JPH0427532A - Preparation of composite molded product - Google Patents

Preparation of composite molded product

Info

Publication number
JPH0427532A
JPH0427532A JP2181486A JP18148690A JPH0427532A JP H0427532 A JPH0427532 A JP H0427532A JP 2181486 A JP2181486 A JP 2181486A JP 18148690 A JP18148690 A JP 18148690A JP H0427532 A JPH0427532 A JP H0427532A
Authority
JP
Japan
Prior art keywords
mold
resin
particles
separation layer
molded product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2181486A
Other languages
Japanese (ja)
Other versions
JPH0712613B2 (en
Inventor
Masataka Inoue
正隆 井上
Shiro Yamamoto
山本 至郎
Kenko Yamada
山田 建孔
Shigekazu Kimura
木村 繁和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Publication of JPH0427532A publication Critical patent/JPH0427532A/en
Publication of JPH0712613B2 publication Critical patent/JPH0712613B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Molding Of Porous Articles (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To obtain a composite molded product by relatively simple operation by foaming foamable particles in a mold by raising temp. to generate the volumetric expansion of the particle aggregate and effectively utilizing this volumetric expansion force at its max. to perform composite molding. CONSTITUTION:A thermosetting resin or a precursor thereof is fluidized through a separation layer while the separation layer is pressed to the inner surface of a mold by volumetric expansion to be allowed to be present between the separation layer and the mold and between foamable particles. Subsequently, the thermosetting resin or the precursor thereof is cured and perfectly solidified to form a surface layer and a core part and, thereafter, the obtained composite molded product is taken out of the mold. The concrete molded product has thin skins of an epoxy resin formed to both outer surfaces thereof and glass fiber fabrics are present directly under the skins in the form pressed to the inner foamed core and (a) is a foamed core layer formed by the solidification of a mixed slurry, (b) is separating layers also used as fiber reinforced layers composed of two glass fiber fabrics and (c) is cured resin layers constituting both surfaces.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は複合成形品の製造方法に関するものである。更
に詳しくは、(i)繊維状補強材を含有する熱硬化性樹
脂相よりなる表層部、(11)気泡粒子(発泡含有粒子
〉を含有する該樹脂相よりなる芯部および輸)該表層部
と該芯部との間に存在する分離層よりなる一体化された
複合成形品を効率的に製造する方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for manufacturing a composite molded article. More specifically, (i) a surface layer portion made of a thermosetting resin phase containing a fibrous reinforcing material; (11) a core portion made of the resin phase containing cellular particles (foam-containing particles); The present invention relates to a method for efficiently producing an integrated composite molded article comprising a separation layer existing between a core and a core.

〈従来の技術〉 芯部が発泡コアを有し、表層部が繊維強化樹脂で構成さ
れた複合成形品は、軽量性および強靭性に優れているた
め、各種の分野に実用化されており、さらに改良された
成形品および製造方法が提案されている。
<Conventional technology> Composite molded products with a foam core and a surface layer made of fiber-reinforced resin are lightweight and strong, and have been put into practical use in a variety of fields. Further improved molded articles and manufacturing methods have been proposed.

前記した構造を有する複合成形品の製法としては、例え
ば、芯部の発泡コアを予め成形しておき、この成形体を
補強材としての織布で包んだ後、型に挿入し、次いで型
内へ液状成形樹脂を注入して表層部を形成させ、複合成
形品を型から取り出す方法、或いは表層部となる部材を
予め成形しておき、その中心部の空隙内に発泡性ウレタ
ン樹脂などを注入し、その空隙内で発泡した芯部を形成
させることによって複合成形品を得る方法等が知られて
いる。
As a method for manufacturing a composite molded product having the above-described structure, for example, the foam core of the core is molded in advance, this molded product is wrapped with a woven fabric as a reinforcing material, and then inserted into a mold. A method is to inject liquid molding resin into the mold to form the surface layer, and then take out the composite molded product from the mold.Alternatively, the material that will become the surface layer is pre-molded and foamed urethane resin, etc. is injected into the void in the center. However, a method of obtaining a composite molded article by forming a foamed core within the void is known.

例えば、特開昭63−162207号公報には、熱膨張
トランスファー成形法と称される方法が記載されている
。即ち、この公報に記載されている方法は、熱弾性硬質
フオームを所定形状に予備成形すること、予備成形フオ
ームを織布で包むこと、その内部制約面が最終部材の外
形を形成しかつ上記予備成形フオームコアの特定部位を
加熱可能な型内に置き、熱硬化性の液状成形樹脂を注入
し、加熱によりフオームコアを膨張させ、その膨脹力で
フオームコアを包む織布を型の内部制約面に押しつける
と共に樹脂を硬化させて成形品を得る方法である。この
方法は、従来にない軽量で強靭な複合成形品が得られる
という利点を有するが、(a)フオームコアとして、型
の形状とできる限り近似した形状のものを予備成形する
必要がある、(b)フオームコアの材質として熱膨張挙
動が適切な範囲のものを選択する必要がある、さらに(
C)フオームコアとして熱硬化樹脂が浸透しないように
独立気泡を有するものを使用する必要がある、などの制
約がある。
For example, JP-A-63-162207 describes a method called thermal expansion transfer molding. That is, the method described in this publication involves preforming a thermoelastic rigid foam into a predetermined shape, wrapping the preformed foam with a woven fabric, and forming a structure in which the internal constraint surface forms the outer shape of the final member and A specific part of the molded foam core is placed in a heatable mold, a thermosetting liquid molding resin is injected, the foam core is expanded by heating, and the expansion force presses the woven fabric surrounding the foam core against the internal constraint surface of the mold. This is a method of curing resin to obtain molded products. This method has the advantage of producing an unprecedentedly lightweight and strong composite molded product, but (a) it is necessary to preform a form core with a shape as close as possible to the shape of the mold; (b) ) It is necessary to select a material for the form core that has an appropriate thermal expansion behavior, and (
C) There are restrictions such as the need to use a foam core with closed cells to prevent the thermosetting resin from penetrating.

吐な、実公昭62−24521号公報には、繊維含有不
飽和ポリエステル樹脂からなる二つの表面層の間に、ポ
リオレフィン系樹脂発泡粒子またはその粉砕物を多数含
有する不飽和ポリエステル樹脂からなるコア層を一体に
形成してなることを特徴とする繊維強化不飽和ポリエス
テル樹脂軽量成形体、が記載されている。
Furthermore, Japanese Utility Model Publication No. 62-24521 discloses a core layer made of an unsaturated polyester resin containing a large number of foamed polyolefin resin particles or pulverized particles thereof, between two surface layers made of a fiber-containing unsaturated polyester resin. A lightweight molded article made of fiber-reinforced unsaturated polyester resin is described.

この軽量成形体は、成形用の型内にガラス繊維を敷載し
、これに不飽和ポリエステル樹脂原液を被覆して表面層
を形成させ、次いでポリオレフィン樹脂の発泡した粒子
と不飽和ポリエステル樹脂原液との混和液を流し込み(
コア層)、その上にガラス繊維含有不飽和ポリエステル
樹脂を被覆〈表面層)した後、形締めをして硬化させる
方法により得られる。
This lightweight molded product is produced by placing glass fiber in a mold, coating it with an unsaturated polyester resin stock solution to form a surface layer, and then adding foamed polyolefin resin particles and an unsaturated polyester resin stock solution to the glass fiber. Pour the mixture (
The core layer) is coated with a glass fiber-containing unsaturated polyester resin (surface layer), and is then molded and cured.

この方法は、既に発泡した後の粒子を用いるので、成形
の際、全体に均一に圧力をかけることは困難である。従
ってこの方法によっては均質な複合成形物を安定して得
ることは容易ではない。さらに、この方法は上下の表面
層の間に発泡粒子を含む不飽和ポリエステル樹脂がコア
として存在するボード形態の成形体を得るのに適してい
るが、屈曲した面を有する成形体を得る方法としては適
当で゛はない。
Since this method uses particles that have already been foamed, it is difficult to apply pressure uniformly throughout the molding process. Therefore, it is not easy to stably obtain a homogeneous composite molded product using this method. Furthermore, this method is suitable for obtaining a board-shaped molded article in which an unsaturated polyester resin containing expanded particles exists as a core between the upper and lower surface layers, but it is not suitable for obtaining a molded article with a curved surface. is not appropriate.

前記した如き従来公知の技術は、(i)複合成形品を得
る工程が多岐にわたり操作が煩雑であり、そのため成形
品の生産効率が低くコスト高になるという欠点を有して
いたり、(11)得られた複合成形品の強度や外観が不
満足であったり、また(iii>複合成形品の形状や大
きさが制限されるという欠点を有していた。
The conventionally known techniques as described above have the disadvantages that (i) the steps for obtaining a composite molded product are diverse and the operations are complicated, resulting in low production efficiency and high cost of the molded product; (11) The strength and appearance of the resulting composite molded product are unsatisfactory, and (iii) the shape and size of the composite molded product are limited.

〈発明が解決しようとする課題〉 そこで本発明の第1の目的は、表層部および発泡粒子(
気泡含有粒子)を含む芯部〈コア部分〉より実質的に形
成される複合成形品を比較的簡単な操作で得ることがで
きる方法を提供することにある。
<Problems to be Solved by the Invention> Therefore, the first object of the present invention is to improve the surface layer portion and the foamed particles (
The object of the present invention is to provide a method that allows a composite molded article substantially formed from a core portion containing (cell-containing particles) to be obtained by a relatively simple operation.

本発明の第2の目的は、前記構造を有する複合成形品を
実質的に1工程で得ることができ、しかも煩雑な操作や
複雑な条件を必要としないで得ることができる方法を提
供することにある。
A second object of the present invention is to provide a method that allows a composite molded article having the above structure to be obtained substantially in one step, without requiring complicated operations or complicated conditions. It is in.

本発明の他の目的は、生産効率が優れた、殊に成形機当
りの複合成形品の生産率が高い方法を提供することにあ
る。
Another object of the present invention is to provide a method with excellent production efficiency, in particular a high production rate of composite molded articles per molding machine.

本発明のさらに他の目的は、軽量で、物理的に高い強度
を有しかつ外観が優れた構造を有する複合成形品の製造
方法を提供することにある。
Still another object of the present invention is to provide a method for manufacturing a composite molded article that is lightweight, has high physical strength, and has a structure with excellent appearance.

本発明のさらに他の目的は、形状や大きさを任意に選択
しうる複合成形品の製造方法を提供することにある。
Still another object of the present invention is to provide a method for manufacturing a composite molded article whose shape and size can be arbitrarily selected.

本発明のさらに他の目的は以下の説明から一層明らかと
なるであろう。
Still other objects of the present invention will become clearer from the following description.

く課題を解決するための手段〉 本発明者らの研究によれば、前記本発明の目的は、 (i)  繊維状補強材を含有する熱硬化性樹脂相より
なる表層部、 (11)発泡粒子〈気泡含有粒子〉を含有する該樹脂相
よりなる芯部、および (iiD  該表層部と該芯部との間に存在する分離層
よりなる一体化された複合成形品の製造方法であって、
次の工程(a)〜(h) (a)実質的に密閉された成形用型内に、発泡性粒子は
実質的に通過しないが、成形時に流動性を有する熱硬化
性樹脂またはその前駆体は通過しうる分離層を設け、 (b)型内に該熱硬化性樹脂またはその前駆体を用意し
、 (e)型内における前記分離層と型との間に該分離層と
一体化するかまたは別個の繊維状補強材を連携して配置
し、 (d)さらに型内における前記分離層の型内面と反対の
位置に発泡性粒子の集合体を用意し、(e)昇温によっ
て該発泡性粒子を発泡させて該集合体の体積膨張を生じ
せしめ、 (f)前記(e)の体積膨張により分離層を型の内面方
向に押し付けながら、該熱硬化性樹脂またはその前駆体
を、分離層を通じて流動させ、かくして分離層と型の間
および発泡粒子間に熱硬化性樹脂またはその前駆体を存
在せしめ、(g)次いで、該熱硬化性樹脂またはその前
駆体を硬化せしめ、固化を完了せしめて、前記表層部お
よび芯部を形成させ、 (h)かくして得られた複合成形品を型から取り出す、 よりなることを特徴とする複合成形品の製造方法によっ
て達成されることが見出された。
According to the research conducted by the present inventors, the objects of the present invention are as follows: (i) a surface layer portion made of a thermosetting resin phase containing a fibrous reinforcing material; (11) foaming; A method for producing an integrated composite molded article comprising a core made of the resin phase containing particles (cell-containing particles), and (iiD) a separation layer existing between the surface layer and the core, ,
Next steps (a) to (h) (a) A thermosetting resin or its precursor that has fluidity during molding, although the expandable particles do not substantially pass through the substantially closed mold. (b) providing the thermosetting resin or its precursor in the mold; (e) integrating the separation layer between the separation layer and the mold in the mold; (d) further providing an aggregate of expandable particles in the mold at a position opposite to the inner surface of the mold of the separation layer; (e) increasing the temperature to foaming the expandable particles to cause volumetric expansion of the aggregate, (f) pressing the separation layer toward the inner surface of the mold due to the volumetric expansion in (e), while applying the thermosetting resin or its precursor; (g) allowing the thermosetting resin or its precursor to flow through the separating layer, thus causing the presence of the thermosetting resin or its precursor between the separating layer and the mold and between the expanded particles; (g) then curing the thermosetting resin or its precursor to cause solidification; The present invention has been found to be achieved by a method for manufacturing a composite molded product, which is characterized in that the method for manufacturing a composite molded product is characterized by: (h) removing the composite molded product thus obtained from the mold. It was done.

上記本発明方法は、昇温による発泡性粒子の発泡を型内
で行なわせ、かくすることによってこれら粒子の集合体
の体積膨張を生じさせ、この体積膨張の力を最大限にか
つ有効に利用して複合成形品の成型を行う点に特徴を有
している。
The above-mentioned method of the present invention causes foaming of expandable particles in a mold by raising the temperature, thereby causing volumetric expansion of an aggregate of these particles, and maximally and effectively utilizing the force of this volumetric expansion. It is characterized by the fact that it molds composite molded products.

すなわち、前記粒子の集合体の体積膨張による力は、そ
の集合体を取り囲む分離層を、その外に向って型の内面
方向へ押し付ける力および分離層内部において発泡した
粒子間に隙間(空隙)の無い均質なコア部分を形成する
ように直接作用する。
In other words, the force due to the volume expansion of the particle aggregate is the force that presses the separation layer surrounding the aggregate toward the inner surface of the mold, and the force created by the gaps (voids) between the foamed particles inside the separation layer. It acts directly to form a homogeneous core part.

さらに前記粒子の集合体の体積膨張によって、型内に存
在する流動性の熱硬化性樹脂またはその前駆体は、分離
層を介して移動し、繊維状補強材中への浸透および7/
または発泡粒子集合体中への浸透が充分に行われ、緻密
な表層部および隙間芯部の形成が達成される。
Further, due to the volumetric expansion of the aggregate of particles, the fluid thermosetting resin or its precursor present in the mold moves through the separation layer and penetrates into the fibrous reinforcement material.
Alternatively, sufficient penetration into the foamed particle aggregate is achieved, and formation of a dense surface layer and gap core is achieved.

かくして下記の特徴を有する複合成形品が得られる。A composite molded article having the following characteristics is thus obtained.

(i)  繊維状補強材を含有する合成樹脂相よりなる
表層部が成形品の表面全体に亘って均質かつ均密に形成
される。そしてこの表層部には発泡した粒子は事実上存
在しない。
(i) A surface layer made of a synthetic resin phase containing a fibrous reinforcing material is formed homogeneously and uniformly over the entire surface of the molded article. There are virtually no foamed particles in this surface layer.

(11)該表層部中には、実質的に発泡した粒子は存在
しないので形成された表層部は緻密な構造を有し、得ら
れた成形品は物理的強度が高くかつ優れた外観を有して
いる。
(11) Since there are substantially no foamed particles in the surface layer, the formed surface layer has a dense structure, and the resulting molded product has high physical strength and an excellent appearance. are doing.

(ii1+  分離層内部において、発泡粒子と合成樹
脂とが互いに隙間なくつまった芯部が形成される。
(ii1+ Inside the separation layer, a core portion is formed in which the expanded particles and the synthetic resin are packed together without any gaps.

(’IV)  密閉された型内において流動性の熱硬化
性樹脂またはその前駆体が分離層を介して流通すること
によって前記表層部と芯部が形成されるので、該表層部
と芯部とは同じ樹脂の連通によって強固に一体化された
構造を形成する。
('IV) The surface layer portion and the core portion are formed by flowing the fluid thermosetting resin or its precursor through the separation layer in the sealed mold, so that the surface layer portion and the core portion are form a strongly integrated structure through communication of the same resin.

次に、本発明方法における成形プロセスについてさらに
詳細に説明する。
Next, the molding process in the method of the present invention will be explained in more detail.

本発明の成形プロセスは、実質的に密閉された成形用の
型(mold)内で事実上−工程で行なわれる。その際
使用される型は、成形時に実質的に密閉することが可能
であり、成形圧力および温度に耐えうるちのであればよ
く、通常ハンドレイ法。
The molding process of the present invention is carried out in a virtually closed mold in a virtually closed mold. The mold used in this case may be one that can be substantially sealed during molding and can withstand the molding pressure and temperature, and is usually a hand-lay method.

RTM法(Resin Transfer Moldi
ng法〉またはRIM法(Reaction Infe
ction Molding法)などの成形法に使用さ
れる型が使用可能である。型の材質としては、金型、木
型或いは樹脂型のいずれであっても差支えない。
RTM method (Resin Transfer Moldi)
ng method> or RIM method (Reaction Infe
A mold used in a molding method such as cation molding method) can be used. The material of the mold may be a metal mold, a wooden mold, or a resin mold.

