が多く活用できるように比
較的高い場所に設置して使用されている。しかし
ながら100W以下の小形になつてくると、白熱電
球と同様に比較的低い場所から直接被照射体を照
射してこの被照射体をきわだたせるような使用形
態が生じてくる。このため、従来の中、大形メタ
ルハライドランプにおいては大して重要とされな
かつた配光、特に直下照度がかなり大きな問題と
して考慮されなければならない。
Conventionally, large metal halide lamps of 200W or more are already known, but among these,
Large metal halide lamps have a much higher luminous flux value than incandescent bulbs, and even when used indoors where color rendering is required, they are installed in relatively high places so that they can utilize a large amount of light. However, as light bulbs become smaller and weigh less than 100W, they are used in a manner similar to incandescent light bulbs, in which the irradiated object is directly irradiated from a relatively low place to make the irradiated object stand out. For this reason, light distribution, particularly direct illuminance, which has not been considered very important in large metal halide lamps in the past, must be considered as a very important issue.

一般に高圧金属蒸気放電灯は、両端に相対する
電極を封着した発光管構造を有しており、屋内照
明としては両端封着部が上下方向の姿勢となる垂
直点灯で使用されることが多く、両電極間の高圧
放電によつて発せられる可視光により明るさを得
ている。したがつて放電空間から発せられる可視
光は封着部方向では明るさが減じられるものであ
り、この封着部による配光の不均一さは従来から
問題とされていたが、点灯位置が被照射体よりか
なり高位置に設置されることおよび複数個のラン
プと併用されることなどにより、被照射面の照度
分布はかなり均等にすることができた。
Generally, high-pressure metal vapor discharge lamps have an arc tube structure with opposite electrodes sealed at both ends, and are often used for indoor lighting in vertical lighting, with the sealed ends facing up and down. , the brightness is obtained from visible light emitted by high-pressure discharge between both electrodes. Therefore, the brightness of the visible light emitted from the discharge space is reduced in the direction of the sealed area, and the unevenness of light distribution due to this sealed area has long been considered a problem. By installing it at a much higher position than the irradiator and using multiple lamps together, we were able to make the illuminance distribution on the irradiated surface fairly uniform.

しかしながら本発明で対象としている100W以
下のメタルハライドランプのように、直接被照射
体を照射し、かつ一般家庭のごとく比較的低い位
置に設置されて点灯されるものでは、従来構造の
ままであると被照射体に明るさのむらを発生する
不具合を生ずる。
However, for metal halide lamps of 100W or less, which are the subject of this invention, which directly irradiate the irradiated object and are installed and lit at a relatively low position such as in ordinary homes, the conventional structure may remain the same. This causes a problem of uneven brightness on the irradiated object.

〔発明の目的〕[Purpose of the invention]

本発明はこのような事情に鑑みなされたもの
で、その目的とするところは、封着部方向の明る
さを増して配光特性の均一化が可能となり、省エ
ネルギーの観点から高効率さを損うことのない
100W以下の小形メタルハライドランプを提供し
ようとするものである。
The present invention was developed in view of the above circumstances, and its purpose is to increase the brightness in the direction of the sealed portion, making it possible to make the light distribution characteristics uniform, and to avoid compromising high efficiency from the viewpoint of energy saving. never happens
The aim is to provide a small metal halide lamp of 100W or less.

〔発明の概要〕[Summary of the invention]

本発明は発光管の肉厚をその主部よりも封着部
近傍部において大きくなるように形成することに
よつて、肉厚の大きい方向に光の屈折を生じさせ
て封着部方向の光量を増加させると共に、さらに
封着部の厚さをも規制することによつて、封着部
による光の損失を減少させ、もつて配光特性の改
善を可能としたものである。
In the present invention, by forming the wall thickness of the arc tube to be larger in the vicinity of the sealing part than in the main part, light is refracted in the direction of the thicker wall, and the amount of light in the direction of the sealing part is increased. By increasing the amount of light and regulating the thickness of the sealed portion, it is possible to reduce the loss of light due to the sealed portion, thereby making it possible to improve the light distribution characteristics.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例を図面を参照して説明す
る。
An embodiment of the present invention will be described below with reference to the drawings.

第1図は小形メタルハライドランプを示し、図
において1は透光正耐熱絶縁物たとえば石英ガラ
スからなる発光管であり、両端にタングステン等
の高融点金属からなる電極2,3を封着してあ
る。電極2,3はモリブデン等の金属箔導体4,
4に接続されており、これら金属箔導体4,4は
発光管1の両端部に形成した封着部5,5内に封
着されている。金属箔導体4,4はウエルズ6,
6に接続されており、これらウエズ6,6を介し
て電極2,3に電圧が印加される。発光管1はそ
の放電空間部分が球状もしくは楕円球状となるよ
うに、たとえば膨出成形されており、放電空間内
におけるガスの対流を円滑に生じせしめるように
なつている。また発光管1内には水銀と、始動用
希ガスと、発光金属としての金属ハロゲン化物、
たとえば沃化ナトリウムおよび沃化スカンジウム
が封入されている。
Figure 1 shows a small metal halide lamp. In the figure, 1 is an arc tube made of a light-transmitting positive heat-resistant insulator such as quartz glass, and electrodes 2 and 3 made of a high-melting point metal such as tungsten are sealed at both ends. . The electrodes 2 and 3 are metal foil conductors 4 made of molybdenum, etc.
4, and these metal foil conductors 4, 4 are sealed in sealing parts 5, 5 formed at both ends of the arc tube 1. The metal foil conductors 4, 4 are wells 6,
6, and a voltage is applied to the electrodes 2 and 3 via these widths 6 and 6. The arc tube 1 is bulged, for example, so that its discharge space is spherical or ellipsoidal, so that gas convection can occur smoothly within the discharge space. In addition, the arc tube 1 contains mercury, a starting rare gas, a metal halide as a luminescent metal,
For example, sodium iodide and scandium iodide are included.

発光管1は外管7内に収容され、外管7は白熱
電球と同様な形状および大きさを有し、一端にね
じ込み形口金8を被着してある。外管7のステム
9にはリード線10a,10bが封着されてお
り、一方のリード線10aには支持線11を介し
て一方の電極2が接続されているとともに、他方
のリード線10bには発光管1から遠ざかるよう
に弓形に曲成された導電ワイヤ12を介して他方
の電極3が接続されている。なお外管7内は真空
もしくは窒素あるいは不活性ガスの雰囲気に保た
れており、また口金8には端子8aが設けられて
いる。
The arc tube 1 is housed in an outer bulb 7, which has a shape and size similar to an incandescent light bulb, and has a screw cap 8 attached to one end. Lead wires 10a and 10b are sealed to the stem 9 of the outer tube 7, one electrode 2 is connected to one lead wire 10a via a support wire 11, and the other lead wire 10b is connected to one electrode 2 via a support wire 11. is connected to the other electrode 3 via a conductive wire 12 which is bent into an arcuate shape so as to move away from the arc tube 1. The inside of the outer tube 7 is maintained in a vacuum or an atmosphere of nitrogen or inert gas, and the base 8 is provided with a terminal 8a.

しかして発光管1は第2図に示されるように、
発光空間の周囲の肉厚分布が異なるように構成さ
れている。すなわち発光管1の主部13の肉厚t1
を0.3mm〜1.5mmとし、これに対し発光管封着部
5,5の近傍部14の内の少なくとも一部14a
つまり封着部5,5との境界部の肉厚を上記主部
13の肉厚11よりも大きくし、その最大値をt
mmとしたとき、 t/t1=1.4〜3.3 の範囲になるようにすると共に、封着部5,5の
厚さt2に対しては t/t2=0.5〜1.3 となるように構成されている。
As shown in FIG. 2, the arc tube 1 is
The wall thickness distribution around the light emitting space is configured to be different. That is, the wall thickness t 1 of the main portion 13 of the arc tube 1
is set to 0.3 mm to 1.5 mm, whereas at least a portion 14a of the vicinity portion 14 of the arc tube sealing portions 5, 5
In other words, the wall thickness at the boundary with the sealing parts 5, 5 is made larger than the wall thickness 11 of the main part 13, and its maximum value is set to t.
mm, t/t 1 = 1.4 to 3.3, and for the thickness t 2 of the sealing parts 5, 5, t/t 2 = 0.5 to 1.3. has been done.