本発明の方法の利点は、前述したように、発泡性粒子の
発泡によってこれら粒子の集合体の体積膨張を行わせ、
その体積膨張の力を、分離層を用いることによって最大
限にかつ効果的に働かせることによって達成される。
As mentioned above, the advantage of the method of the present invention is that the foaming of the expandable particles causes volume expansion of the aggregate of these particles;
This is achieved by maximally and effectively exerting the force of volumetric expansion by using a separation layer.

そのため、分離層の使用は本発明の目的達成のために不
可欠である。
Therefore, the use of a separation layer is essential to achieving the objectives of the present invention.

かくして本発明において分離層は、発泡性粒子を実質的
に通過しないが成形時における流動性のある熱硬化性樹
脂またはその前駆体を通過しうるちのであることが必要
である。
Thus, in the present invention, the separation layer must be able to pass through the fluid thermosetting resin or its precursor during molding, although it does not substantially pass through the expandable particles.

さらに分離層として望まれる性能は、前記粒子の集合体
の体積膨張の結果、その圧力に耐えうるちのであること
である。体積膨張の結果、分離層が破れなり、或いは穴
が開いて、発泡した粒子が分離層を通過すると、目的と
する良好な複合成形品を得ることが困難となる。
Furthermore, a desired performance of the separation layer is that it be able to withstand the pressure caused by the volume expansion of the particle aggregate. As a result of the volumetric expansion, if the separation layer is torn or holes are formed and the foamed particles pass through the separation layer, it becomes difficult to obtain the desired composite molded product.

前記した性能を達成するため、分離層の目開き、強度或
いは孔の大きさは、使用される発泡性粒子の大きさおよ
び形状に基いて選択されるべきである。
To achieve the above performance, the aperture, strength or pore size of the separation layer should be selected based on the size and shape of the expandable particles used.

これに反し、発泡性粒子が通過しうる分離層を使用する
と、表層部に気泡含有粒子が含まれることになり、この
結果、得られた複合成形品は満足すべき強度を有しなか
ったり、また外観が劣悪なものとなり商品価値が低くな
る。
On the other hand, if a separation layer through which expandable particles can pass is used, the surface layer will contain bubble-containing particles, and as a result, the resulting composite molded product may not have satisfactory strength or Moreover, the appearance becomes inferior and the commercial value decreases.

分離層の材料としては、具体的には織物1編物。Specifically, the material for the separation layer is a woven fabric or a knitted fabric.

不織布、ウェッブ、紙、金網または多孔質膜が挙げられ
る。これらのうち、好ましいものは織物編物、不織布ま
たはウェッブであり、これらの素材は合成繊維、天然繊
維または無機繊維のいずれであってもよい。
Examples include non-woven fabrics, webs, paper, wire mesh or porous membranes. Among these, preferred are woven or knitted fabrics, nonwoven fabrics, or webs, and these materials may be synthetic fibers, natural fibers, or inorganic fibers.

分離層は、その構造も発泡性粒子を実質的に通過させな
いものであることが望まれる。すなわち分離層の構造は
、成形に使用される型の構造や目的とする複合成形品の
構造成いは形状に依存して決められる。一般には袋構造
体或いは面状構造体であり、袋状構造体が特に好ましい
。上記袋構造体或いは面状構造体は、その全体が分離層
である必要はなく、実質的に樹脂を通過させて発泡性粒
子を通過させない限り、その一部が樹脂を通さない他の
材質、例えばフィルム、膜、微多孔膜などで構成されて
いてもよい。
It is desired that the separation layer has a structure that substantially prevents the passage of expandable particles. That is, the structure of the separation layer is determined depending on the structure of the mold used for molding and the shape of the intended composite molded product. Generally, it is a bag structure or a planar structure, and a bag-like structure is particularly preferable. The bag structure or planar structure does not need to be entirely a separation layer, and a part thereof may be made of other material that does not allow the resin to pass through, as long as the resin does not pass therethrough and the expandable particles do not pass therethrough. For example, it may be composed of a film, membrane, microporous membrane, or the like.

本発明方法において分離層は、表層部を形成する繊維状
補強材と一体化された構造材料であることができる。こ
の一体止された構造材料を使用することは、本発明方法
の好ましい実施態様の1っである。典型的な一体化され
た構造材料は、前述した分離層としての機能を、少なく
ともその表面部に有する繊維状補強材である。
In the method of the invention, the separation layer can be a structural material integrated with the fibrous reinforcement forming the surface layer. The use of this integral structural material is one of the preferred embodiments of the method of the invention. A typical integrated structural material is a fibrous reinforcement material that has at least a surface portion thereof that functions as the separation layer described above.

表層部を形成する繊維状補強材については、後に詳しく
説明するが、この補強材として例えば織物1編物、不織
布或いはウェッブなどを使用した場合、その内側表面部
分く発泡性粒子の集合体が接触する面)において、実質
的にこれら粒子を通過しないものであれば、その補強材
自体が分離層としての機能を有しており、分離層を兼ね
ることができる。このような繊維状補強材を使用する場
合、わざわざ別個に分離層を設ける必要はない。
The fibrous reinforcing material that forms the surface layer will be explained in detail later, but when a woven fabric, a non-woven fabric, or a web is used as this reinforcing material, the inner surface of the reinforcing material comes into contact with the aggregate of expandable particles. If the reinforcing material does not substantially pass through these particles, the reinforcing material itself has a function as a separating layer and can also serve as a separating layer. When using such a fibrous reinforcing material, there is no need to take the trouble to provide a separate separation layer.

しかし分離層と繊維状補強材とは別個に連携して使用す
ることもできるし、また重ねて一体化して使用すること
もできる。
However, the separation layer and the fibrous reinforcing material can be used separately in conjunction with each other, or they can be stacked and used in an integrated manner.

本発明の複合成形品の表層部を形成する繊維状補強材は
、一般にプラスチックの強化のために使用される繊維状
の材料が使用される。その繊維状補強材としては、ガラ
ス繊維、炭素繊維、シリコン・カーバイト繊維、金属繊
維、アラミド繊維。
The fibrous reinforcing material forming the surface layer of the composite molded article of the present invention is a fibrous material generally used for reinforcing plastics. The fibrous reinforcement materials include glass fiber, carbon fiber, silicon carbide fiber, metal fiber, and aramid fiber.

ポリアリレート繊維、ポリオレフィン繊維およびこれら
の2種以上の混合繊維が好ましい。これら繊維の他に、
ポリエステル繊維、ポリアミド繊維。
Polyarylate fibers, polyolefin fibers, and mixed fibers of two or more of these are preferred. In addition to these fibers,
polyester fiber, polyamide fiber.

ビスコース繊維、天然繊維または石綿なども使用するこ
とができる。これら繊維は短繊維であっても長l/M維
であってもよく、またウィスカーであってもよいが、長
繊維特に連続繊維が好ましい。
Viscose fibers, natural fibers or asbestos can also be used. These fibers may be short fibers, long l/M fibers, or whiskers, but long fibers, particularly continuous fibers, are preferred.

これら繊維状補強材は一般には繊維構造体として使用さ
れるのが好ましい。すなわち、この補強材は織物(平織
り、スダレ織り、綾織りなど)。
These fibrous reinforcements are generally preferably used as fibrous structures. In other words, this reinforcing material is a woven fabric (plain weave, sudare weave, twill weave, etc.).

編物、不織布、UD糸(一方向配列フィラメント)また
はウェッブであるのが有利である。これらの形態は、平
坦なものに限らず、三次元織物、三次元編物でもよく、
またブレードチューブのようなものでもよい。
Advantageously, it is a knitted fabric, a non-woven fabric, a UD yarn (unidirectional filament) or a web. These forms are not limited to flat ones, but may also be three-dimensional fabrics, three-dimensional knitted fabrics,
Alternatively, it may be something like a braided tube.

短繊維或いはウィスカーく例えばシリコンカーバイトウ
ィスカー、炭素ウィスカー、酸化ケイ素ウィスカーなど
)は、それ自体としては表層部における補強材として使
用することは適当ではないが、ウェッブや不織布の一部
の材料として使用する5二とがて“きる。
Short fibers or whiskers (e.g., silicon carbide whiskers, carbon whiskers, silicon oxide whiskers, etc.) are not suitable for use as reinforcing materials in the surface layer by themselves, but they can be used as some materials for webs and nonwoven fabrics. 52 and ``kiru''.

本発明の目的とする複合成形物において、芯部に含まれ
る発泡粒子(気泡含有粒子)は、複合成形物の成形時に
おいて発泡性粒子を樹脂中に存在させて加熱することに
より粒子中に含まれる物質を発泡または膨張させること
により形成される。
In the composite molded product that is the object of the present invention, the expanded particles (cell-containing particles) contained in the core are made to exist in the resin and heated during molding of the composite molded product. It is formed by foaming or expanding a material.

前記発泡性粒子としては、成形時の加熱により体積膨張
することができ、かつ発泡後実質的に気泡が粒子中に内
包されているものが使用される。
As the expandable particles, those that can expand in volume by heating during molding and substantially contain air bubbles in the particles after foaming are used.

この発泡性粒子としては加熱により体積が少なくとも約
10%、好ましくは少なくとも約20%増大するものが
使用される。現在入手しうる発泡性粒子は、通常約20
%〜70倍程度体積膨張するものである。ここで体積膨
張の倍率は、発泡性粒子を成形温度において常圧で発泡
させた時の体積膨張倍率を示・すものであって、必ずし
も成形によって得られた複合成形品中の発泡倍率を意味
するものではない。
The expandable particles used are those whose volume increases by at least about 10%, preferably at least about 20%, when heated. Currently available expandable particles are typically about 20
% to about 70 times. Here, the volume expansion ratio indicates the volume expansion ratio when expandable particles are foamed at molding temperature and normal pressure, and does not necessarily mean the expansion ratio in the composite molded product obtained by molding. It's not something you do.

使用される発泡性粒子の大きさは、その平均径が約1μ
m〜約5mm、好ましくは約10μm〜約1石の範囲、
が好適である。前記発泡性粒子を形成する重合体は、成
形時の加熱により発泡して体積膨張し、気泡が実質的に
内包されているものであり、しかも成形時の加熱温度に
より流動しないものである。−船釣に好適な発泡性粒子
は、ポリ塩化ビニリデン共重合体、ポリスチレンまたは
ポリスチレン共重合体、ポリオレフィン、ポリフェニレ
ンオキサイド共重合体またはポリフェニレンオキサイド
とポリスチレンとの混合体等により形成され、その中に
発泡性ガスを内包しているものである。
The size of the expandable particles used is approximately 1μ in average diameter.
m to about 5 mm, preferably about 10 μm to about 1 stone,
is suitable. The polymer forming the expandable particles is one that foams and expands in volume when heated during molding, substantially contains air bubbles, and does not flow due to the heating temperature during molding. - Expandable particles suitable for boat fishing are formed from polyvinylidene chloride copolymer, polystyrene or polystyrene copolymer, polyolefin, polyphenylene oxide copolymer, or a mixture of polyphenylene oxide and polystyrene, etc., in which foam is formed. It contains sexual gas.

殊に加熱により気体として体積膨張する低沸点炭化水素
を内包しているポリ塩化ビニリデン系ホリマーの粒子〈
これは大気中では数倍〜数十倍程度に膨張する)を使用
するのが望ましい。このような粒子は、ノーペル社の「
エクスパンセル」、松本油脂製薬社の「マツモトマイク
ロスフェア」また積水化成品社の「エスレンビーズ」と
いう商品名で市販されており、これらをそのまま使用す
ることができる。
In particular, polyvinylidene chloride polymer particles containing low-boiling hydrocarbons that expand in volume as a gas when heated.
This expands several times to several tens of times in the atmosphere). Such particles are manufactured by Norpel's
"Expancel", "Matsumoto Microspheres" by Matsumoto Yushi Pharmaceutical Co., Ltd., and "Eslen Beads" by Sekisui Plastics Co., Ltd. are commercially available, and these can be used as they are.

しかしながら、ポリオレフィン、ポリスチレン等の発泡
ビーズの製造において、発泡を途中で止め、加熱により
さらに発泡し得るようにしたビーズ類(これらは後の加
熱により10%〜数十%膨張する)も使用可能である。
However, in the production of foamed beads such as polyolefin and polystyrene, it is also possible to use beads that stop foaming midway and allow further foaming when heated (these expand by 10% to several tens of percent when heated later). be.

前記発泡性粒子の集合体は、これに加熱等によって実質
的に体積膨張しない非膨張性発泡粒子を混合して使用す
ることができる。この非膨張性発泡粒子もまた分離層を
実質的に通過しないものである必要がある。この非膨張
性発泡粒子を前記粒子の気合体に混合して使用すると、
成形操作が容易となり、また得られた複合成形品は一層
強靭性および剛性が優れたものとなる。
The aggregate of expandable particles can be used by mixing non-expandable expanded particles that do not substantially expand in volume upon heating or the like. The non-expandable expanded particles must also not substantially pass through the separation layer. When these non-expandable foamed particles are mixed into the gas mixture of the particles and used,
The molding operation becomes easier, and the resulting composite molded product has even better toughness and rigidity.

前記非膨張性発泡粒子としては、無機発泡粒子或いは有
機発泡粒子のいずれであってもよいが、一般には無機発
泡粒子が好適である。非膨張性無機発泡粒子としては、
例えばガラスバルーン、シリカバルーンおよびシラスバ
ルーンが挙げられ、これらは平均粒径が約1μm〜約l
lTllTl、好ましくは約5μm〜約0.5mmのも
のが望ましい。上述の発泡性粒子と、この非膨張性発泡
粒子との混合割合は、重量で10:1〜1:5、好まし
くは9:1〜1:3の範囲が望ましい。
The non-expandable expanded particles may be either inorganic expanded particles or organic expanded particles, but inorganic expanded particles are generally preferred. As non-expandable inorganic foam particles,
Examples include glass balloons, silica balloons, and glass balloons, which have an average particle size of about 1 μm to about 1 μm.
lTllTl, preferably from about 5 μm to about 0.5 mm. The mixing ratio of the above-mentioned expandable particles and the non-expandable expanded particles is preferably in the range of 10:1 to 1:5, preferably 9:1 to 1:3 by weight.

本発明の複合成形品の製造において、表層部および芯部
に使用される熱硬化性樹脂は、通常、その前駆体または
プレポリマーとして使用されることが多い。これらはい
ずれも、成形時に流動性を示すものである限り、一般に
成形用樹脂として使用されるものであればよい。熱硬化
性樹脂またはその前駆体としては、成形の結果重合反応
および/または架橋反応によって硬化し固体の樹脂を与
えるものであり、一般には常温で液状のものが有利であ
る。前駆体とは、モノマーおよびプレポリマーを意味す
るものとする。熱硬化性樹脂としては、例えばエポキシ
樹脂、ポリウレタン樹脂、不飽和ポリエステル樹脂、ポ
リビニルエステル樹脂ポリイミド樹脂、ポリアミド樹脂
であり、これらの中でエポキシ樹脂、ポリウレタン樹脂
、不飽和ポリエステル樹脂またはポリビニルエステル樹
脂が好ましい。また場合によっては硬化型のポリシクロ
オレフィン樹脂(例えば、ジシクロペンタジェン樹脂)
も使用しうる。
In the production of the composite molded article of the present invention, the thermosetting resin used for the surface layer and core is often used as a precursor or prepolymer thereof. Any of these resins may be used as long as they exhibit fluidity during molding and are generally used as molding resins. The thermosetting resin or its precursor is one that hardens through a polymerization reaction and/or crosslinking reaction upon molding to give a solid resin, and is generally advantageous to be liquid at room temperature. Precursors shall mean monomers and prepolymers. Examples of thermosetting resins include epoxy resins, polyurethane resins, unsaturated polyester resins, polyvinyl ester resins, polyimide resins, and polyamide resins, and among these, epoxy resins, polyurethane resins, unsaturated polyester resins, and polyvinyl ester resins are preferred. . In some cases, curable polycycloolefin resin (e.g. dicyclopentadiene resin)
can also be used.

熱硬化性樹脂は、通常使用されるように、樹脂またはそ
の前駆体く例えば原料モノマー)中に硬化剤および、/
まなは促進剤等を組合せて用いられるか、本発明も同様
に、これらを組合せて使用することができ、またその方
が有利である。
Thermosetting resins are commonly used in which a curing agent and/or
The present invention can also be used in combination with promoters and the like, and it is advantageous to use these in combination.

これらの熱硬化性樹脂またはその前駆体は、室温におい
て固体で加熱によって流動性を示すようなものも使用で
き、場合によってはその方が好ましいこともある。
As these thermosetting resins or their precursors, those that are solid at room temperature and exhibit fluidity when heated can also be used, and this may be preferable depending on the case.

本発明方法により成形を実施するに当っては、先ず過剰
の樹脂等を型外へ排出するためのベントロを有し、かつ
成形時には実質上型内が密閉し得る型を用意し、類型の
内面に沿って繊維状補強材を配置し、さらにその内側に
分離層を設置する。
In carrying out molding according to the method of the present invention, first, a mold is prepared which has a vent hole for discharging excess resin, etc. to the outside of the mold, and which can substantially seal the inside of the mold during molding. A fibrous reinforcing material is placed along the line, and a separation layer is placed inside the fibrous reinforcing material.

分離層と繊維状補強材が一体化されている場合、典型的
には分離層の機能を有する繊維状補強材を使用する場合
には、その一体色物を型の内面に分離層としての機能を
有する面が内側(中心側)に位!するようにほぼ全面に
配置するのが好ましい。
When the separation layer and the fibrous reinforcement are integrated, typically when using a fibrous reinforcement that has the function of a separation layer, the integrated colored material is attached to the inner surface of the mold to function as the separation layer. The surface with is on the inside (center side)! It is preferable to arrange it almost over the entire surface so that the

分離層および繊維状補強材をどのように配置するかは、
目的とする複合成形品の形状、大きさ。
How to place the separation layer and fibrous reinforcement
The shape and size of the desired composite molded product.

物性および用途などに依存して決められる。It is determined depending on physical properties and usage.

前述したように本発明方法は、成形過程において、発泡
性粒子の集合体の体積膨張を効果的に利用するので、前
記粒子の集合体の体積膨張が分離層を型の内面に閏って
全体に押し付けられるように分離層および繊維状補強材
を配置すべきである。
As mentioned above, the method of the present invention effectively utilizes the volumetric expansion of the expandable particle aggregate during the molding process, so that the volumetric expansion of the particle aggregate causes the separation layer to fit onto the inner surface of the mold, causing the entire mold to expand. The separating layer and the fibrous reinforcement should be placed so that they are pressed against each other.

また当然のことながら、複合成形品の表層部中に気泡含
有粒子が入らないように、分離層を型の形状に応じて配
置すべきである。分離層が発泡性粒子を実質的に通過し
ない性能を有していたとしても、型内において、分離層
の配置が不完全であるために、成形時にその周辺の一部
からこれら粒子が流れて表層部へ移動することは望まし
くなく避けるべきである。
Also, it goes without saying that the separation layer should be arranged according to the shape of the mold so that air bubble-containing particles do not enter the surface layer of the composite molded article. Even if the separation layer has the ability to substantially prevent expandable particles from passing through, these particles may flow from a part of the periphery during molding due to imperfect placement of the separation layer in the mold. Migration to the surface layer is undesirable and should be avoided.

例えば、棒状または円柱状の成形品を製造しようとする
場合、この成形品の形状に合致して分離層および繊維状
補強材を袋構造体く中空筒形)状に型内面に配置すれば
よい。添付した第2図および第3図に、このタイプの配
置図が概略的に説明されている。また平板の成形品を製
造しようとする場合には、型の内面に分離層および繊維
状補強材を全体に貼りつけるように配置すればよい。そ
の場合分離層は袋構造体とすることができる。この平板
を製造する場合の分離層および繊維状補強材の型内の配
置の例は、第1図に示されている。
For example, when manufacturing a rod-shaped or cylindrical molded product, the separation layer and the fibrous reinforcing material may be arranged on the inner surface of the mold in the shape of a hollow cylinder to match the shape of the molded product. . This type of arrangement is schematically illustrated in the attached FIGS. 2 and 3. Furthermore, when manufacturing a flat plate molded product, a separation layer and a fibrous reinforcing material may be placed on the inner surface of the mold so as to be adhered to the entire surface. The separating layer can then be a bag structure. An example of the arrangement of the separating layer and the fibrous reinforcement in the mold when manufacturing this flat plate is shown in FIG.

また、平板や表裏のある面状の成形品の場合、分離層は
型の内面の一方の側だけに設置することもできる。この
場合化の側は、分離層を設けない例、分離層の代わりに
液状成形樹脂をも通さないフィルムなどの材料を設置す
る例などがありうるが、目的に応じて選択すればよい。
Further, in the case of a flat plate or a planar molded product with front and back surfaces, the separation layer can be provided only on one side of the inner surface of the mold. On the side of this case, there may be an example in which no separation layer is provided, or an example in which a material such as a film that does not allow even liquid molding resin to pass through is provided in place of the separation layer, but it may be selected depending on the purpose.

例えば自動二輪車のカウリングの場合、表面側に印刷し
たフィルムを設置し、裏面側にガラス繊維の織物の分離
層を用いることで、成形後表面側を塗装し、デカールを
貼る作業を簡略化できる。高剛性を要する構造材として
平板を成形する場合は、両面に分離層を設け、さらにそ
れぞれの分離層と型の内面の間に繊維状補強材を配置す
ればよい。
For example, in the case of motorcycle cowlings, by installing a printed film on the front side and using a separation layer of glass fiber fabric on the back side, it is possible to simplify the work of painting the front side after molding and applying decals. When molding a flat plate as a structural material that requires high rigidity, separation layers may be provided on both sides, and a fibrous reinforcing material may be placed between each separation layer and the inner surface of the mold.

前記したように、型内に分離層および繊維状補強材を配
置した後、発泡性粒子は分離層の型内面と反対の位置に
、すなわち、発泡性粒子が分離層によって囲まれ得るよ
うに用意される。分離層が袋構造体の場合はその内部に
用意される。殊に分離層が袋構造体の場合、予め型外に
おいてその内側に発泡性粒子および必要に応じ加えられ
る非膨張性発泡粒子を入れておくこともできる。
As described above, after placing the separation layer and the fibrous reinforcement in the mold, the expandable particles are provided in a position opposite the mold surface of the separation layer, i.e., in such a way that the expandable particles can be surrounded by the separation layer. be done. If the separation layer is a bag structure, it is provided inside the bag structure. In particular, when the separation layer is a bag structure, expandable particles and, if necessary, non-expandable expanded particles may be placed inside the bag structure beforehand outside the mold.

発泡性粒子の集合体は、前記したように小さい粒子の集
合体であるので、それ自体流動体を有しており、型を閉
じた後で型内に流通管を通じて供給することも可能であ
る。しかし、細い流通管を通じて型内に前記粒子の集合
体を安定した操作で供給することは、注意が必要である
。従って、通常は発泡性粒子くおよび非膨張性発泡粒子
〉は、型を閉じる前に型内に入れておく方が望ましい。
Since the aggregate of expandable particles is an aggregate of small particles as described above, it itself has a fluid, and it is also possible to supply it into the mold through the flow pipe after the mold is closed. . However, care must be taken to feed the particle aggregate into the mold through a narrow flow tube in a stable manner. Therefore, it is usually desirable to place the expandable particles and non-expandable expandable particles into the mold before closing the mold.

本発明の目的とする複合成形品において熱硬化性樹脂ま
たはその前駆体く以下これを総称して゛′樹脂成分パと
いうことがある)を型内に配置もしくは供給する方法は
、いくつかの方法かある。
In the composite molded article that is the object of the present invention, there are several methods for arranging or supplying the thermosetting resin or its precursor (hereinafter collectively referred to as "resin component") into the mold. be.

大別すると下記(伺〜(ハ)の方法がある。Broadly speaking, there are the following methods.

(イ)樹脂成分(室温で液状または固体状の)を分離層
および繊維状補強材中と混合もしくは含浸しておく方法 (ロ)樹脂成分(室温で液状または固体状の)を発泡性
粒子の集合体と混合または含浸させておく方法 (ハ)樹脂成分(液状の〉を、型を閉じて後、型内に注
入する方法 これら(伺〜(八)の方法は、それぞれ単独もしくは2
つ以上の任意の組合せであることができる。
(a) A method of mixing or impregnating a resin component (liquid or solid at room temperature) with the separation layer and the fibrous reinforcing material. (b) A method of mixing or impregnating a resin component (liquid or solid at room temperature) with foamable particles. A method of mixing or impregnating the aggregate with the aggregate (c) A method of injecting the resin component (in liquid form) into the mold after closing the mold These (8) methods can be used alone or in combination.
It can be any combination of two or more.

上記(イ)〜(ハ)のいずれを採用するかは、熱硬化性
樹脂の種類とりわけ使用時に液状か固体状のいずれであ
るかによって、主として左右される。
Which of the above (a) to (c) to adopt depends mainly on the type of thermosetting resin, especially whether it is in a liquid or solid state during use.

熱硬化性樹脂またはその前駆体が常温で液体である場合
には、前記(ロ)または(ハ)またはこれらと(イ)と
の組合せが実用的である。この場合、熱硬化性樹脂また
はその前駆体は、発泡性粒子の熱膨張〈発泡)に従って
、その一部が芯部から分離層を通過し、繊維状補強材中
へ含浸し、型全体に樹脂成分が行きわたることになる。
When the thermosetting resin or its precursor is liquid at room temperature, the above (b) or (c) or a combination thereof with (a) is practical. In this case, a part of the thermosetting resin or its precursor passes from the core through the separation layer and is impregnated into the fibrous reinforcement material as the expandable particles undergo thermal expansion (foaming), and the entire mold is covered with resin. The ingredients will be distributed.

一方、熱硬化性樹脂またはその前駆体が常温で固体であ
って、成形時の温度では流動化しうるものである場合に
は、前記(ロ)または<4) +II))の組合せが採
用される。その1つの方法は具体的には、熱硬化性樹脂
またはその前駆体の固体粉末を、予め発泡性粒子と混合
して得られた固相の混合体を型内の所定の位置に配置し
て成形する方法である。
On the other hand, if the thermosetting resin or its precursor is solid at room temperature and can be fluidized at the temperature during molding, the combination of (b) or <4) + II)) above is adopted. . Specifically, one method is to mix a solid powder of a thermosetting resin or its precursor with expandable particles in advance and place the obtained solid phase mixture at a predetermined position in a mold. This is a method of molding.

この方法では型の加熱によって樹脂成分が流動化し前記
粒子の集合体の体積膨張に従って芯部の形成と共にその
一部が分離膜を通じて繊維補強材中へ流れ、表層部が形
成される。
In this method, the resin component is fluidized by heating the mold, and as the particle aggregate expands in volume, a core is formed and a portion of it flows into the fiber reinforcement material through the separation membrane, forming a surface layer.

この方法の別の改良法は、型外において予め発泡性粒子
を分散して含みかつ前記樹脂成分をマトリックスとする
固形の中間一体止物(中間素材)を作っておき、これを
発泡性粒子および前記樹脂の混合体として利用する方法
である。この−休止された固形のく例えばシート状の)
混合体を型内の所定の位置に配!して型を閉じて加熱す
ると固形の混合体中のマトリックス樹脂成分が流動化し
発泡性粒子の発泡と共に芯部が形成され、樹脂成分の一
部が分離膜を通過して繊維補強材中へ流れ表層部が形成
される。
Another improvement of this method is to prepare a solid intermediate stopper (intermediate material) that contains expandable particles dispersed in advance outside the mold and has the resin component as a matrix, and then mixes the expandable particles and This method uses the resin as a mixture. This - suspended solid material (e.g. sheet-like)
Place the mixture in the designated position in the mold! When the mold is closed and heated, the matrix resin component in the solid mixture becomes fluidized, a core is formed as the expandable particles expand, and a portion of the resin component passes through the separation membrane and flows into the fiber reinforcement material. A surface layer portion is formed.

上記のいずれの方法においても、発泡性粒子或いは発泡
性粒子と樹脂成分との混合物は袋状物の中に収容して型
に入れ成形に供するのが、作業性の面で好ましい。
In any of the above methods, it is preferable from the viewpoint of workability that the expandable particles or the mixture of expandable particles and the resin component are housed in a bag-like material and then put into a mold and subjected to molding.

すでに述べた如く分離層を袋構造体として、その中へ発
泡性粒子またはそれを含む混合物を入れるのが好適であ
るが、樹脂成分の粘度が低い場合は樹脂成分が分離層を
通じて袋外へ浸出することがあるので、そのような場合
は、別に、成形時に発泡による内圧によって破断し得る
フィルムで袋状物をつくり、該フィルム製の袋状物の中
に混合物を入れて用いることが好ましい。
As mentioned above, it is preferable to use the separation layer as a bag structure and to put expandable particles or a mixture containing them therein, but if the viscosity of the resin component is low, the resin component may leak out of the bag through the separation layer. In such cases, it is preferable to separately make a bag-like product from a film that can be torn by the internal pressure caused by foaming during molding, and to use the mixture by placing the mixture in the bag-like product made of the film.

型内に存在せしめられる分離層、繊維状補強材。Separation layer, fibrous reinforcement present in the mold.

樹脂成分5発泡性粒子およびその他成分の量および割合
は、目的とする複合成形品の性状、用途などによって、
種々変えることができる。しかし必要なことは、型内に
おいて、前記した各成分の量が成形時において発泡性粒
子の集合体が体積膨張した後に、空隙部が存在しないよ
うな量であることである。
The amount and ratio of resin component 5 expandable particles and other components will vary depending on the properties and use of the intended composite molded product.
It can be changed in various ways. However, what is necessary is that the amounts of each of the above-mentioned components in the mold are such that no voids are present after the expandable particle aggregate expands in volume during molding.

殊に本発明の複合成形品が下記(a)〜(e+の組成と
なるように分離層、繊維状補強材、樹脂成分。
In particular, a separation layer, a fibrous reinforcing material, and a resin component are used so that the composite molded article of the present invention has the following compositions (a) to (e+).

発泡性粒子を選択して使用するのが望ましい。It is desirable to select and use expandable particles.

(a)複合成形品における芯部が存在する実質的部分に
おいて、芯部が約30〜約95容量%、好ましくは約4
0〜約90容量%を占めること、(b)芯部における比
重が約0.05〜0.8 g / ml、好ましくは約
0.1〜0.6 g/mlであること、(C)芯部にお
ける樹脂成分の割合が約15〜70容量%、好ましくは
約20〜50容量%であること、(a)表層部において
繊維状補強材および分離層は約30〜80容量%、好ま
しくは約30〜60容量%を占めること、 (e)表層部においては発泡粒子または軽量弾性体粒子
は実質的に存在しないこと。
(a) In the substantial portion of the composite molded article where the core is present, the core is about 30% to about 95% by volume, preferably about 4% by volume.
(b) the specific gravity at the core is about 0.05 to 0.8 g/ml, preferably about 0.1 to 0.6 g/ml; (C) (a) The proportion of the resin component in the core is about 15 to 70% by volume, preferably about 20 to 50% by volume; (a) The proportion of the fibrous reinforcement and separation layer in the surface layer is about 30 to 80% by volume, preferably (e) substantially no foamed particles or lightweight elastic particles are present in the surface layer;

イrお、本発明方法では、芯部に補強用の短繊維または
ウィスカーその他の添加材を含有せしめることができ、
その場合は、発泡性粒子集合体中に混合しておくことが
好ましい。
In addition, in the method of the present invention, reinforcing short fibers, whiskers, and other additives can be contained in the core.
In that case, it is preferable to mix it into the expandable particle aggregate.

本発明方法は、前述したように型内に各成分を仕込み、
型を外部から加熱するか、またはその硬化発熱が起る場
合にはその発熱によってもしくはそれらは両方によって
型内の温度を昇温させて、先ず発泡性粒子を発泡く熱膨
張)させて、これら粒子の集合体の体積膨張を起こさせ
る。これら粒子が分散して含有する合成樹脂マトリック
スの中間一体止物を使用する場合には、先ず加熱等によ
りこのマトリックス成分を流動化させて、これら粒子の
集合体の体積膨張を起こさせる。
In the method of the present invention, as described above, each component is placed in a mold,
The temperature inside the mold is increased by heating the mold from the outside, or by the heat generated by curing heat, or both, to first cause the expandable particles to foam (thermal expansion). Causes volumetric expansion of a collection of particles. In the case of using an intermediate integral stopper of a synthetic resin matrix containing these particles dispersed therein, the matrix component is first fluidized by heating or the like to cause volume expansion of the aggregate of these particles.

この際、これら粒子の集合体の体積膨張が起っている間
、少なくとも樹脂成分は流動性を保持していることが必
要である。かくして前記粒子の集合体の体積膨張により
分離層が型の内面方向へ押し付けられると共に、樹脂成
分が分離層を介して、内側(芯部)から外方(成形品の
表層部側)へ流動する。
At this time, it is necessary that at least the resin component maintains fluidity while the volume expansion of the aggregate of these particles occurs. In this way, the separation layer is pressed toward the inner surface of the mold due to the volume expansion of the aggregate of particles, and the resin component flows from the inside (core) to the outside (toward the surface layer of the molded product) through the separation layer. .

かくして緻密な表層部が形成され、また発泡粒子と硬化
した樹脂よりなる芯部が形成され、さらに表層部と芯部
が分離層を介して同じ樹脂によって連通じて強固に一体
化された複合成形品が得られる。
In this way, a dense surface layer is formed, a core made of expanded particles and hardened resin is formed, and the surface layer and core are connected and firmly integrated by the same resin via a separation layer, resulting in composite molding. Goods can be obtained.

一方成形に当って、樹脂成分の過剰分を型の貯り部分に
集めるかまたはベントから抜いた後、合成樹脂を硬化さ
せる。次いで型を開いて形成された複合成形品は常法に
従って型から取り出され、必要に応じて仕上されて製品
とすることができる。
On the other hand, during molding, the synthetic resin is cured after the excess resin component is collected in a reservoir part of the mold or removed from a vent. Next, the mold is opened, and the formed composite molded article is taken out from the mold according to a conventional method and can be finished as required to form a product.

さらに得られた複合成形品はオーブン中でポストキュア
ーすることも可能である。
Furthermore, the obtained composite molded article can be post-cured in an oven.

また、成形時に型の最内面にフィルムまたは薄いシート
を配することにより、複合成形品の表層部の外側にフィ
ルムまたはシートを貼付けた構造の製品とすることもで
きる。このようにすれば型の内面が磨かれていない型を
用いても、美麗な表面の成形品が得られ、フィルム、シ
ートに着色。
Furthermore, by placing a film or thin sheet on the innermost surface of the mold during molding, it is also possible to obtain a product with a structure in which the film or sheet is attached to the outside of the surface layer of the composite molded product. In this way, even if a mold with an unpolished inner surface is used, a molded product with a beautiful surface can be obtained, and the film or sheet can be colored.

模様等を施すことにより、意匠性の優れた成形品とする
こともできる。
By adding a pattern or the like, a molded product with excellent design can be obtained.

かくして、本発明によれば軽量で強靭性を有する複合成
形品が実質上−工程で得られる。
Thus, according to the present invention, a lightweight and strong composite molded article can be obtained in virtually a single process.

〈発明の効果〉 以上の如き本発明によれば、予め発泡コアを形成する必
要がなく、−工程で軽量かつ強靭な一体成形されたサン
ドイッチフオームコア複合成形品を生産性よく低コスト
で製造することができる。
<Effects of the Invention> According to the present invention as described above, it is not necessary to form a foam core in advance, and a lightweight and strong integrally molded sandwich foam core composite molded product can be manufactured with high productivity and at low cost in a process. be able to.