なお、上記発光管主部13とは電極2と3との
先端間距離つまりアーク長に対応する管壁部分を
指し、封着部近傍部14とは上記主部13以外の
管壁部分つまり電極2,3の先端部から封着部
5,5にかけての管壁部分を指すものである。
The arc tube main portion 13 refers to the tube wall portion corresponding to the distance between the tips of the electrodes 2 and 3, that is, the arc length, and the sealing portion vicinity portion 14 refers to the tube wall portion other than the main portion 13, that is, the tube wall portion corresponding to the arc length. This refers to the tube wall portion from the tip portions 2 and 3 to the sealing portions 5 and 5.

このような構造の肉厚分布をもつことにより、
この肉厚変化の光学的効果にもとづき配光特性が
改善される。すなわち、上記のごとき肉厚分布構
造によれば、光が肉厚の大きい方向へ屈折すると
いうレンズ作用により、封着部側の光量が増大す
る。第3図はその原理の一層詳しく説明するため
に示したもので、本図によつてその作用を説明す
る。第3図Aは発光管の形状が球状であうが肉厚
の変化がない場合、第3図Bは本実施例のものに
係り発光管の形状が球状でありしかも主部13に
比べて封着部近傍部14の肉厚が大きい場合を
各々に示す。説明を簡単にするために中心点Oか
らの同一方向に光線OAが放出される場合を考え
てみる。また、第3図Aと第3図Bにおいては発
光管曲率半径は封着部近傍は同一としてある。
By having such a structure with wall thickness distribution,
The light distribution characteristics are improved based on the optical effect of this thickness change. That is, according to the thickness distribution structure as described above, the amount of light on the sealed portion side increases due to the lens action of refracting light in the direction of greater thickness. FIG. 3 is shown to explain the principle in more detail, and its operation will be explained with reference to this figure. 3A shows a case where the arc tube has a spherical shape but there is no change in wall thickness, and FIG. The case where the wall thickness of the portion 14 near the portion 14 is large is shown in each case. To simplify the explanation, let us consider the case where light rays OA are emitted in the same direction from the center point O. Furthermore, in FIGS. 3A and 3B, the radius of curvature of the arc tube is the same near the sealed portion.

第3図Aの場合には、O点が曲率中心であるた
め、入射角は零であり、ガラス壁のA点に入射さ
れた光は屈折されることなくB点に至り、かつガ
ラス壁の外面も曲率中心がO点であることからB
点において屈折されず、よつてOA方向の入射光
は直進してB′C′方向へ放出される。
In the case of Fig. 3 A, since point O is the center of curvature, the angle of incidence is zero, and the light incident on point A of the glass wall reaches point B without being refracted, and Since the center of curvature of the outer surface is also at point O, B
The incident light in the OA direction is not refracted at the point and is therefore emitted in the B′C′ direction.

第3図Bの場合においては、OA方向の入射光
はB″まで直進される。B″点における曲率中心は
A点の曲率中心とは異なる位置にあり、しかも図
示の上方が大きな肉厚となるように形成されてお
り、かつ屈折率の大きな所から小さな所へ光が透
過する場合に入射角よりも大きな角度で透過する
ことの理由により、B″C″方向の屈折光となる。
B″C″方向の屈折光は入射方向OAに対して角度θ2
だけ図示の上方に向つて屈折される。このことが
レンズ効果と称するゆえんであり、したがつて第
2図の発光管1は封着部近傍部14の少なくとも
一部14の肉厚を大きくしてあるから、第3図B
のレンズ効果にもとづき封着部5,5方向の光量
が増大される。
In the case of Fig. 3B, the incident light in the OA direction travels straight to B''.The center of curvature at point B'' is at a different position from the center of curvature at point A, and the upper part of the figure has a large wall thickness. When light is transmitted from a place with a high refractive index to a place with a low refractive index, it is transmitted at an angle larger than the angle of incidence, resulting in refracted light in the B″C″ direction.
The refracted light in the B″C″ direction is at an angle of θ 2 with respect to the incident direction OA.
is refracted upward as shown. This is the reason why it is called a lens effect.Therefore, in the arc tube 1 shown in FIG.
Based on the lens effect, the amount of light in the direction of the sealing parts 5, 5 is increased.

以上の説明においては中心点Oから出た1本の
光線について考察し、かつ発光管形状も球状の場
合について検討したが、複数の光線、中心点O以
外から出る光および発光管形状が楕円球状の場合
を考えても、その屈折作用は複雑になるが基本的
にはレンズ効果によつて封着部5方向へ拡散され
ることは容易に理解される。
In the above explanation, we considered a single ray emitted from the center point O and a case where the arc tube shape was spherical. Even if we consider the case of , the refraction effect becomes complicated, but it is easy to understand that basically the light is diffused in the direction of the sealing part 5 due to the lens effect.

また、円筒状の発光管であつても封着部近傍が
曲線状に成形されている場合は上記の原理がその
まま適用される。さらに第3図Bは封着部近傍の
肉厚を増す方法として内壁面を球状とし、外壁面
の曲率を封着部近傍で肉厚が増加するよう大きく
しているが、内壁面の曲率を小さくすることによ
つて肉厚を増加してもほぼ同様に上記の原理から
レンズ効果があることが理解できる。さらにまた
肉厚分布は上記実施例では封着部近傍部14の肉
厚を厚くする一部として封着部との境界部を採り
上げたが、この部分に限らず封着部近傍部14の
少なくともどこか一部分つまり部分的に肉の盛り
上がりである厚肉部が形成されていれば上記レン
ズ効果はある。特に封着部近傍部14の全体を肉
厚に形成すれば一層その効果は顕著となるし、ま
た発光管主部13から封着部5にかけて連続的に
肉厚を変化させるようにしても良い。
Furthermore, even if the arc tube is cylindrical, the above-mentioned principle can be applied as is if the vicinity of the sealing portion is formed into a curved shape. Furthermore, in Fig. 3B, as a method of increasing the wall thickness near the sealing part, the inner wall surface is made spherical, and the curvature of the outer wall surface is increased so that the wall thickness increases near the sealing part, but the curvature of the inner wall surface is It can be understood from the above principle that even if the wall thickness is increased by making the lens smaller, there is a lens effect in almost the same way. Furthermore, in the above embodiment, the wall thickness distribution is taken up at the boundary with the sealing part as a part of increasing the wall thickness of the sealing part vicinity part 14, but it is not limited to this part, but at least If a thick part, which is a raised part of the wall, is formed somewhere, the above lens effect will be achieved. In particular, if the entire portion 14 near the sealing portion is made thick, the effect will be even more remarkable, and the thickness may be changed continuously from the main portion 13 of the arc tube to the sealing portion 5. .

厚肉部の形成については、発光管成形時に封着
予定部付近の肉厚を予め大きくしておいても良い
し、また封着前には均一な肉厚分布のものを、封
着工程においてその付近の肉厚を第3図に示すよ
うに封着部の近傍に肉が集まるように成形しても
よい。
Regarding the formation of a thick wall part, the wall thickness near the area to be sealed may be increased in advance during molding of the arc tube, or the thickness may be formed with a uniform thickness distribution before sealing. The wall thickness in the vicinity may be shaped so that the wall thickness gathers near the sealing portion as shown in FIG.

以上の原理にもとづき配光特性の改善結果を第
4図に示す。第4図中破線は従来構造の発光管の
例であり、実線は本実施例に係る肉厚分布および
球状構造の発光管の例を示す。いづれも1000lm
の照度(cd)の配光分布であり、かつ口金を上
方とした垂直点灯姿勢である。
FIG. 4 shows the results of improving the light distribution characteristics based on the above principle. The broken line in FIG. 4 shows an example of an arc tube with a conventional structure, and the solid line shows an example of an arc tube with a wall thickness distribution and a spherical structure according to this embodiment. All 1000lm
It has a light distribution of illuminance (cd) of 1.5 cm, and is in a vertical lighting position with the cap facing upward.

なお、発光管構造については上記従来のものも
実施例のものも共に内径8mmの球状形状をなし、
肉厚については従来の場合は全域についてt1
0.7mmで均一に、一方実施例の場合は封着部近傍
部分を0.7mmから最大肉厚t=0.5mmにしてそれ以
外の部分の肉厚t1は0.7mmに設定してある。また、
封着部5,5の肉厚t2は両者共に2.5mmで同一で
ある。
Regarding the arc tube structure, both the conventional one and the example example have a spherical shape with an inner diameter of 8 mm.
Regarding the wall thickness, in the conventional case, t 1 =
On the other hand, in the case of the embodiment, the maximum wall thickness t=0.5 mm is set from 0.7 mm in the vicinity of the sealing portion, and the wall thickness t1 of the other portions is set to 0.7 mm. Also,
The wall thickness t 2 of the sealing portions 5, 5 is both 2.5 mm and the same.