さらに、従来法では製造が非常に困難であった薄物の複
合成形品や曲面を有する複合成形品が容易に製造できる
という利点もある。
Furthermore, there is also the advantage that thin composite molded products and composite molded products with curved surfaces, which were extremely difficult to manufacture using conventional methods, can be easily manufactured.

得られた複合成形品は、例えばカヌーパドル。The resulting composite molded product is, for example, a canoe paddle.

マスト、方向舵、ウィンドサーフィン安定用フィン〈ス
ケグ)1人力水中翼艇、スキー(板、ボール)、ホッケ
ースティック、野球用バット、スポークのない車輪、自
転車のフレーム、スケートボード等のスポーツ用品分野
、自動車く乗用車、バス、トラック)等のスポイラ−、
ドライブシャフト、内外装品、電車のドアや構造部材等
の車輌分野、熱交換器の鏡板、エアコン′・コンプレッ
サーブレード、攪拌翼、電気絶縁材サポートビーム。
Masts, rudders, windsurfing stabilization fins (skeg), one-man hydrofoils, skis (boards, balls), hockey sticks, baseball bats, wheels without spokes, bicycle frames, skateboards and other sporting goods, automobiles. Spoilers for cars, buses, trucks, etc.
Vehicle fields such as drive shafts, interior and exterior parts, train doors and structural members, heat exchanger head plates, air conditioner/compressor blades, stirring blades, electrical insulation support beams.

フィッティング類等の産業分野、車椅子()\イドリム
、側パネル)、X線投影用テーブル、義手義足等の医療
器具分野、および、プロペラ、座席。
Industrial fields such as fittings, medical equipment fields such as wheelchairs ()\idrims, side panels), X-ray projection tables, prosthetic arms and legs, and propellers and seats.

家具、コントロールサーフェス、二次構造材、衛星放送
用アンテナのりフレフタ−等の広い用途に有効に使用で
きる。
It can be effectively used in a wide range of applications such as furniture, control surfaces, secondary structural materials, and satellite broadcasting antenna glue lifters.

〈実施例〉 次に本発明方法を実施例によりさらに詳細に説明する。<Example> Next, the method of the present invention will be explained in more detail with reference to Examples.

なお、鋼中に単にr部」とあるは、特にことわりのない
限り重量部をあられす。
In addition, "r parts" in steel means parts by weight unless otherwise specified.

実施例1 本例は平板状の複合サントイ・・ノチフォームコア成形
品を本発明方法により製造する例である。
Example 1 This example is an example of manufacturing a flat plate-shaped composite Santoi-Noti foam core molded product by the method of the present invention.

タテ160mm、ヨコ60mm、厚み3陶の平板用の透
明のアクリル樹脂製の「型」 (上部にベント、下部に
液注入口を有する)を用意した。次に、タテ160mm
、ヨコ60mmに切断した目開きの小さいガラス繊維織
物〈日東紡WE−181−100BV) 2枚2組を用
意して型の側内面にそれぞれ設置し、型の両面を合わせ
て締め付けた後、型の下部注入口からシリンジを用いて
、熱をかけると発泡してマイクロカプセル化する低沸点
炭化水素を内包した平均粒径10〜20μm1発泡後の
比重002の塩化ビニリデン共重合物の発泡性微粒子(
松本油脂製薬■製の[マツモトマイクロスフェア−F−
30D J )とエポキシ樹脂く油化シェルエポキシ社
製の「エピコー)828 、+ /′’エポメートJ 
YL11006の重量比100./31混合物)を重量
比20/80で混合したスラリーを、ガラス繊維織物の
2組の間に型の下部より50IlIITlの高さまで加
圧注入した。この際、型の上部ベントは開放とした。
A transparent acrylic resin "mold" (having a vent at the top and a liquid injection port at the bottom) for a flat plate measuring 160 mm vertically, 60 mm horizontally, and 3 mm thick was prepared. Next, vertical 160mm
Prepare 2 sets of 2 pieces of glass fiber fabric with small openings (Nittobo WE-181-100BV) cut to 60 mm horizontally, place each on the inner side of the mold, tighten both sides of the mold together, and then press the mold. Using a syringe from the lower injection port of
[Matsumoto Microsphere-F-] manufactured by Matsumoto Yushi Pharmaceutical ■
30D J) and "Epicor) 828, +/'' Epomate J manufactured by Shell Epoxy Co., Ltd.
Weight ratio of YL11006: 100. A slurry of 20/80 weight ratio of 20/31 mixture) was injected under pressure between two sets of glass fiber fabrics from the bottom of the mold to a height of 50IlIITl. At this time, the upper vent of the mold was left open.

90℃の湯浴中にこの型全体を浸漬したところ、約13
分経過して、スラリ゛−の体積膨張が始まり20分経過
後にベントより少量の吹き出しがあり、膨張が終了した
When the entire mold was immersed in a 90°C water bath, the temperature was approx.
After 20 minutes, the volume of the slurry began to expand, and after 20 minutes, a small amount was blown out from the vent, and the expansion ended.

50分後に、型を湯浴より取出し、水冷後、硬化した成
形品を離型した。
After 50 minutes, the mold was removed from the hot water bath, and after cooling with water, the cured molded product was released from the mold.

成形品は両件側面に薄いエポキシ樹脂の表皮が形成され
、ガラス繊維織物は表皮のすぐ下に表皮に沿って内層の
発泡コアに押し付けられた形で存在し、第1図のような
断面構造を有する複合サンドイッチコアの成形品が得ら
れていることを確認した。この成形品の比重は0.80
.曲げ強度11.7kgZ圓22弾性率1335kg/
+tm2であった。
A thin epoxy resin skin is formed on both sides of the molded product, and the glass fiber fabric exists just below the skin and is pressed against the inner foam core along the skin, creating a cross-sectional structure as shown in Figure 1. It was confirmed that a composite sandwich core molded product having the following properties was obtained. The specific gravity of this molded product is 0.80
.. Bending strength: 11.7kg Z-en 22 modulus of elasticity: 1335kg/
+tm2.

なお、第1図において、aは混合スラリーが固化した発
泡コア層、bは各2枚のガラス繊維織物からなる分離層
兼繊維補強層、Cは表面を構成する硬化樹脂層である。
In FIG. 1, a is a foamed core layer in which the mixed slurry is solidified, b is a separation layer/fiber reinforcing layer each made of two glass fiber fabrics, and C is a cured resin layer constituting the surface.

別に「マツモトマイクロスフェア−F−30D Jを単
独で発泡させたものを水で懸濁させ、該ガラス繊維織物
を通し濾過したところ、粒子の微少量の通過がみられた
が、殆んどは枦村上に残った。
Separately, ``When Matsumoto Microspheres-F-30D J were foamed alone and suspended in water and filtered through the glass fiber fabric, a small amount of particles were observed to pass through, but most of the particles were I remained with Murakami.

実施例2 本例は発泡性粒子と無機中空粒子とを併用して平板状の
複合サンドイッチフオームコア成形品を製造する例であ
る。
Example 2 This example is an example in which a tabular composite sandwich foam core molded product is manufactured using a combination of expandable particles and inorganic hollow particles.

実施例1と同じ型を用いて、タテ160mm、ヨコ60
mmに切断したガラス繊維織物(日東紡WE−181−
100BV) 2枚2組を用窓してそれぞれの組にあら
かじめエポキシ樹脂(「エビコー)828 J / r
エボメー) YLHOO6Jの重量比100 /31混
合′PiJ)中に浸して充分樹脂を浸透させ、型の両面
にそれぞれ貼りつけた。次いで、型の凹面側に実施例1
で用いた発泡性微粒子(「マツモトマイクロスフェア−
F−30D J )と無機質中空球体く旭硝子社製「シ
リカバルーンJ Q−CEL )および上述の組成のエ
ポキシ樹脂を重量比14:17:69で混合したペース
ト状のものをスプーンですくって載せた。型の両面を合
わせて締め付けて垂直に立てた。ペースト状のものは流
動して降下し、型の下部より65Mまで充たされた状態
となった。
Using the same mold as in Example 1, the length is 160 mm and the width is 60 mm.
Glass fiber fabric cut into mm (Nittobo WE-181-
100BV) Prepare 2 sets of 2 sheets and fill each set with epoxy resin (Ebiko) 828 J/r.
They were immersed in a mixture of YLHOO6J (weight ratio: 100/31) to allow the resin to penetrate sufficiently, and each was pasted on both sides of the mold. Next, apply Example 1 to the concave side of the mold.
Expandable microparticles (“Matsumoto Microspheres”) used in
A paste made by mixing F-30D J), an inorganic hollow sphere (Silica Balloon JQ-CEL) manufactured by Asahi Glass Co., Ltd., and an epoxy resin with the above composition in a weight ratio of 14:17:69 was scooped out with a spoon and placed on the balloon. Both sides of the mold were tightened together and stood vertically.The paste-like material flowed and descended, filling the mold to 65M from the bottom.

型の上部ベントは開放して90℃の湯浴中に型全体を浸
漬したところ、約18分経過して型内でペースト状物の
体1膨張が始まり25分目にベントより少量の液状樹脂
の吹き出しがあり膨張が完了した。
When the upper vent of the mold was opened and the entire mold was immersed in a 90°C water bath, after about 18 minutes, the paste-like substance started to expand in the mold, and at 25 minutes, a small amount of liquid resin was released from the vent. A speech bubble appears and the expansion is complete.

50分後に、型を取出し水冷後、成形・品を離型し、目
的の成形品を得た。このものは比重0.72.曲げ強度
10.1kg/ ITW112.弾性率887kg/r
111TI2であった。
After 50 minutes, the mold was taken out, and after cooling with water, the molded product was released from the mold to obtain the desired molded product. This thing has a specific gravity of 0.72. Bending strength 10.1kg/ITW112. Elastic modulus 887kg/r
It was 111TI2.

実施例3 本例は炭素繊維のブレードで外周を補強した発泡コアを
芯材とした丸棒を本発明方法により製造する例を示す。
Example 3 This example shows an example in which a round bar whose core material is a foamed core whose outer periphery is reinforced with carbon fiber blades is manufactured by the method of the present invention.

第2図および第3図は、この実施態様を説明する図であ
り、第2図は丸棒用金属型1を開いた状態を示す横断面
図である。ここに、内張りに目開き10μmのポリエス
テル不織布2を配した炭素繊維の外径20ITIITl
のブレード3を設置して、金型1を閉じた。次いで、第
2図の縦断面図のように垂直状態の金型の下部より、ポ
ンプにて、80℃以上の熱をかけると発泡してマイクロ
カプセル化しうる低沸点炭化水素を内包した実施例1と
同様の塩化ビニリデン共重合物の発泡性微粒子4と70
〜80°Cで硬化の始まるエポキシ樹脂5のペースト状
混合物を、プレートの内側に全長(高さ〉の約1/3強
になるまで押込んだ。しかる後、型を昇温して80°C
にすると、しばらくして型の上部のベント6より気泡を
伴ったガスが出始め、やがてエポキシ樹脂が液状で吹き
出してきた。
FIGS. 2 and 3 are diagrams for explaining this embodiment, and FIG. 2 is a cross-sectional view showing the metal mold 1 for a round bar in an open state. Here, the outer diameter of the carbon fiber is 20ITIITl with a polyester nonwoven fabric 2 with an opening of 10 μm arranged on the inner lining.
The blade 3 was installed and the mold 1 was closed. Next, as shown in the vertical cross-sectional view of FIG. 2, Example 1 containing a low-boiling hydrocarbon that can be foamed and microcapsulated by applying heat of 80° C. or higher from the bottom of the vertical mold is heated with a pump. Expandable fine particles 4 and 70 of vinylidene chloride copolymer similar to
A paste mixture of epoxy resin 5, which begins to harden at ~80°C, was pushed into the inside of the plate until it reached about 1/3 of the total length (height).Then, the mold was heated to 80°C. C
After a while, gas with bubbles started coming out from the vent 6 at the top of the mold, and soon the epoxy resin started to blow out in liquid form.

2時間経過後、型を冷却して複合成形品とした。After 2 hours, the mold was cooled to form a composite molded article.

かくして得られた成形品を金型を開いて取出しな、実施
例4 本例は発泡性樹脂粒子と無機中空体粒子とを併用して丸
棒を製造する例である。
The thus obtained molded product was opened and taken out from the mold. Example 4 This example is an example in which a round bar is manufactured using both expandable resin particles and inorganic hollow particles.

第4図に実施例2.3と同じ丸棒用の金型を用いた他の
実施例を説明する図を示す。本例では、実施例3の発泡
性樹脂粒子とエポキシ樹脂のペースト状混合物の代りに
、予め粒径30μm、比重0.1の「シラスバルーン」
と80°C以上の熱をかけると発泡してマイクロカプセ
ル化する低沸点炭化水素を内包した塩化ビニリデン共重
合物の粒子(粒径20μm1発泡後の比重0.02)と
を重量比10:1の割合で均一になるように充分混合し
た後、該混合物を型の上部11を開いて一杯になるだけ
投入した。
FIG. 4 is a diagram illustrating another example using the same mold for a round bar as in Example 2.3. In this example, instead of the paste mixture of expandable resin particles and epoxy resin in Example 3, "Shirasu balloons" with a particle size of 30 μm and a specific gravity of 0.1 were used.
and vinylidene chloride copolymer particles (particle size: 20 μm, specific gravity after foaming: 0.02) containing a low-boiling hydrocarbon that foams and microcapsulates when heated to 80°C or more in a weight ratio of 10:1. After thoroughly mixing the mixture in a uniform ratio, the upper part 11 of the mold was opened and the mixture was poured into the mold until it was full.

投入後開口部を閉じ、発泡した粒子が型外へ飛び出すの
を防止する不織布12を内部につけたベント13を設け
た。しかる後、下部の樹脂注入口14からエポキシ樹脂
を注入しな。
After charging, the opening was closed and a vent 13 was provided inside with a nonwoven fabric 12 to prevent the foamed particles from flying out of the mold. After that, inject the epoxy resin from the resin injection port 14 at the bottom.

型を昇温して80℃にすると、しばらくして型の上部の
ベント13より気泡を伴ったガスが出始め、やがて不織
布12を通過したエポキシ樹脂が液状で吹き出してきた
。2時間経過後、型を冷却して発泡コアを有する丸棒状
の複合成形品を型より取出した。
When the temperature of the mold was raised to 80° C., gas with bubbles began to come out from the vent 13 at the top of the mold after a while, and soon the epoxy resin that had passed through the nonwoven fabric 12 began to blow out in liquid form. After 2 hours, the mold was cooled and a round bar-shaped composite molded product having a foam core was taken out from the mold.

実施例5 本例は発泡性樹脂微粒子としてポリイミド前駆体の粒子
を用いて平板状の複合サンドイッチフオームコア成形品
を本発明の方法により製造する例である。
Example 5 This example is an example in which a flat composite sandwich foam core molded article is manufactured by the method of the present invention using particles of a polyimide precursor as the expandable resin fine particles.

タテ150w+、ヨコ110 rnm、厚み10mmの
平板用のステンレス族の金型く上部にベントロ、下部に
樹脂液注入口を有する)を用意した。次にタテ150薗
 ヨコ110 mmに切断した目開きの小さいガラス繊
維織物(日東紡WE−181−100Bいを2枚用意し
、型の側内面に置いた。
A stainless steel mold for a flat plate with a length of 150 W+, a width of 110 nm, and a thickness of 10 mm (having a vent at the top and a resin liquid injection port at the bottom) was prepared. Next, two pieces of glass fiber fabric with small openings (Nittobo WE-181-100B) cut into pieces of length 150 x width 110 mm were prepared and placed on the inner surface of the mold.

発泡性樹脂粒子として、ベンゾフェノンテトラカルボン
酸無水物のメタノールおよびイソプロパツール開環物と
4.4′−ジアミノジフェニルメタンおよびヘキサメチ
レンジアミンとの混合ジアミンとをイソプロパツール中
で混合し界面活性剤を加え、過剰のアルコールを減圧で
除き、固形化し微粉砕したポリイミド前駆体粒子を用意
しな。
As foamable resin particles, methanol and isopropanol ring-opened product of benzophenone tetracarboxylic acid anhydride and mixed diamine of 4,4'-diaminodiphenylmethane and hexamethylene diamine were mixed in isopropanol and a surfactant was added. In addition, remove excess alcohol under reduced pressure to prepare solidified and pulverized polyimide precursor particles.

このポリイミド前駆体粒子とエポキシ樹脂〈「エピコー
ト」/′[リカジッドMT−500J  (新日本理化
製、触媒トリエタノールアミン1重量%)の重量比40
.’60の混合物140gを前記金型内のガラス繊維織
物2枚組の間に入れた。
The weight ratio of the polyimide precursor particles and the epoxy resin (Epicoat)/' [Rikazid MT-500J (manufactured by Shin Nippon Rika, catalyst triethanolamine 1% by weight) is 40.
.. 140 g of the '60 mixture was placed between two sets of glass fiber fabrics in the mold.

ベントを除いて金型を閉め、160°Cのオイルバス中
にこの金型全体を浸漬したところ、ポリイミド前駆体粉
体の膨張が生じ、約10分後にベントより液の流出が生
じるので、約5g出たところでベントを閉じ、同じ温度
で10時間静置した。
When the mold was closed except for the vent and the entire mold was immersed in an oil bath at 160°C, the polyimide precursor powder expanded and the liquid leaked out from the vent after about 10 minutes. When 5 g came out, the vent was closed and the solution was left standing at the same temperature for 10 hours.

冷却後、型を用いて硬化した発泡コア成形品を離型した
ところ、成形品は金型通りの形状を呈し、外表面にはガ
ラス繊維上にエポキシ樹脂が外皮を形成していた。
After cooling, the cured foam core molded product was released from the mold using a mold, and the molded product had the shape exactly as the mold, and the epoxy resin formed a skin on the glass fibers on the outer surface.

なお、発泡後の該ポリイミド前駆体粉体と「エピコート
」をまぜた混合液をつくり、本実施例で用いたガラス繊
維織物を炉布として濾過したが、炉液はほとんど「エピ
コート」の液であった。
A mixed solution was prepared by mixing the polyimide precursor powder after foaming with "Epicote" and was filtered using the glass fiber fabric used in this example as a furnace cloth, but the furnace solution was mostly "Epicote" liquid. there were.