したがつて従来のものは、 t/t1=0.7mm/0.7mm=1 t/t2=0.7mm/2.5mm=0.28 実施例のもは t/t1=1.5mm/0.7mm=2.14 t/t2=1.5mm/2.5mm=0.6 である。 Therefore, for the conventional one, t/t 1 = 0.7 mm/0.7 mm = 1 t/t 2 = 0.7 mm/2.5 mm = 0.28 For the example, t/t 1 = 1.5 mm/0.7 mm = 2.14 t /t 2 =1.5mm/2.5mm=0.6.

第4図から判るように、図中上方は口金が存在
するので破線のものも実線のものと大差はない
が、本実施例の肉厚分布をもつ実線のものは水平
方向の照度がわずかに減少するものの、直下照度
は破線のものに比べて約3倍に上昇されており、
配光分布が均一化されている。
As can be seen from Fig. 4, there is a cap in the upper part of the figure, so the dashed line is not much different from the solid line, but the solid line with the wall thickness distribution of this example has a slight illuminance in the horizontal direction. Although it decreases, the illuminance directly below is approximately three times higher than that of the dashed line.
Light distribution is uniform.

なお、封着部近傍部14の一部だけではなく、
近傍部14の全体の肉厚を厚く形成すれば、上記
レンズ効果は一層大きくなつてより顕著な効果が
得られる。
Note that not only a part of the sealing part vicinity part 14 but also
If the entire wall thickness of the vicinity portion 14 is made thicker, the above-mentioned lens effect becomes even larger and a more remarkable effect can be obtained.

以上の結果からt/t1およびt/t2を適当な範
囲内に選べば小形ランプにあつてもその配光分布
を大きく改善し得ることが判る。
From the above results, it can be seen that if t/t 1 and t/t 2 are selected within an appropriate range, the light distribution can be greatly improved even in a small lamp.

次に上記t/t1およびt/t2の適当な範囲を見
い出した試験結果について述べる。
Next, the results of tests to find appropriate ranges for t/t 1 and t/t 2 will be described.

第5図はt/t1と直下照度(口金側の上とした
垂直点灯)との関係を示す図で、このときの条件
としては発光管の肉厚t1=0.7mmで一定とし、封
着部近傍の最大肉厚tを0.7mm〜2.5mmにとり、し
たがつてt/t1を1〜3.6の範囲内で変化させた
ものである。なお、封着部5,5の肉厚t2は2.5
mm一定とした。
Figure 5 is a diagram showing the relationship between t/t 1 and direct illuminance (vertical lighting on the base side).The conditions at this time are that the wall thickness of the arc tube is constant at t 1 = 0.7 mm, and the seal is sealed. The maximum wall thickness t near the attachment part is set to 0.7 mm to 2.5 mm, and therefore t/t 1 is varied within the range of 1 to 3.6. In addition, the wall thickness t 2 of the sealing parts 5, 5 is 2.5
mm was constant.

第5図から明らかなようにt/t1が大きくなる
ほど上記レンズ効果が大きくなるため、封着部方
向への光量が増加して直下照度が高くなる。特に
t/t1が1.0から1.4と大きくなると急激に直下照
度が高くなり、さらにt/t1の増加につれて直下
照度も一層高くなるが、t/t1が3.3を越えるほ
ど大きくなると、tとt1との肉厚の差が大きくな
り過ぎるため、発光管管壁の熱的歪の差が大きく
なり点灯中に発光管が破損するおそれが生じるの
で好ましくない。したがつてt/t1は1.4〜3.3の
範囲に規制すれば良いことが判る。
As is clear from FIG. 5, the larger t/t 1 is, the larger the above-mentioned lens effect becomes, so the amount of light directed toward the sealed portion increases and the illuminance directly below becomes higher. In particular, when t/t 1 increases from 1.0 to 1.4, the illuminance directly below increases rapidly, and as t/t 1 increases, the illuminance directly below also increases, but as t/t 1 increases beyond 3.3, t Since the difference in wall thickness from t 1 becomes too large, the difference in thermal strain of the wall of the arc tube becomes large, which is undesirable because there is a risk that the arc tube will be damaged during lighting. Therefore, it can be seen that t/t 1 should be regulated within the range of 1.4 to 3.3.