実施例6 本例は発泡性樹脂微粒子としてABS粒子の粉末を使用
し、平板状のサンドイッチフオームコア複合成形品を製
造する例である。
Example 6 This example is an example of manufacturing a flat sandwich foam core composite molded product using ABS particle powder as the expandable resin fine particles.

目開き10μmのポリエステル不織布および炭素繊維織
物をタテ150mm、ヨコ110 mmに切断したもの
を2組用志した。そして該不織布および織物をエポキシ
樹脂液く「エピコート」/[リカシ・ンドMT−500
J 、触媒トリエタノールアミン2重量%)に浸漬し、
液切りした。
Two sets of polyester nonwoven fabric and carbon fiber fabric with apertures of 10 μm were cut into lengths of 150 mm and width of 110 mm. Then, the non-woven fabrics and textiles are coated with epoxy resin using "Epicoat"/[Rikasi-Ndo MT-500].
J, immersed in catalytic triethanolamine (2% by weight);
I drained the liquid.

該不織布および織物を実施例4で用いた金型内に炭素繊
維織物/不織布/不織布/炭素繊維m物の順に配置しな
。発泡性樹脂としてABS樹脂(発泡剤p、 p’−オ
キシビス〈ベンゼンスルホニルヒドラジド)含有)を用
い、該ABS樹脂の粒子と前記エポキシ樹脂および無機
質中空球体(旭硝子製「シリカバルーンJ Q−CEC
)を重量比20 : 20 :60の割合で混合したペ
ースト状物140gを型内の不織布と不織布の間に挿入
しな。
The nonwoven fabric and woven fabric were placed in the mold used in Example 4 in the following order: carbon fiber fabric/nonwoven fabric/nonwoven fabric/carbon fiber fabric. ABS resin (containing blowing agent p, p'-oxybis<benzenesulfonyl hydrazide)) was used as the foamable resin, and particles of the ABS resin, the epoxy resin, and inorganic hollow spheres (Silica Balloon J Q-CEC manufactured by Asahi Glass Co., Ltd.) were used.
) was mixed in a weight ratio of 20:20:60 and 140g of a paste was inserted between the nonwoven fabrics in the mold.

150°Cのオイルバス中に金型全体を浸漬すると約8
分後にベントより液か出てくるのでベントを閉めそのま
ま8時間加熱した。
When the entire mold is immersed in an oil bath at 150°C, the temperature is approximately 8
After a few minutes, liquid came out from the vent, so the vent was closed and the mixture was heated for 8 hours.

冷却後、金型より取出すと、両件表面は炭素繊維織物と
ポリエステル不織布がエポキシ樹脂で一体化した成形品
が得られた。この成形品の内部のコア断面は褐色均質の
発泡樹脂状であった。
After cooling, the molded product was taken out of the mold, and a molded product was obtained in which both surfaces were made of carbon fiber fabric and polyester nonwoven fabric integrated with epoxy resin. The internal core cross section of this molded article was a brown homogeneous foamed resin.

実施例7 本例は、発泡性粒子としてポリプロピレン発泡粒子を用
いて平板状の複合サンドイッチフオームコア成形品を製
造する例である。
Example 7 This example is an example in which a flat composite sandwich foam core molded article is manufactured using expanded polypropylene particles as expandable particles.

(ポリプロピレン発泡粒子の製造) ポリプロピレンとフレオン等の発泡剤を加圧下で混合し
、常圧下に放出し、得られた予備発泡粒子を常圧で熟成
し、ついで圧力容器中に入れ、160℃の外温で6kg
/ci−Gの圧力で1時間圧縮した。室温に戻ってから
常圧に戻し、ポリプロピレンの発泡粒子を得た。この発
泡粒子の粒径は1〜2薗であり、これを100℃に加熱
すると直ちに20%体積膨張する。これを常温に戻して
も体積の収縮はみられない。
(Production of foamed polypropylene particles) Polypropylene and a foaming agent such as freon are mixed under pressure and discharged under normal pressure. The obtained pre-expanded particles are aged at normal pressure, then placed in a pressure vessel and heated at 160°C. 6kg at external temperature
Compression was carried out at a pressure of /ci-G for 1 hour. After returning to room temperature, the pressure was returned to normal pressure to obtain expanded polypropylene particles. The expanded particles have a particle size of 1 to 2 mm, and immediately expand in volume by 20% when heated to 100°C. Even when this is returned to room temperature, no volumetric contraction is observed.

(複合成形品の製造) タテ150mm、ヨコ110nwn、厚み10mmの平
板用のステンレス製の金型く上部にベント、下部に樹脂
液注入口を有する)を用意し、次にタテ150mm。
(Manufacture of composite molded product) A stainless steel mold for a flat plate with a length of 150 mm, a width of 110 nm, and a thickness of 10 mm (having a vent at the top and a resin liquid injection port at the bottom) was prepared, and then a mold of 150 mm in length was prepared.

ヨコ110 mmに切断した目開きの小さいガラス繊維
織物を2枚用意し、型の両内面に1いた。このガラス繊
維織物の間に、前記のポリプロピレン発泡粒子100c
cおよびガラスバルーン(旭硝子製1M−ce l 、
径60〜80u m > 100ccおよびビニルエス
テル樹脂く大日本インキ製、 UE−5101L、触媒
パー力ドックス16(化工ヌーリー製)IPHR添加)
20gをよく混合したものを入れた。
Two pieces of glass fiber fabric with small openings cut to 110 mm in width were prepared, and one was placed on both inner surfaces of the mold. Between this glass fiber fabric, the polypropylene foam particles 100c
c and glass balloon (Asahi Glass 1M-cel,
Diameter 60-80um > 100cc and vinyl ester resin manufactured by Dainippon Ink, UE-5101L, Catalyst Parriki Dox 16 (manufactured by Kako Nouri, IPHR added)
20g of the mixture was mixed well.

ベントを除いて型を閉め、ついで下部液注入口ヨリ前記
ビニルエステル樹脂液を上記のベントよりオーバーフロ
ーするまで注入した。ついで100°Cのオイルバス中
にこの金型全体を浸漬したところ約5分後にベントより
樹脂液の流出が見られた。
The mold was closed by removing the vent, and then the vinyl ester resin solution was injected through the lower liquid injection port until it overflowed from the vent. The entire mold was then immersed in an oil bath at 100°C, and after about 5 minutes, resin liquid was observed to flow out from the vent.

同じ温度で30分おき、冷却後固化した成形品を離型し
た。
After cooling at the same temperature for 30 minutes, the solidified molded product was released from the mold.

成形品は金型通りの形状を呈し、中心部は発泡コア層で
あり、表面はガラス繊維上にビニルエステル樹脂が外皮
を形成しているサンドイッチコア複合成形品であった。
The molded product had the same shape as the mold, and was a sandwich core composite molded product with a foam core layer in the center and a vinyl ester resin outer skin formed on glass fibers on the surface.

この成形品の密度は0.33gjcr&と軽量でかつ折
り曲げにも強いものであった。
This molded product had a density of 0.33 gjcr&, which was lightweight and resistant to bending.

実施例8 本例はポリエチレン発泡粒子を用いて平板状の複合サン
ドイッチフオームコア成形品を製造する例である。
Example 8 This example is an example of manufacturing a flat composite sandwich foam core molded product using polyethylene foam particles.

(ポリエチレン発泡粒子の製造) ポリエチレンと架橋剤とフレオン等の発泡剤を加圧上混
合し、常圧下に放出し得られた予備発泡粒子を常圧で熟
成し、ついで再度圧力容器中に入れ、120℃の外温で
7kg/’−・Gの圧力で1時間圧縮した。室温に戻っ
てから常圧に戻しポリエチレンの発泡粒子を得た。この
発泡粒子の粒径は3〜4mmであり、これを100℃に
加熱すると直ちに20%体積膨張する。これを常温に戻
しても体積の収縮はみられない。
(Manufacture of polyethylene foam particles) Polyethylene, a crosslinking agent, and a foaming agent such as Freon are mixed under pressure, and the resulting pre-expanded particles are aged under normal pressure and then placed in a pressure vessel again. It was compressed for 1 hour at an external temperature of 120°C and a pressure of 7 kg/'-.G. After returning to room temperature, the pressure was returned to normal pressure to obtain expanded polyethylene particles. The expanded particles have a particle size of 3 to 4 mm, and when heated to 100° C., the expanded particles immediately expand in volume by 20%. Even when this is returned to room temperature, no volumetric contraction is observed.

(複合成形品の製造) タテ150mm、ヨコ110mm、厚み10mmの平板
用のステンレス製の金型(上部にベント、下部に液注入
口を有する)を用意し、次にタテ150mm、ヨコ11
0mに切断したガラス繊維織物を2枚用意し、型の両内
面に置いた。これとは別に、前記のポリエチレン発泡製
粒子100ccとガラスバルーン(旭硝子製、 M−e
el、径60〜80μm > 100ccを不飽和ポリ
エステル樹脂(日本ユピカ製「ユピカ4007J 。
(Manufacture of composite molded product) Prepare a stainless steel mold for a flat plate (with a vent at the top and a liquid injection port at the bottom) with a length of 150 mm, a width of 110 mm, and a thickness of 10 mm.
Two pieces of glass fiber fabric cut to 0 m were prepared and placed on both inner surfaces of the mold. Separately, 100 cc of the polyethylene foam particles and a glass balloon (manufactured by Asahi Glass Co., Ltd., M-e
el, diameter 60-80 μm > 100 cc unsaturated polyester resin (“Yupica 4007J” manufactured by Nippon Upica).

触媒パー力ドックス16 1PHR添加)20gとよく
混合したものをポリエチレンテレフタレート繊維を主成
分とする不織布(目開き10μm以下)製の袋〈サイズ
:タテ150nwn、ヨコ110nwn>に入れ、該金
型内のガラス繊維の間においた。
Mix well with 20g of Catalyst Parryoku Dox 16 (1PHR added) and place it in a bag made of non-woven fabric (openings of 10 μm or less) whose main component is polyethylene terephthalate fiber (size: 150nwn vertically, 110nwn horizontally), and place it inside the mold. Placed between glass fibers.

ベントを除いて金型を閉め、次いで下部液注入口より前
記の不飽和ポリエステル樹脂液を上部のベントよりオー
バーフローするまで注入しな。ついで100°Cのオイ
ルバス中にこの金型全体を浸漬したところ約5分後にベ
ントより樹脂液の流出が認められた。同じ温度で30分
おき、冷却後硬化した成形品を離型した。
Remove the vent and close the mold, then inject the unsaturated polyester resin liquid from the lower liquid injection port until it overflows from the upper vent. The entire mold was then immersed in an oil bath at 100°C, and after about 5 minutes, resin liquid was observed to flow out from the vent. After cooling at the same temperature for 30 minutes, the cured molded product was released from the mold.

この成形品は金型通りの形状を呈し、表面はガラス繊維
上に不飽和ポリエステル樹脂が外皮を形成するサンドイ
ッチコア成形品であった。この成形品の密度は帆38g
/−と軽量でかつ折り曲げにも強いものであった。
This molded product had the shape exactly as the mold, and the surface was a sandwich core molded product with an outer skin made of unsaturated polyester resin on glass fibers. The density of this molded product is 38g.
It was light in weight and resistant to bending.

実施例9 本例は、本発明方法において、複合成形物の表層部(繊
維補強樹脂層)の外側をポリエステルフィルムで形成し
た複合成形品を製造する例である。
Example 9 This example is an example of manufacturing a composite molded article in which the outer side of the surface layer (fiber-reinforced resin layer) of the composite molded article is formed with a polyester film using the method of the present invention.

タテ150mm、ヨコ110mm、厚みl0R11の平
板用のステンレス製の金型く上部にベントロ、下部に液
注入口を有する)を用意した。次に、型の内面に沿うよ
うにタテ150mm、ヨコ110mに切断した目開きの
小さいガラス繊維織物(日東紡WE−181−100B
V ) 2枚2組、および同じサイズの片面をコロナ放
電処理したポリエチレンテレフタレートフィルム(コロ
ナ放電処理面は内面側にする)、その内側(芯部寄り)
にガラス繊維織物を設置しな。
A stainless steel mold for a flat plate measuring 150 mm in length, 110 mm in width, and 10R11 in thickness (having a vent at the top and a liquid injection port at the bottom) was prepared. Next, a glass fiber fabric with small openings (Nittobo WE-181-100B
V) 2 sets of 2 sheets, and polyethylene terephthalate films of the same size that have been treated with corona discharge on one side (the corona discharge treated side should be on the inside side), and the inside (closer to the core)
Do not install glass fiber fabric in the area.

また、金型の上部ベントロには上記のガラス繊維織物の
2枚重ねにしたものを設置しな。金型の両面を合わせて
締め付けた後、型の下部注入口よりシリンジを用いて、
熱発泡性マイクロカプセル「マツモトマイクロスフェア
−F−30−DJ )とエポキシ樹脂く「エピコート」
/「エボメー)」lo。
Also, install two layers of the above glass fiber fabric in the upper vent of the mold. After tightening both sides of the mold, use a syringe from the injection port at the bottom of the mold,
Heat-expandable microcapsules “Matsumoto Microspheres-F-30-DJ” and epoxy resin “Epicote”
/ “Ebome)” lo.

/31混合′S)とを重量比20/80で混合したスラ
リーをポリエチレンテレフタレートフィルムおよびガラ
ス繊維織物からなる層2組の間の空間部に金型の下部よ
り加圧注入した。注入量は約100gとなし、この際、
金型の上部ベントは開放とした。
/31 mixture 'S) in a weight ratio of 20/80 was injected under pressure into the space between two sets of layers consisting of polyethylene terephthalate film and glass fiber fabric from the bottom of the mold. The injection amount was approximately 100g, and at this time,
The upper vent of the mold was left open.

次いで、95℃のオイルバス中にこの型全体を浸漬しな
ところ、約10分経過して体積膨張が始まりベントロよ
りエポキシ樹脂を主とする液が流出した。流出量は約2
0gであった。流出後ベントロをフじた。
Next, when the entire mold was immersed in an oil bath at 95° C., volumetric expansion started after about 10 minutes and a liquid mainly consisting of epoxy resin flowed out from the vent hole. Outflow amount is approximately 2
It was 0g. After the spill, I closed the vent.

1時間後に金型をオイルバスより取出し、水冷後、型を
開放して硬化した成形品を離型した。
After 1 hour, the mold was taken out of the oil bath, and after cooling with water, the mold was opened to release the cured molded product.

成形品は、中心部が発泡コアがらなり、外面はポリエチ
レンテレフタレートフィルムの表皮、そのすぐ内側にガ
ラス繊維強化樹脂溜が表皮に沿って形成されているサン
ドイッチコア状の複合成形品であった。
The molded product was a composite molded product in the form of a sandwich core, with a foam core in the center, a polyethylene terephthalate film skin on the outside, and a glass fiber-reinforced resin reservoir formed along the skin just inside the skin.

全体の成形品は、金型のサイズ(内寸)と同一であり、
型のステンレス内面を特に研摩してなくても、成形品表
面にフィルムが存在しスムースな表面を有するものが得
られた。
The overall molded product is the same size (inner dimension) as the mold,
Even if the stainless steel inner surface of the mold was not particularly polished, a molded product with a film on the surface and a smooth surface was obtained.

実施例10 本例は、成形物の外面をポリイミドフィルムとなした実
施例つと類似の複合成形品を製造する例である。
Example 10 This example is an example in which a composite molded article similar to Example 1 was manufactured in which the outer surface of the molded article was made of a polyimide film.

実施例9と同じ2つに分割する金型を用い、タテ150
myn、ヨコ110順に切断したガラス繊維織物〈日東
紡WE−181−100BV )およびポリイミドフィ
ルム(25μm1片面コロナ放電処理済)を2枚づつ用
意した。
Using the same two-part mold as in Example 9, the height was 150.
Two pieces of glass fiber fabric (Nittobo WE-181-100BV) cut in the order of myn and width 110 and a polyimide film (25 μm, one side corona discharge treated) were prepared.

金型の片方に、まずポリイミドフィルムく放電処理した
面を内側にする)その上にガラス繊維織物および目開き
の小さいポリエステル不織布をおき、次いでエポキシ樹
脂(「エピコート」/[リカジッドMT−500J  
(新日本理化製)100/70混合物、触媒トリエタノ
ールアミン2wt%含有)とアクリルニトリル系重合体
の発泡性マイクロカプセル(「マツモトマイクロスフェ
ア−F−80SDJ )の混合物(重量比70/30)
 90gをおく操作を行った。
On one side of the mold, place a glass fiber fabric and a polyester nonwoven fabric with small openings on top of the polyimide film (discharge-treated side facing inside), and then add epoxy resin (Epicoat/Rikagid MT-500J).
(manufactured by Shin Nihon Rika) 100/70 mixture (containing 2 wt% of catalyst triethanolamine) and a mixture of expandable microcapsules of acrylonitrile polymer (Matsumoto Microspheres-F-80SDJ) (weight ratio 70/30)
An operation was performed in which 90 g was placed.

次いで、同様にしてポリイミドフィルム ガラス繊維織
物および不織布を積層した金型の他方を合わせて締め付
けた。
Next, the other side of the mold in which the polyimide film, glass fiber woven fabric, and nonwoven fabric were laminated was brought together and tightened in the same manner.

下部注入口はあらかじめ閉じておき、上部ベントにはガ
ラス繊維織物を2枚重ねたものを設!した。160’C
のオイルバス中にこの金型全体を浸漬したところ、約8
分後にベントより液の流出が起り、約20g流出しなの
ち、ベントを閉じ、160’Cで10時間おいな。冷却
後、硬化した成形品を離型しな。
The lower inlet is closed in advance, and the upper vent is equipped with two layers of glass fiber fabric! did. 160'C
When the entire mold was immersed in an oil bath of
After a few minutes, liquid began to flow out from the vent, and after approximately 20 g of fluid flowed out, the vent was closed and the mixture was heated at 160'C for 10 hours. After cooling, do not release the cured molded product.