第6図は封着部近傍の最大肉厚tと封着部の肉
厚t2との比t/t2の直下照度との関係を示す図
で、このときの条件としてはt/t1を上記規制範
囲内の2.2一定とし、t/t2を種々変化させたも
のである。第6図からt/t2が0.5より小さくな
ると封着部の肉厚t2が大きくなり過ぎるため、上
記レンズ効果はあつても封着部自体が光路を遮断
する率が大きくなつて直下照度は定価してくる。
一方、t/t2は大きくなるほど封着部の肉厚が相
対的に小さくなるので直下照度は高くなるが、
t/t2が1.3を越えるほどになると発光管の大き
さに対して封着部の肉厚t2が薄くなり過ぎるため
封着工程における歩留の低下や、封着部の強度低
下が問題となつてくるので、t/t2は0.5〜1.3の
範囲に規制すれば良いことが判る。
FIG. 6 is a diagram showing the relationship between the ratio t/t 2 of the maximum wall thickness t near the sealed portion and the wall thickness t 2 of the sealed portion and the illuminance directly below . is set at a constant value of 2.2 within the above regulatory range, and t/t 2 is varied in various ways. From Figure 6, when t/t 2 is smaller than 0.5, the wall thickness t 2 of the sealing part becomes too large, so even though the above lens effect is achieved, the rate at which the sealing part itself blocks the optical path increases, and the direct illuminance increases. will be priced accordingly.
On the other hand, as t/t 2 increases, the wall thickness of the sealed portion becomes relatively smaller, so the direct illuminance increases;
When t/t 2 exceeds 1.3, the wall thickness t 2 of the sealed part becomes too thin compared to the size of the arc tube, resulting in problems such as a decrease in yield in the sealing process and a decrease in the strength of the sealed part. Therefore, it can be seen that t/t 2 should be regulated within the range of 0.5 to 1.3.

以上のことから、 t/t1=1.4〜3.3 で、かつ t/t2=0.5〜1.3 が適切な範囲といえる。 From the above, it can be said that t/t 1 =1.4 to 3.3 and t/t 2 =0.5 to 1.3 are appropriate ranges.

このことは、発光管の封着部5,5の肉厚につ
いては製造工程上支障をきたさない範囲内で極力
薄くし、かつ、封着部方向への光量を増加させる
にはt/t1の比を大きくとることによつて、その
レンズ効果を大きくできることを意味している。
This means that in order to make the wall thickness of the sealed parts 5, 5 of the arc tube as thin as possible within a range that does not interfere with the manufacturing process, and to increase the amount of light toward the sealed part, t/t 1 is required. This means that by increasing the ratio, the lens effect can be increased.

なお、本発明は発光管1の両端封着部5,5が
上下方向となる形態たとえは垂直点灯時における
下方向に位置する封着部側による配光の不均一さ
を解消するものであるから、上記近傍部14の肉
厚t1および厚さt2を規制するのは下方向となる一
方の封着部側のみとしても良い。
In addition, the present invention is intended to solve the non-uniformity of light distribution due to the side of the sealing part located in the downward direction during vertical lighting, for example, when the sealing parts 5, 5 at both ends of the arc tube 1 are arranged in the vertical direction. Therefore, the thickness t 1 and the thickness t 2 of the vicinity portion 14 may be restricted only on one sealing portion side facing downward.

また、封着部5の厚さのみを採り上げて幅を採
り上げなかつた理由は、封着部5に封着される上
記金属箔導体4は良く知られるように極めて薄い
箔状の形態で使用されるから上記封着部5も当然
扁平に圧潰された形状をなしている。このような
封着部5の形状では同じ値だけ縮小した場合、封
着部全体の容積に対しより大きな影響を与えるの
は幅よりも厚さであることは計算上からも明らか
である。したがつて、光路を遮断する封着部5の
容積を規制する場合、その幅よりも厚さを採り上
げる方がより効果的である。
Further, the reason why only the thickness of the sealing part 5 was taken up and the width was not taken up is that the metal foil conductor 4 sealed to the sealing part 5 is used in the form of an extremely thin foil, as is well known. Therefore, the sealing portion 5 also naturally has a flattened shape. With such a shape of the sealed portion 5, it is clear from calculation that when the sealed portion 5 is reduced by the same amount, the thickness has a greater influence on the volume of the entire sealed portion than the width. Therefore, when regulating the volume of the sealed portion 5 that blocks the optical path, it is more effective to focus on the thickness rather than the width.

以上の結果は40Wの例であるが、100W以下の
小形メタルハライドランプにおいても同様の結果
が得られるものであるが、発光管主部の肉厚t1
0.3mm〜1.5mmが望ましく、0.3mm未満では耐圧強度
が低下し、一方1.5mmを越すと封着部近傍部の肉
厚を厚く形成加工することが難かしくなり、また
ランプ効率にも影響が出てくるので好ましくな
い。
The above results are for a 40W example, but similar results can be obtained with a small metal halide lamp of 100W or less, but the wall thickness t 1 of the main part of the arc tube is
A value of 0.3 mm to 1.5 mm is desirable; if it is less than 0.3 mm, the pressure resistance will decrease, while if it exceeds 1.5 mm, it will be difficult to form a thick wall near the sealing part, and the lamp efficiency will also be affected. I don't like it because it comes out.

さらにまた、一般に発光管1を収容する外管7
は内面にけい光体もしくはシリカ等の拡散物質を
塗布して拡散タイプとするか、もしくは拡散物質
を塗布しない透明(クリア)タイプとされる。拡
散タイプの場合には透明タイプに較べて配光特性
がかなり均一化されることは知られている。しか
しながら本発明による発光管の配光分布は、拡散
タイプの外管を使用しても何ら打ち消されるもの
ではなく、従来のものに較べて依然として有位性
をもつものであるから、外管については何ら制約
されるものではない。
Furthermore, an outer tube 7 that generally houses the arc tube 1
The inner surface is coated with a phosphor or a diffusing substance such as silica to make it a diffused type, or it is a transparent type without a diffusing substance coated on it. It is known that in the case of a diffused type, the light distribution characteristics are much more uniform than in a transparent type. However, the light distribution of the arc tube according to the present invention is not canceled out in any way even if a diffused type outer tube is used, and it still has superiority compared to the conventional one. There are no restrictions whatsoever.

〔発明の効果〕〔Effect of the invention〕

以上詳述した通り本発明は、100W以下の小形
メタルハライドランプにおいて発光管封着部近傍
の肉厚を発光管の主部よりも厚くしたから、発光
管内で生じた上記肉厚分布にもとづくレンズ効果
によつて、封着部方向へ屈折されて封着部方向の
光量が増大され、さらに封着部の厚さを規制する
ことによつて、上記封着部方向の光路の遮断率を
小さくすることができる。このため封着部方向の
照度が向上するので配光分布が均一化され、特に
垂直点灯時における直下照度が向上する。したが
つて屋内照明として白熱電球に代替して使用する
場合に被照射体の照度分布が向上し、かつ白熱電
球に較べて格段に効率が優れており、省エネルギ
ー光源としてきわめて有効である。
As detailed above, in the present invention, in a small metal halide lamp of 100W or less, the wall thickness near the arc tube sealing part is made thicker than the main part of the arc tube, so that the lens effect based on the above-mentioned wall thickness distribution that occurs inside the arc tube is achieved. The light is refracted toward the sealing part, increasing the amount of light in the direction of the sealing part, and by regulating the thickness of the sealing part, the blocking rate of the optical path in the direction of the sealing part is reduced. be able to. Therefore, the illuminance in the direction of the sealed portion is improved, so the light distribution is made uniform, and the illuminance directly below the lamp is particularly improved during vertical lighting. Therefore, when used in place of an incandescent light bulb for indoor lighting, the illuminance distribution of the irradiated object is improved, and the efficiency is much better than that of an incandescent light bulb, making it extremely effective as an energy-saving light source.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例である小形メタルハ
ライドランプの正面図、第2図はその発光管の縦
断面図、第3図A,Bは従来のものと本発明のも
のとのレンズ効果を比較して示す説明図、第4図
は配光分布特性図、第5図はt/t1と直下照度と
との関係を示す特性図、第6図はt/t2と直下照
度ととの関係を示す特性図である。 1……発光管、2,3……電極、5……封着
部、7……外管、8……口金、13……発光管の
主部、14……発光管封着部の近傍部。
Fig. 1 is a front view of a small metal halide lamp which is an embodiment of the present invention, Fig. 2 is a longitudinal sectional view of its arc tube, and Figs. 3 A and B are lens effects of the conventional lamp and the lamp of the present invention. Fig. 4 is a light distribution characteristic diagram, Fig. 5 is a characteristic diagram showing the relationship between t/t 1 and direct illuminance, and Fig. 6 is a characteristic diagram showing the relationship between t/t 2 and direct illuminance. FIG. DESCRIPTION OF SYMBOLS 1... Arc tube, 2, 3... Electrode, 5... Sealing part, 7... Outer tube, 8... Cap, 13... Main part of arc tube, 14... Near the arc tube sealing part Department.