成形品は金型通りの形状をし、中心部は発泡コアからな
り、外皮は赤褐色のポリアミドフィルム、それに押し付
けられた形でガラス繊維織物強化樹脂層が強固に貼りつ
いている一体化しな複合成形品であった。
The molded product has the shape exactly as the mold, and is an integrated composite molded product with a foam core in the center, a reddish-brown polyamide film on the outer skin, and a glass fiber woven reinforced resin layer firmly attached to it. Met.

この成形品を切断し、その内部を調べなところ内部は褐
色でヒゲの発生もなく均質で、hつな。
When I cut this molded product and examined its interior, I found that the interior was brown, homogeneous, and had no whiskers.

実施例11 本例は熱硬化性樹脂として不飽和ポリエステル樹脂を使
用する例である。
Example 11 This example uses an unsaturated polyester resin as the thermosetting resin.

実施例9で用いた金型を準備した。The mold used in Example 9 was prepared.

実施例9と同様の目開きの小さいガラス繊維織物とポリ
エチレンテレフタレートフィルム(片面コロナ放電処理
済)を2枚づつ用意し、型内に実施例つと同様に設置し
な。
Two pieces of glass fiber fabric with small openings similar to those in Example 9 and two pieces of polyethylene terephthalate film (one side corona discharge treated) were prepared and placed in a mold in the same manner as in Example 1.

また、金型の上部ベントには上記のガラス繊維織物を2
枚重ねておいな。
In addition, the above glass fiber fabric was attached to the upper vent of the mold.
Keep them stacked up.

金型内のガラス繊維織物の内部に不飽和ポリエステル樹
脂溶液〈スチレン50wt%稀釈、開始剤ジクミルパー
オキサイド1wt%含有)と熱発泡性マイクロカプセル
(「マツモトマイクロフェアーF−30D J )を重
量比65/35で混合したもの140g入れた。そして
、金型の上部に設けたベントだけをあけ、残りを閉じて
金型全体を110℃のオイルバス中に浸漬した。約5分
後にベントより液が出始め約20g出なとき、ベントを
閉め、そのまま2時間加熱を行った。
Inside the glass fiber fabric in the mold, an unsaturated polyester resin solution (50 wt% diluted with styrene, containing 1 wt% of initiator dicumyl peroxide) and a thermally foamable microcapsule ("Matsumoto Microfair F-30D J") were added in a weight ratio. 140g of the 65/35 mixture was added.Then, only the vent provided at the top of the mold was opened, the rest was closed, and the entire mold was immersed in an oil bath at 110°C.After about 5 minutes, the liquid was released from the vent. When about 20 g of water began to come out, the vent was closed and heating was continued for 2 hours.

加熱後、金型より成形品を離型した。After heating, the molded product was released from the mold.

全体の成形品は金型のサイズと同一であり、表面がフィ
ルムでスムースな複合成形品が得られた。
The overall molded product had the same size as the mold, and a composite molded product with a smooth film surface was obtained.

また、成形品の断面は均質でありガラス繊維強化樹脂層
はフィルムに押し付けられ、外表面上に存在する。
Moreover, the cross section of the molded article is homogeneous, and the glass fiber reinforced resin layer is pressed against the film and is present on the outer surface.

実施例12 本例は分離層としてウレタンフオームのシートを用いて
、平板状の複合サンドイッチフオームコア成形品を本発
明方法により製造する例である。
Example 12 This example is an example in which a flat composite sandwich foam core molded article is manufactured by the method of the present invention using a urethane foam sheet as a separation layer.

タテ160mm、ヨコ60画、厚み10mmの平板成形
用のステンレス製の金型く上部にベントを有する)を用
意した。次に、強化材として一方向配列ガラス繊維をタ
テ160mm、ヨコ60画とタテ60nm、ヨコ160
 mmに2枚づつ切断して、内1枚づつをガラス繊維の
配列が直交するように重ねたものを2組タテ420mm
、ヨコ10ynynの帯状に切ったガラス繊維でできた
厚み3ITw11のフェルトを用意した。別途分離層と
して連通気孔を有する伸縮性のあるシート状のウレタン
フオームをタテ150mm、ヨコ55mm、厚み7mm
の袋状にしたものの中にポリスチレンの発泡性粒子〈種
水化成品社製「エスレンビーズJHEタイプ)とエポキ
シ樹脂(油化シェルエポキシ社製「エピコート828 
J / rエポメートYLOO6Jloo /31混合
物)を重量比50150で混合したもの20gを入れ袋
の上部を粘着テープで封止したものを用意しな。
A stainless steel mold for flat plate molding with a length of 160 mm, a width of 60 strokes, and a thickness of 10 mm (having a vent at the top) was prepared. Next, as a reinforcing material, unidirectionally arranged glass fibers were made with a length of 160 mm and a width of 60 mm, and a length of 60 nm and a width of 160 mm.
Cut two pieces into mm pieces and stack one piece on top of the other so that the glass fiber arrangement is perpendicular to each other, and the length is 420 mm.
, a felt made of glass fiber cut into strips with a width of 10 ynyn and a thickness of 3ITw11 was prepared. Separately, a stretchable sheet-like urethane foam with continuous holes is used as a separate layer, measuring 150 mm vertically, 55 mm horizontally, and 7 mm thick.
Inside the bag-shaped bag are polystyrene expandable particles ("Eslen Beads JHE type" manufactured by Tanemizu Kaseihin Co., Ltd.) and epoxy resin ("Epicoat 828" manufactured by Yuka Shell Epoxy Co., Ltd.).
Prepare a bag containing 20g of a mixture of J/r Epomate YLOO6Jloo/31 mixture at a weight ratio of 50150 and sealing the top with adhesive tape.

金型のキャビティ側の内面に強化材1組を設置し周囲は
フェルトで囲った上で上述の組成のエポキシ樹脂をハケ
を用いて設置した強化材に塗布しな。この上に上述の袋
を置き、その上にエポキシ樹脂をハケで塗布した後、さ
らに重ねて強化材1組を載せてから金型を閉じた。
Place a set of reinforcing materials on the inner surface of the cavity side of the mold, surround it with felt, and apply epoxy resin of the above composition to the installed reinforcing materials using a brush. The above-mentioned bag was placed on top of this, and epoxy resin was applied thereon with a brush, and then a set of reinforcing materials was placed on top of the bag, and the mold was closed.

金型を立て、ベントは大気中に解放した状態で110°
Cのオイル浴にこの型全体を浸漬したところ約5分経過
してベントから少量の液の吹き出しが始まった。100
分後に、金型を取出し水冷後、型を開き成形品を離型し
た。
The mold is set up and the vent is opened to the atmosphere at 110°.
When the entire mold was immersed in the oil bath C, a small amount of liquid began to blow out from the vent after about 5 minutes. 100
After a few minutes, the mold was removed, cooled with water, and then opened to release the molded product.

成形品は両面に薄いエポキシ樹脂の表皮が形成され、ガ
ラス繊維の強化材とシート状のウレタンフオームは表皮
のすぐ下に表皮に沿って内層の多孔性フオームコアに押
し付けられた形で存在し第1図に類似の断面構造を有す
る複合サンドイッチコアの成形品が得られていることを
確認した。
The molded product has a thin epoxy resin skin formed on both sides, and the glass fiber reinforcement and sheet-like urethane foam are present just below the skin and pressed against the inner porous foam core along the skin. It was confirmed that a composite sandwich core molded product having a cross-sectional structure similar to that shown in the figure was obtained.

実施例13 本例はL字型の複合サンドイッチフオームコア成形品を
本発明方法により製造する例である。
Example 13 This example is an example of manufacturing an L-shaped composite sandwich foam core molded product by the method of the present invention.

タテ200mm、ヨコ60mm、厚み10mmの平板を
タテ150 mmの位置でL字型に折り曲げた型の成形
品が得られるように設計されたステンレス製の金型(上
部にベントを有する)を用意した。
A stainless steel mold (with a vent at the top) was prepared so that a molded product could be obtained by bending a flat plate measuring 200 mm vertically, 60 mm horizontally, and 10 mm thick into an L shape at a position of 150 mm vertically. .

次に、強化材としてガラス繊維織物をタテ450閉、ヨ
コ60mmに切断したものを用意した。別途分離層とし
て伸縮性のあるスパンデックス繊維の織物(目開き5μ
m)をL字型の角の曲げ部に当る部分はアイロンで押え
て目開き部分をなくした上で四周およびその近傍部分を
アイロンで融着させてタテ170+nm、ヨコ50mm
、厚み8Mの袋状にした。
Next, a glass fiber fabric cut into 450 mm in length and 60 mm in width was prepared as a reinforcing material. Separately, stretchable spandex fiber fabric (opening 5μ) is used as a separate layer.
m), press the part that corresponds to the bent part of the L-shaped corner with an iron to eliminate the opening part, and then fuse the four circumferences and the neighboring parts with an iron to make a length of 170 + nm and a width of 50 mm.
It was made into a bag with a thickness of 8M.

この中に熱をかけると膨張する平均粒径10〜20μm
のポリアクリルニトリル系重合体の中空粒子〈松本油脂
製薬社製「マツモトマイクロスフェア−F80DJ)と
ガラス・ミlレドファイバーく日東紡社製平均繊維長1
00〜300μm〉およびエポキシ樹脂く油化シェルエ
ポキシ社製「エピコート」/′「エポメートJ 100
 /31混合物)を重量比40:45:15で混合した
もの70gを入れ袋の上部を粘着テープで封止したもの
を用意した。
Average particle size of 10 to 20 μm that expands when heat is applied to it.
Hollow particles of polyacrylonitrile polymer (Matsumoto Microsphere-F80DJ, manufactured by Matsumoto Yushi Pharmaceutical Co., Ltd.) and glass/mild fiber, manufactured by Nittobo Co., Ltd., with an average fiber length of 1
00 to 300 μm> and epoxy resin "Epicoat" manufactured by Shell Epoxy Co., Ltd./'"Epomate J 100"
A bag was prepared in which 70 g of a mixture of 40:45:15 (mixture 31/31) was placed and the upper part of the bag was sealed with adhesive tape.

金型のキャビティ側の内面に上記強化材を成形品が出来
上がった時点で全体を覆った表面を形成するような位置
に設置しな。この上に上述の袋を置き、さらに重ねて強
化材で袋を包み込んでから型を閉じた。
The reinforcing material is placed on the inner surface of the mold cavity side so that it forms a surface that covers the entire molded product when it is completed. The above-mentioned bag was placed on top of this, and the bag was further wrapped in reinforcing material and the mold was closed.

金型を立て、ベントは大気中に解放した状態で160°
Cのオイル浴にこの型全体を浸漬したところ約5分経過
してベントから少量の液の吹き出しが始まった。60分
後に、金型を取り出し水冷後、型を開き成形品を離型し
、目的の成形品を得な。分離層の一部が液状樹脂を通さ
ないにもかかわらず成形品の全面にわたって液状樹脂か
らなる表層部が形成されていた。
Stand the mold upright and open the vent to the atmosphere at 160°.
When the entire mold was immersed in the oil bath C, a small amount of liquid began to blow out from the vent after about 5 minutes. After 60 minutes, take out the mold, cool it with water, open the mold and release the molded product to obtain the desired molded product. Although part of the separation layer did not allow the liquid resin to pass through, a surface layer made of the liquid resin was formed over the entire surface of the molded product.

実施例16 本例は、本発明方法を実施するに当り、−旦中間素材を
製造し、これを使用して成形する方法である。
Example 16 This example is a method in which an intermediate material is first manufactured and then used for molding in carrying out the method of the present invention.

松本油脂■製の熱膨脹性発泡ビーズ、「マツモト マイ
クロスフェア−F−80SDJを入手した。この発泡ビ
ーズは140℃以上で膨張を初め、約70倍まで膨張す
る性質を有する。以下、この粒子をF−803Dと略称
する。
I obtained Matsumoto Microspheres F-80SDJ, thermally expandable foam beads manufactured by Matsumoto Yushi ■.These foam beads begin to expand at temperatures above 140°C and have the property of expanding up to about 70 times. It is abbreviated as -803D.

一方、シェル製のエポキシ樹脂および硬化剤、即ち、「
エピコート100IJ  (この樹脂自体は室温で固体
であり、熱可塑性的挙動を示す)を70部、「エピコー
ト348」を30部、無水フタル酸を30部、「エボメ
ートYLH185Jを1部、80℃で溶融混合した。こ
れを樹脂組成物Aとする。
On the other hand, the epoxy resin and curing agent made by Shell, i.e.
70 parts of Epicote 100IJ (this resin itself is solid at room temperature and exhibits thermoplastic behavior), 30 parts of Epicote 348, 30 parts of phthalic anhydride, 1 part of Evomate YLH185J, melted at 80°C. This was referred to as resin composition A.

上記のF−80SD 100部と樹脂組成物A100部
を80℃で混合しな。これを80°Cに予熱した金型に
流し込み直ちに冷却した。その後、金型を開いて厚さ約
31mTlの薄板を得た。得られた薄板を中間素材Bと
する。
Mix 100 parts of the above F-80SD and 100 parts of resin composition A at 80°C. This was poured into a mold preheated to 80°C and immediately cooled. Thereafter, the mold was opened to obtain a thin plate with a thickness of about 31 mTl. The obtained thin plate is referred to as intermediate material B.

アルミニウムの板2枚の間に、「テフロン」の枠を挟ん
だ金型を作り、上下の端にノズルを設けた。日東紡製の
ガラス繊維クロスWF−181−100BVを用意し、
上記金型−杯のガラスクロスを2枚と長さを金型に合せ
幅をノズルを覆うサイズにした短冊状ガラスクロス10
枚を作り、大きなガラスクロスを用いて、ガラスクロス
/中間素材B/ガラスクロスの順で金型に入れた。ノズ
ルを覆う位置、つまり金型の上下端は、小さなガラスク
ロスを重ねて埋め、この位1にはF−80SDi脹粒子
が入らないようにしな。双方のノズルを用いて吸気し金
型内部を真空にしな。次いで金型ごと145°Cのシリ
コン油浴に入れ、加熱した。液化した少量の樹脂とガス
を上記ノズルより溢流させ、逐次ノズルを閉鎖しな。1
時間後シリコン油浴から金型を取り出し、冷却して金型
から成形品を取り出した。かくして、表面がガラス繊維
強化エポキシ樹脂、内層が硬化したエポキシ樹脂71〜
リツクス中に発泡しなF−80SDが分散したフオーム
状体からなる良好な軽量サンドイッチ構造物が得られた
。得ちれた成形物は、小さなガラスクロスを入れた部分
以外は発泡したF−80SDが均等に行き渡り、密度は
0.54に / am 3であった。
A mold was made with a Teflon frame sandwiched between two aluminum plates, and nozzles were installed at the top and bottom ends. Prepare Nittobo glass fiber cloth WF-181-100BV,
The above mold-cup glass cloth and 10 strips of glass cloth whose length matches the mold and whose width is sized to cover the nozzle.
A sheet was made, and using a large glass cloth, it was placed in a mold in the order of glass cloth/intermediate material B/glass cloth. Fill the position covering the nozzle, that is, the upper and lower ends of the mold, with small layers of glass cloth to prevent F-80SDi swelling particles from entering this area. Make a vacuum inside the mold by drawing air using both nozzles. Next, the mold was placed in a silicone oil bath at 145°C and heated. Allow a small amount of liquefied resin and gas to overflow from the nozzle, then close the nozzle one after another. 1
After a period of time, the mold was removed from the silicone oil bath, cooled, and the molded article was taken out from the mold. Thus, the surface is a glass fiber reinforced epoxy resin and the inner layer is a hardened epoxy resin 71~
A good lightweight sandwich structure was obtained consisting of a foam in which non-foaming F-80SD was dispersed in the matrix. In the obtained molded product, the foamed F-80SD was evenly distributed except for the area where the small glass cloth was inserted, and the density was 0.54/am3.

実施例15 本例は実施例14と同様に一旦中間素材を製造し、これ
を成形して蛇状のモデルを作る実施例である。
Example 15 In this example, as in Example 14, an intermediate material is manufactured and then molded to create a snake-shaped model.

実施例14と同様にしてF−80SD、樹脂組成物A、
中間素材Bを準備した。
F-80SD, resin composition A,
Intermediate material B was prepared.

最大幅120 mm、 fl、大長さ350 mm、 
tk大厚さ14mmの、蛇状のモデルを作る2個組の金
型を準備しな。
Maximum width 120 mm, fl, large length 350 mm,
Prepare a set of two molds to make a serpentine model with a thickness of 14 mm.

金型の上下にはノズルを設けた。この金型に合わせたガ
ラスクロス4葉およびカーボンクロス2葉も準備しな。
Nozzles were provided at the top and bottom of the mold. Prepare 4 sheets of glass cloth and 2 sheets of carbon cloth that match this mold.

ガラスクロスは目開きの小さい日東紡製のガラス繊維ク
ロスWF−180−100BVであり、カーボンクロス
は東し製の炭素繊維織物C06304である。一方、ユ
ニセル■製のポリエステル不織布「ユニセルBT−04
04Jを金型に合わせて袋にした。
The glass cloth is a glass fiber cloth WF-180-100BV made by Nittobo Co., Ltd. with a small opening, and the carbon cloth is a carbon fiber fabric C06304 made by Toshi Co., Ltd. On the other hand, the polyester nonwoven fabric “Unicell BT-04” manufactured by Unicell ■
04J was made into a bag according to the mold.

中間素材Bを概略金型の内形に合せ、若干小さ1」に切
り取り、これを上記「ユニセル」の袋に入れ、ガラスク
ロスとカーボンクロスで挟んで金型に収めた。
Intermediate material B was cut into a slightly smaller size 1" to roughly match the inner shape of the mold, placed in the above-mentioned "Unicell" bag, sandwiched between glass cloth and carbon cloth, and placed in the mold.