Claims (1)

【特許請求の範囲】 1 両端部に対向して一対の電極を封着した透光
性耐熱絶縁物からなる発光管内に、水銀、希ガス
および金属ハロゲン化物を封じてなる100W以下
の小形メタルハライドランプにおいて、発光管主
部の肉厚t1を0.3mm〜1.5mm、発光管の少なくとも
一方の封着部近傍部の少なくとも1部の肉厚を上
記主部の肉厚t1よりも大きくし、その最大肉厚を
5mmとしたとき、 t/t1=1.4〜3.3 であり、かつ上記少なくとも一方の封着部の厚さ
t2mmと上記tmmとの関係を t/t2=0.5〜1.3 となるようにしたことを特徴とする小形メタルハ
ライドランプ。
[Scope of Claims] 1. A small metal halide lamp of 100W or less, which is made by sealing mercury, a rare gas, and a metal halide in an arc tube made of a light-transmitting heat-resistant insulator with a pair of opposite electrodes sealed at both ends. in which the wall thickness t 1 of the main portion of the arc tube is 0.3 mm to 1.5 mm, and the wall thickness of at least a portion of the vicinity of at least one sealing portion of the arc tube is larger than the wall thickness t 1 of the main portion; When the maximum wall thickness is 5 mm, t/t 1 = 1.4 to 3.3, and the thickness of at least one of the above sealed parts
A small metal halide lamp characterized in that the relationship between t 2 mm and the above tmm is t/t 2 =0.5 to 1.3.
JP5525684A 1984-03-24 1984-03-24 Miniature metal halide lamp Granted JPS60200455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5525684A JPS60200455A (en) 1984-03-24 1984-03-24 Miniature metal halide lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5525684A JPS60200455A (en) 1984-03-24 1984-03-24 Miniature metal halide lamp

Publications (2)

Publication Number Publication Date
JPS60200455A JPS60200455A (en) 1985-10-09
JPH0427667B2 true JPH0427667B2 (en) 1992-05-12

Family

ID=12993511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5525684A Granted JPS60200455A (en) 1984-03-24 1984-03-24 Miniature metal halide lamp

Country Status (1)

Country Link
JP (1) JPS60200455A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5117154A (en) * 1990-12-31 1992-05-26 Welch Allyn, Inc. Metal halide discharge lamp with improved shank loading factor
JP5258473B2 (en) * 2008-09-18 2013-08-07 株式会社オーク製作所 Short arc type discharge lamp

Also Published As

Publication number Publication date
JPS60200455A (en) 1985-10-09

Similar Documents

Publication Publication Date Title
GB2126415A (en) Discharge lamp
US4281267A (en) High intensity discharge lamp with coating on arc discharge tube
US3384771A (en) Reflector discharge lamp having frosted envelope and arc tube
EP0903772B1 (en) Direct current discharge lamp and light source having the discharge lamp attached to reflector
US2901648A (en) Reflector mercury lamp
JPH0427667B2 (en)
WO1983002851A1 (en) Metallic vapor discharge lamp
US3098945A (en) Configurated lamp
US4978887A (en) Single ended metal vapor discharge lamp with insulating film
JPH024099B2 (en)
JPH065614B2 (en) Reflective metal halide lamp
JPH0536380A (en) Metal halide lamp
JPH08222183A (en) Bulb type fluorescent lamp
JPH0412583B2 (en)
JPH0464140B2 (en)
JP2003100253A (en) High-pressure metal vapor discharge lamp and lighting apparatus
JPH09161728A (en) Metal halide lamp
JPS61133549A (en) Fluorescent lamp
GB2206992A (en) Single-ended discharge lamp
GB2092823A (en) Fluorescent Lamp
JPH0762992B2 (en) Reflective metal halide lamp
JPH08255591A (en) Metal halide lamp
KR200200889Y1 (en) Metak halide lamp
JPS60148043A (en) Metal vapor discharge lamp
JPH0330994Y2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term