金型内を真空に引しfS後、金型ごと145°Cのシリ
コンオイルの温浴に入れた。それぞれのノズルに液化し
た樹脂とガスが出るのを確認してからノズルを閉じな。
The inside of the mold was evacuated and after fS, the mold was placed in a hot bath of silicone oil at 145°C. Make sure that liquefied resin and gas come out of each nozzle before closing the nozzles.

1時間保持後、金型を温浴から取り出し、冷却して成形
物を取り出しな。比重0.8の良好な蛇形モデルが得ら
れた。
After holding for 1 hour, remove the mold from the hot bath, cool and remove the molded product. A good snake-shaped model with a specific gravity of 0.8 was obtained.

実施例16 本例は中間素材を経由する方法においてポリプロピレン
発泡粒子を用いる例である。
Example 16 This example is an example of using polypropylene foam particles in a method via an intermediate material.

両端にノズルを設けた、断面が20mmX20mm、長
さが500髄である金型を用意しな。
Prepare a mold with a cross section of 20 mm x 20 mm and a length of 500 mm, with nozzles on both ends.

ポリプロピレンとフレオン等の発泡剤を加圧下で混合し
、常圧下に放出し、得られた予備発泡粒子を常圧で熟成
し、次いで圧力容器に入れ、160℃の外温で6 kg
 / aaの圧力で1時間圧縮した。室温に戻ってから
常圧に戻し、ポリプロピレンの発泡粒子を得た。この発
泡粒子は、粒径1〜2膿であり、100°Cに加熱する
と直ちに20%体積膨張するがこれを常温に戻しても体
積の収縮は見られないという性質を有するものである。
Polypropylene and a blowing agent such as freon are mixed under pressure and discharged under normal pressure, and the obtained pre-expanded particles are aged at normal pressure, then put into a pressure vessel and packed at an external temperature of 160°C to produce 6 kg.
/aa pressure for 1 hour. After returning to room temperature, the pressure was returned to normal pressure to obtain expanded polypropylene particles. These foamed particles have a particle size of 1 to 2 pus, and have the property that when heated to 100° C., the volume immediately expands by 20%, but no volume contraction is observed even when the foamed particles are returned to room temperature.

このポリプロピレン粒子と実施例14と同じ樹脂組成物
Aとから同様にして薄板を作り、これを棒状に切り取っ
た。これを中間素材Cとする。
A thin plate was made in the same manner from these polypropylene particles and the same resin composition A as in Example 14, and this was cut into a rod shape. This is called intermediate material C.

ポリエステル不織布[ユニセルBT−0404Jで周囲
80薗の筒を作り上記の中間素材Cを収めた。
A tube with a circumference of 80 mm was made using a polyester nonwoven fabric (Unicell BT-0404J) and the above intermediate material C was placed therein.

この中間素材Cを収めた「ユニセル」製の筒を、炭素繊
維のブレード2層とガラス繊維のブレード1層で覆った
。用いたブレードは、炭素繊維ブレードは、「トレカ、
J T−3964,T−3484、ガラス繊維ブレード
は「アドキンス・アンド・ピアーズ」#9273であり
、各ブレードをT−3484、#9273 、T−39
64の順で重ねた。
A cylinder made from "Unicell" containing this intermediate material C was covered with two layers of carbon fiber braid and one layer of glass fiber braid. The blade used was a carbon fiber blade made of "Trading Card".
J T-3964, T-3484, the glass fiber blade is "Adkins &Pierce"#9273, each blade is T-3484, #9273, T-39
Stacked in the order of 64.

これを前記の金型に収め、金型を閉じた。金型を水平に
し、−旦、真空ポンプで減圧となしほぼ真空にした。次
いで実施例14.15とほぼ同様に、110°Cの温浴
に入れ、余分の樹脂とガスを抜きながら、樹脂を硬化さ
せた。金型を1時間後に温浴から取り出し、冷却して金
型から成形品を取り出した。
This was placed in the mold described above, and the mold was closed. The mold was placed horizontally, and then the pressure was reduced using a vacuum pump to create a nearly vacuum. Then, in substantially the same manner as in Examples 14 and 15, the resin was cured by placing it in a hot bath at 110° C. while removing excess resin and gas. The mold was removed from the hot bath after 1 hour, cooled, and the molded article was removed from the mold.

かくして表面が炭素/ガラス繊維強化エポキシ樹脂、内
層がエポキシ樹脂とポリプロピレンの発泡体である、軽
量角材が得られた。表面のFRP層を含んだ角材の比重
は9.50 g 、/ cm 3であった。
In this way, a lightweight square timber was obtained whose surface was made of carbon/glass fiber reinforced epoxy resin and whose inner layer was a foam of epoxy resin and polypropylene. The specific gravity of the square timber including the FRP layer on the surface was 9.50 g/cm3.

実施例17 本例は使用する発泡ビーズを変えることにより、適当な
分離膜が代ることを示すと共に、分離膜として織物を用
いた例を示す。
Example 17 This example shows that a suitable separation membrane can be used by changing the foamed beads used, and also shows an example in which a woven fabric is used as the separation membrane.

松本油脂製薬■製の熱膨張性発泡ビーズ「マツモト マ
イクロスフェア−F−50D J 、ノーペル社(No
bel Industries)の「エクスパンセル4
61」を準備した。ともに100〜110°C″′C膨
張する微粒子である。以後、それぞれF−50D、 E
xpancel−461と略称する。
Thermal expandable foam beads "Matsumoto Microsphere-F-50D J" manufactured by Matsumoto Yushi Seiyaku ■, Nopel Co., Ltd. (No.
bel Industries)'s "Expancel 4"
61" was prepared. Both are fine particles that expand at 100 to 110°C'''C.Hereafter, they will be referred to as F-50D and E, respectively.
It is abbreviated as xpancel-461.

シェル製のエポキシ樹脂「エピコート807」を100
部と硬化剤[エピキュアYLHOO6Jを31部混合し
た。これを樹脂Aとする。
100% of Shell's epoxy resin "Epicote 807"
31 parts of a curing agent [Epicure YLHOO6J] were mixed. This is called resin A.

樹脂Aの100部とF−50Dの100部を混合した。100 parts of Resin A and 100 parts of F-50D were mixed.

この混合物を混合物Bとする。一方、樹脂Aの100部
とExpancel−461の100部を混合した。こ
の混合物を混合ZCとする。
This mixture will be referred to as mixture B. On the other hand, 100 parts of Resin A and 100 parts of Expancel-461 were mixed. This mixture is referred to as Mixed ZC.

アルミニウムの板2枚の間に、「テフロン」の枠を挟ん
だ金型を作った。上下の端にノズルを設けた。 不織布
「ユニセルBTO404Jとナイロンタフタ織物く白崎
工業5D2510)を準備した。これらを用いて金型に
合わせて袋を作った。これらの袋にそれぞれ混合物Bお
よび混合物Cを入れた。ユニセル/混合物Bを中間材料
(1)、ナイロンタフタ/混合物Bを中間材料(2)、
ユニセル/混合物Cを中間材料(3)、ナイロンタフタ
/混合物Cを中間材料(4)とする。
A mold was made with a Teflon frame sandwiched between two aluminum plates. Nozzles were provided at the top and bottom ends. Non-woven fabrics "Unicel BTO404J and nylon taffeta fabric Shirasaki Kogyo 5D2510) were prepared. Bags were made using these to fit the molds. Mixture B and Mixture C were placed in these bags, respectively. Unicel/Mixture B intermediate material (1), nylon taffeta/mixture B as intermediate material (2),
Unicell/mixture C is used as an intermediate material (3), and nylon taffeta/mixture C is used as an intermediate material (4).

目開きの比較的大きい旭ファイバーグラス製のガラス繊
維クロスMS253E−1040−2NT−10FSを
用意した。金型−杯のガラスクロスを2枚とおよび長さ
を金型に合せ、幅をノズルを覆うサイズにした短冊状ガ
ラスクロス10枚を作り、大きなガラスクロスを用いて
、ガラスクロス/中間材料+1) (2! ((3)ま
たは(4)/ガラスクロスの原で金型に入れた。
Glass fiber cloth MS253E-1040-2NT-10FS manufactured by Asahi Fiberglass and having a relatively large opening was prepared. Mold - Make 2 pieces of cup glass cloth and 10 strips of glass cloth whose length matches the mold and whose width is sized to cover the nozzle, then use the large glass cloth to make glass cloth/intermediate material +1 ) (2! ((3) or (4)/Put it into a mold with a glass cloth base.

ノズルを覆う位置、つまり上下端は、小さなガラスクロ
スを重ねて埋めた。
The positions that covered the nozzle, that is, the top and bottom ends, were filled with small layers of glass cloth.

双方のノズルを用いて金型内部を真空にしな。Create a vacuum inside the mold using both nozzles.

次いて金型を110°Cのシリコン油浴に入れ、加熱し
た。少量の樹脂とガスをノズルの位!に溢流させ、はぼ
同時に逐次ノズルを閉鎮した。1時間後に金型を温浴か
ら取り出し、冷却して金型から成形物を取り出しな。中
間材料(1) (2) (4)を用いた(、のは表面が
ガラス繊維強化エポキシ樹脂、内層がエポキシ樹脂に発
泡したビーズを分散した良好なサンドイツチ材が得られ
たが、中間材料(3)を用いたものは表面に発泡したビ
ーズが現れ外観の劣ったものとなった。F−50Dを用
いた場合、「ユニセルBTO404J 、ナイロンタフ
タ共に良好な分離層であるが、Expance l−4
61を用いた場合、ユニセルは分離層の機能を果さず、
ナイロンタフタが果していることを示している。
The mold was then placed in a 110°C silicone oil bath and heated. Apply a small amount of resin and gas to the nozzle! was allowed to overflow, and the nozzles were shut down at about the same time. After 1 hour, remove the mold from the hot bath, cool, and remove the mold from the mold. By using intermediate materials (1), (2), and (4), a good sand german material was obtained in which the surface was made of glass fiber-reinforced epoxy resin and the inner layer was made of epoxy resin with foamed beads dispersed therein. When F-50D was used, foamed beads appeared on the surface and the appearance was poor.
61, the unicell does not function as a separation layer;
It shows what nylon taffeta can do.

中間材料(1)を用いたものは比重0.63.曲げ試験
の強度9.7 kg/lngn2.弾性率883 kg
/(財)2、(2)を用いたものは比重0.74.曲げ
試験の強度9.6 kg/mm2.弾性率886 ki
r/mm2(4)を用いたものは比重0.80.曲げ試
験の強度12.5kg / mm 2弾性率886 k
g/mm2であった。
The specific gravity of the one using intermediate material (1) is 0.63. Bending test strength: 9.7 kg/lngn2. Elastic modulus 883 kg
/ (Foundation) 2, the one using (2) has a specific gravity of 0.74. Strength of bending test: 9.6 kg/mm2. Elastic modulus 886 ki
The specific gravity of the one using r/mm2 (4) is 0.80. Bending test strength 12.5kg/mm2 Modulus of elasticity 886k
g/mm2.

実施例18 本例はセーリングボードのフィン(スケグ)を作る例で
ある。
Example 18 This example is an example of making a fin (skeg) for a sailing board.

予め、フィンの成形用の型を樹脂で作った。この型の両
端部に液抜きを設けた。二つ割りの金型にした。最大幅
120mm、最大長さ350 mm、 最大厚さ14m
mである。上下にノズルを設けた。
A mold for molding the fins was made in advance from resin. A drain was provided at both ends of this mold. The mold was made into two parts. Maximum width 120mm, maximum length 350mm, maximum thickness 14m
It is m. Nozzles were installed at the top and bottom.

シェル製のエポキシ樹脂「エピコート807」を100
部、硬化剤「エボメート」を31部混合した。
100% of Shell's epoxy resin "Epicote 807"
31 parts of the curing agent "Ebomate" were mixed.

これを樹脂Aとする。This is called resin A.

松本油脂製薬製の「マイクロッスフェアF−30D J
を20部、旭硝子製の無機バルーント28を10部混合
した。これと樹脂Aの約1/3を混合した。得られたも
のを混合物Bとする。
Microsphere F-30D J manufactured by Matsumoto Yushi Pharmaceutical
and 10 parts of Inorganic Balloon 28 manufactured by Asahi Glass were mixed. This and about 1/3 of Resin A were mixed. The obtained mixture is referred to as mixture B.

東し製の炭素繊維クロスT−400と量大製のアラミド
繊維「テクノーラ」との平織の交織布1枚、日東紡製の
ガラス繊維クロスWF−181−100BV2枚および
、ユニセル−製のポリエステル不織布[ユニセルT−4
0404を1枚、型の内形に合わせて切り取り積層しな
。2組をつないで、中に混合′SBを入れた。これを成
形用の型に収め、型を締め付けた後、空気を排出しなが
ら型内の繊維層に残りの樹脂Aを注入した。溢流するま
で注入した。
One piece of plain weave mixed fabric of carbon fiber cloth T-400 manufactured by Toshi and large-scale aramid fiber "Technora", two pieces of glass fiber cloth WF-181-100BV manufactured by Nittobo, and polyester non-woven fabric manufactured by Unicell. [Unicel T-4
Cut out one piece of 0404 according to the inner shape of the mold and stack it. The two sets were connected and the mixed 'SB was put inside. This was placed in a mold for molding, and after the mold was tightened, the remaining resin A was injected into the fiber layer inside the mold while expelling air. Injected until overflow.

一方のベント(液抜き)を閉じ、開いている方のベン1
−<液抜き)を上にして80℃の温浴に入れ、加熱した
。1時間後に温浴から取り出し、冷却して型から成形物
を取り出した。表面がエポキシ樹脂、外植が炭素繊維/
アラミド繊維・ガラス繊維補強エポキシ樹脂、芯が無機
ビーズとマイクロスフェアの発泡体である美麗でファツ
ショナブルで、かつ軽量で良好な特性のフィンが得られ
た。
Close one vent (liquid drain) and open vent 1.
-<Liquid drained) side up, placed in a hot bath at 80°C and heated. After 1 hour, the molded product was removed from the hot bath, cooled, and removed from the mold. The surface is epoxy resin, the explant is carbon fiber/
A beautiful, fashionable, lightweight, and good-characteristic fin made of aramid fiber/glass fiber-reinforced epoxy resin and a core made of inorganic beads and microsphere foam was obtained.

実施例1つ 断面20nym X 20mm 、長さ5QOmmの金
型を作り、両端にノズルを設けた。シェル製のエポキシ
樹脂「エピコート807」を100部、硬化剤[エボメ
ートYLHOO6Jを31部混合しな。これを樹脂Aと
する。
Example 1 A mold with a cross section of 20 nm x 20 mm and a length of 5 QOmm was made, and nozzles were provided at both ends. Mix 100 parts of the epoxy resin "Epicote 807" manufactured by Shell and 31 parts of the curing agent [Evomate YLHOO6J]. This is called resin A.

市販の発泡ビーズ松本油脂製薬製の「マイクロスフェア
F−30D Jを入手した。このビーズ20部と、旭硝
子製の[無機バルーン!1!−28Jを10部混合した
Commercially available foam beads "Microsphere F-30D J" manufactured by Matsumoto Yushi Seiyaku were obtained. 20 parts of these beads were mixed with 10 parts of [Inorganic Balloon! 1!-28J manufactured by Asahi Glass Co., Ltd.].

「ユニセルBTO404Jで周囲80薗の筒を作り、上
記の混合ビーズの1/2を詰めな。このビーズを詰めた
ユニセルの筒を、炭素繊維のブレード2層とガラス繊維
のブレード1層で覆った。用いたブレードは、「トレカ
T−3964Jおよび「トレカT−3484J、ガラス
繊維ブレードは[アドキンス アンド ピアース192
734である。これらをT−3484、#9273、T
−3964の順で重ねた。
``Make a tube with a circumference of 80 mm using Unicell BTO404J and fill it with 1/2 of the mixed beads above.The Unicell tube filled with beads was covered with two layers of carbon fiber braid and one layer of glass fiber braid. The blades used were "Trading Card T-3964J" and "Trading Card T-3484J, and the glass fiber blade was [Adkins and Pierce 192
It is 734. These are T-3484, #9273, T
Stacked in the order of -3964.

これを前記の金型に収め、混合ビーズの残部を押し込み
、「ユニセル」の筒と金型を閉じな。
Place this in the mold mentioned above, push in the rest of the mixed beads, and close the "unicell" cylinder and mold.

金型を水平にし、−旦、上部ノズルを用いて真空ポンプ
で減圧してほぼ真空となし、そのまま、下部ノズルから
液状の樹脂Aを注入し、樹脂が上部ノズルから溢流した
ことを確かめて注入をやめた。
The mold was leveled, and then the upper nozzle was used to reduce the pressure with a vacuum pump until it was almost a vacuum, and then liquid resin A was injected from the lower nozzle, making sure that the resin overflowed from the upper nozzle. I stopped the injection.

次に、70°Cの温浴に入れ、樹脂を抜きながら硬化さ
せた。1時間後に温浴から取り出し、冷却して金型から
成形物を取り出しな。かくして、表面が炭素/ガラス繊
維強化エポキシ樹脂、内層がエポキシ樹脂と無機中空体
/マイクロスフェアの発泡体である軽量角材が得られた
。表皮を含んだ比重は0.62kg/alNであった。
Next, it was placed in a 70°C hot bath and cured while removing the resin. After 1 hour, remove from the hot bath, cool and remove the mold from the mold. In this way, a lightweight square material was obtained whose surface was made of carbon/glass fiber reinforced epoxy resin and whose inner layer was a foam made of epoxy resin and inorganic hollow bodies/microspheres. The specific gravity including the epidermis was 0.62 kg/alN.

実施例20〜22および比較例1〜6 本例は表面の直下に補強繊維を遍在させ、それ以外の部
分に発泡粒子を偏在させた樹脂との一体成形物と、表皮
の直下が発泡粒子と樹脂で、はぼ中心部に補強繊維と樹
脂を偏在させた成形物との違い、表面の直下に補強繊維
を偏在させたがその中に発泡粒子も同時に存在するもの
との違い、表面直下の補強繊維を廃した場合のものとの
違いを比較検討するものである。
Examples 20 to 22 and Comparative Examples 1 to 6 This example is an integrally molded product with a resin in which reinforcing fibers are omnipresent just below the surface and foamed particles are unevenly distributed in the other parts, and foamed particles are formed directly under the surface of the resin. Differences between a molded product in which reinforcing fibers and resin are unevenly distributed in the center of the hollow, and a molded product in which reinforcing fibers are unevenly distributed just below the surface, but foam particles are also present therein. The purpose of this study is to compare and examine the differences between the two cases in which the reinforcing fibers are eliminated.

シェル製のエポキシ樹脂「エピコート807」を100
部、硬化剤「エボメートYLHOO6Jを33部混合し
た。これを樹脂Aとする。
100% of Shell's epoxy resin "Epicote 807"
33 parts of a curing agent "Evomate YLHOO6J" were mixed. This is referred to as resin A.

松本油脂製薬製の「マイクロスフェアF−50D J2
0部を、上記の樹脂A40部と混合しな。これを混合物
Bとする。
"Microsphere F-50D J2 manufactured by Matsumoto Yushi Pharmaceutical
Mix 0 parts with 40 parts of the above resin A. This is called mixture B.

予め、アルミ製の平板を2枚と、「テフロン」製のスペ
ーサーからなる二分割型の金型を作り両端部に液抜きを
設けた。スペーサーの厚みは3mmとした。
A two-piece mold was made in advance, consisting of two flat aluminum plates and a Teflon spacer, and drains were provided at both ends. The thickness of the spacer was 3 mm.

旭ファイバーグラス製の目開きの比較的大きいガラス繊
維織物くガラスクロス) MS253E−1040−2
8T−10FS (平¥a)を金型に合わせて切った。
Asahi Fiberglass MS253E-1040-2
8T-10FS (flat ¥a) was cut to fit the mold.

これを同サイズに切ったユニセル−製の不織布[ユニセ
ルBTO404Jを重ね合わせた。樹脂Aを二つ割にし
た一方の金型に薄く塗布し、この金型に合わせて、上記
のガラスクロス/不織布をガラスクロスを外にして収め
た。上下のノズルの位置に上記のガラスクロスを8枚幅
20ownに切って収め、混合物Bを入れた。他方の金
型に樹脂Aを塗布し、同様に同じ構成のシートをガラス
クロス層を外にして実質的に貼り付けて収め、混合物B
を入れた方の金型に裏返して載せた。金型を閉じ、過剰
の樹脂と空気を排出しなから110°Cの温浴に入れ、
加熱した。過剰な樹脂と空気を排出しながら硬化させた
。1時間後に温浴から取り出し、冷却して金型から成形
物を取り出した。得られたサンプルは厚さ3 mm 、
密度0.76 g /−で表面直下にガラスクロスが、
これ以外の部分に発泡粒子が存在するエポキシ樹脂一体
成形物である。この成形物をサンプル(a)  とする
This was cut into the same size and layered with a Unicell nonwoven fabric [Unicell BTO404J]. Resin A was applied thinly to one of the two molds, and the glass cloth/nonwoven fabric described above was placed in the mold with the glass cloth outside. Eight pieces of the above-mentioned glass cloth were cut into a width of 20 own and placed in the upper and lower nozzle positions, and Mixture B was added thereto. Resin A is applied to the other mold, and a sheet having the same structure is similarly pasted with the glass cloth layer removed to form mixture B.
It was placed upside down on the side of the mold that had been placed. Close the mold, remove excess resin and air, and place in a 110°C hot bath.
Heated. It was cured while expelling excess resin and air. After 1 hour, the molded product was taken out from the hot bath, cooled, and taken out from the mold. The obtained sample had a thickness of 3 mm,
Glass cloth is placed just below the surface with a density of 0.76 g/-.
This is an epoxy resin integrally molded product with foamed particles present in other parts. This molded product is referred to as sample (a).

同様に、不織布「ユニセルBTO404Jを除いて他は
全く同様にして一体成形物を得た。該成形物の表面には
発泡した粒子が認められた。これをサンプル(b)とす
る。
Similarly, an integrally molded product was obtained in the same manner except for the nonwoven fabric "UNICEL BTO404J. Foamed particles were observed on the surface of the molded product. This is referred to as sample (b).

旭ファイバーグラス製ガラスクロスMS253E−10
40−2NT−10FSの代わりに、目開きの小さい日
東紡製のガラス繊維クロスWF−181−100BV 
(朱子織り〉を金型に合わせて切った。不織布「ユニセ
ルBTO404」を同様に切ったシート1枚とを重ねて
、サンプルfa)と同様にして成形物を得た。これをサ
ンプル(C)とする。これはサンプル(a)と同様な外
観の成形物であった。
Asahi fiberglass glass cloth MS253E-10
Instead of 40-2NT-10FS, use Nittobo's glass fiber cloth WF-181-100BV with a small opening.
(Satin weave) was cut to fit the mold. A sheet of nonwoven fabric "Unicell BTO404" cut in the same manner was overlapped to obtain a molded product in the same manner as sample fa). This will be referred to as sample (C). This was a molded product with an appearance similar to that of sample (a).

サンプル(C)を成形するのと同様にして、ただし「ユ
ニセルBTO404Jを併用せずに、サンプルを得な。
In the same way as sample (C) was molded, except that ``Obtain the sample without using Unicell BTO404J.''

これをサンプル(d)とする。この成形物も外観はサン
プル(al と同様であった。
This will be referred to as sample (d). This molded product also had the same appearance as the sample (al).

旭ファイバーグラス製ガラスクロスMS253E−10
40−2NT−10FSを金型に合せて切った。「ユニ
セルBTO404Jを同じサイズに切り、これに重ねた
Asahi fiberglass glass cloth MS253E-10
40-2NT-10FS was cut to fit the mold. “I cut Unicell BTO404J to the same size and layered it on top of this.

金型の一方に混合物Bを塗布し、この上にこのガラスク
ロスと「ユニセルBTO404Jを載せ、さらにこの上
に混合物Bを載せた。他方の金型に同様に混合物Bを塗
布し、もう一方の金型に裏返して載せた。両者を合せて
金型を閉じ、過剰の樹脂と空気を排出しながら110℃
の温浴に入れ、加熱した。
Mixture B was applied to one side of the mold, this glass cloth and Unicel BTO404J were placed on top of this, and mixture B was placed on top of this. Mixture B was applied in the same way to the other mold, and It was placed upside down on the mold.The two were placed together, the mold was closed, and the mixture was heated to 110°C while expelling excess resin and air.
I put it in a hot bath and heated it.

1時間後に温浴から取り出し、冷却して金型から成形物
を取り出した。表面がエポキシ樹脂/発泡粒子、その内
側がガラス繊維補強エポキシ樹脂である軽量成形板が得
られた。これをサンプル(e)とする。
After 1 hour, the molded product was taken out from the hot bath, cooled, and taken out from the mold. A lightweight molded plate was obtained whose surface was made of epoxy resin/expanded particles and whose inside was made of glass fiber-reinforced epoxy resin. This is referred to as sample (e).

さらに、上記「ユニセル」を除く以外はサンプル(e)
と同様にして、サンプルを作った。これをサンプル(f
)とする。
Furthermore, except for the above “unicell”, sample (e)
I made a sample in the same way. This is a sample (f
).

旭ファイバーグラス製ガラスクロスM8253E−10
40−2NT−10FSの代わりに、日東紡製のガラス
繊維クロスWF−181−100BVを用いるほかはサ
ンプル(e)同様にして、複合成形品を製造しな。これ
をサシプル(g)とする。
Asahi fiberglass glass cloth M8253E-10
A composite molded product was produced in the same manner as sample (e) except that Nittobo's glass fiber cloth WF-181-100BV was used instead of 40-2NT-10FS. This is called the sasiple (g).

さちに「ユニセルB’TO40bを除くほかはサンプル
(N同様にして、同様の複合成形品を作ったにれをサン
プル(h)  とする。
Sample (h) is a similar composite molded product made in the same manner as N (except for Unicell B'TO40b).

次に、[ユニセルBTO404Jを金型に合わせて切取
った。これに樹脂Aを塗布した二分割した片方の金型に
収めた。この上に混き%Bを載せた。他方の金型に同様
に樹脂Aを塗布し、「ユニセルBT0404 Jを貼り
付け、裏返して載せた。金型を閉じ、過剰の樹脂と空気
を排出しなから110°Cの温浴に入れ、加熱した。1
時間後に温浴から取り出し、冷却して金型から成形物を
取り出しな。表面がユニセル/エポキシ樹脂、その内側
が発泡バルーン/エポキシ樹脂である軽量成形板が得ら
れた。得られた成形物をサンプル+i)とする。
Next, [UNICELL BTO404J was cut out to fit the mold. This was then placed in one of the two divided molds coated with resin A. Mixture %B was placed on top of this. Resin A was similarly applied to the other mold, and Unicell BT0404 J was pasted on it, and the mold was placed upside down.The mold was closed, and the excess resin and air were expelled, then placed in a 110°C hot bath and heated. I did.1
After that time, remove from the hot bath, cool and remove the mold from the mold. A lightweight molded plate was obtained whose surface was made of Unicell/epoxy resin and whose inside was made of foamed balloon/epoxy resin. The obtained molded product is referred to as sample +i).

得られた各サンプルについてインストロン試験機で曲げ
試験を行った。その結果は次表に示す通りである。
A bending test was performed on each of the obtained samples using an Instron testing machine. The results are shown in the table below.

これらの実施例および比較例において、目開きの小さい
日東紡製のガラス繊維クロスWF−181−100BV
<朱子織り〉の場合には本発明で特定した分離層が補強
繊維を兼ねている例であり、補強繊維が分離層の役目を
果し、発泡粒子の表層部への移行を阻止している。実施
例22くサンプル(d))は分離層と補強材料が同一の
場合であり、実施例21(サンプル(C))はこの作用
効果を確認する例となっている。旭ファイバーグラス製
ガラスクロスMS253E−1040−2NT−10F
S (平織)の場合には目開きが大きく発泡性粒子が阻
止できないなめ、分離層として別に不織布[ユニセルB
TO404Jを用い、これと別に補強繊維を用いた例で
ある。実施例20くサンプル(a))はこの例であり、
比較例1(サンプル (b))はこの確認になっている
。さらに比較例2〜5〈サンプル(e)〜(h))で、
表皮直下に補強繊維が、他の部分に発泡粒子が偏在し、
互いに分かれていることが成形物の物性上重要であるこ
とを示し、比較例6(サンプル(i))は分離層として
甲いた不織布「ユニセルBTO404,Jの補強材料と
しての寄与は無視できることを示している。
In these Examples and Comparative Examples, glass fiber cloth WF-181-100BV manufactured by Nittobo with a small opening was used.
In the case of <satin weave>, the separation layer specified in the present invention also serves as reinforcing fibers, and the reinforcing fibers serve as the separation layer and prevent the foamed particles from migrating to the surface layer. . Example 22 (sample (d)) is a case in which the separation layer and the reinforcing material are the same, and Example 21 (sample (C)) is an example for confirming this effect. Asahi fiberglass glass cloth MS253E-1040-2NT-10F
In the case of S (plain weave), the opening is large and the expandable particles cannot be blocked, so a separate nonwoven fabric [Unicell B] is used as a separation layer.
This is an example in which TO404J is used and reinforcing fibers are used separately. Example 20 Sample (a)) is an example of this,
Comparative Example 1 (sample (b)) confirms this. Furthermore, in Comparative Examples 2 to 5 (samples (e) to (h)),
Reinforcing fibers are located directly under the epidermis, and foam particles are unevenly distributed in other areas.
This shows that separation from each other is important for the physical properties of the molded product, and Comparative Example 6 (sample (i)) shows that the contribution of the nonwoven fabric "Unicell BTO404, J" used as a separation layer as a reinforcing material can be ignored. ing.

実施例23 本例は発泡性樹脂粒子および熱硬化性樹脂の混合物を成
形時に破断するフィルムからなるチューブに詰めて使用
する例である。
Example 23 This example is an example in which a mixture of expandable resin particles and a thermosetting resin is packed into a tube made of a film that breaks during molding.

シェル社製のエポキシ樹脂および硬化剤、「エビコー)
807 Jを100部、「エボメート」を31部混合し
た。これを液状樹脂Aとする。
Epoxy resin and curing agent manufactured by Shell, “Ebiko”
100 parts of 807 J and 31 parts of "Evomate" were mixed. This is called liquid resin A.

この液状樹脂A100部、松本油脂製薬製発泡性樹脂粒
子「マイクロスフェアF−30D Jを44部、中空ガ
ラスピーズ22部を混合した。これを発泡性混合物Bと
する。
100 parts of this liquid resin A, 44 parts of Matsumoto Yushi Seiyaku's foamable resin particles "Microspheres F-30D J" and 22 parts of hollow glass beads were mixed. This is referred to as a foamable mixture B.

一方、直径10mmのポリ塩化ビニリデン/塩化ビニル
共重合体のフィルムからなるチューブを作り、これに発
泡性混合物Bを積め、両端と中間を50mm間陽で結び
、袋状物内に混合物を収納してなる連続した腸詰め状の
成形材料を作った。
On the other hand, a tube made of a film of polyvinylidene chloride/vinyl chloride copolymer with a diameter of 10 mm was made, foamable mixture B was loaded onto it, both ends and the middle were tied with a 50 mm gap, and the mixture was stored in a bag-like material. We made a continuous intestine-shaped molding material.

次に、アドキンス・アンド・ピアース< Atkins
& Pearce)社の炭素繊維製ブレードチューブ(
管状編物)を3層分、手繰り合わせて上記の連続した腸
詰め状の成形材料の表面に被せ、上記腸詰め状の成形材
料を環状につなぎ、ブレードチューブが上記成形材料の
全体を覆うようにした。
Next, Adkins & Pierce
& Pearce) carbon fiber braided tube (
Three layers of a tubular knitted fabric were hand-combined and placed on the surface of the above-mentioned continuous intestine-shaped molding material, and the intestine-shaped molding material was connected in a ring so that the braided tube covered the entirety of the above-mentioned molding material.

一方、リング状の「型」を樹脂で作成しな。この型には
ガス・液抜きを設け、上下二つ割りの型にした。
On the other hand, create a ring-shaped "mold" out of resin. This mold was equipped with gas and liquid vents and was split into two halves, top and bottom.

上記のブレードチューブで覆った腸詰め状の環状成形材
料を、予め内面に液状樹脂Aを塗布した一方の型内にそ
の形状に合わせて入れた後、この上にさらに液状樹脂A
を塗布した。この上に他方の型を裏返して載せた。
The annular molding material covered with the above-mentioned braided tube is placed into one mold whose inner surface has been coated with liquid resin A according to its shape, and then liquid resin A is added on top of the mold.
was applied. The other mold was placed upside down on top of this.

型を締め付けた後、ガス・液抜きを上にしてこのノズル
から排気して型の内部を真空となし、ノズルを閉じた後
に型を100℃の油浴中に入れ、加熱した。放置後、ガ
ス・液抜きノズルを開けて、ガスと液が出るのを確かめ
てから再度間じた。1時間後に油浴から取り出し、冷却
して型から成形物を取り出した。かくして、表面がエポ
キシ樹脂、外植が炭素繊維補強エポキシ樹脂、内層がエ
ポキシ樹脂の発泡体である軽量で良好なリングが得られ
た。
After tightening the mold, the mold was evacuated through the nozzle with the gas/liquid vent facing upward, and the inside of the mold was evacuated. After the nozzle was closed, the mold was placed in a 100° C. oil bath and heated. After leaving it for a while, open the gas/liquid drain nozzle and check that gas and liquid come out, then close it again. After 1 hour, the molded product was removed from the oil bath, cooled, and removed from the mold. In this way, a light and good ring was obtained, the surface of which was made of epoxy resin, the explant made of carbon fiber-reinforced epoxy resin, and the inner layer made of epoxy resin foam.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法により得られる複合成形品の1例を
示す部分断面図、第2図は本発明を実施する金属型を開
いた状態を示す横断面図、第3図は型を閉じ中空状の発
泡性樹脂粒子と液状の成形樹脂を分離層内部に充填した
状態を示す縦断面図、第4図は他の実施態様を示す縦断
面図である。
Fig. 1 is a partial cross-sectional view showing an example of a composite molded product obtained by the method of the present invention, Fig. 2 is a cross-sectional view showing the metal mold implementing the present invention in an open state, and Fig. 3 is a closed mold. FIG. 4 is a vertical cross-sectional view showing a state in which hollow expandable resin particles and liquid molding resin are filled into the separation layer, and FIG. 4 is a vertical cross-sectional view showing another embodiment.

Claims (16)

【特許請求の範囲】[Claims] (1)繊維状補強材を含有する熱硬化性樹脂相よりなる
表層部、発泡粒子を含有する該樹脂相よりなる芯部、お
よび、該表層部と該芯部との間に存在する分離層よりな
る一体化された複合成形品の製造方法であって、 (a)実質的に密閉された成形用の型内に、発泡性粒子
は実質的に通過しないが成形時に流動性を有する熱硬化
性樹脂またはその前駆体は通過しうる分離層を設け、 (b)型内に該熱硬化性樹脂またはその前駆体を用意し
、 (c)型内における前記分離層と型との間に該分離層と
一体化するかまたは別個の繊維状補強材を連携して配置
し、 (d)さらに、型内における前記分離層の型内面と反対
の位置に発泡性粒子の集合体を用意し、(e)昇温によ
って該発泡性粒子を発泡させて該集合体の体積膨張を生
じせしめ、 (f)前記(e)の体積膨張により分離層を型の内面方
向に押し付けながら、該熱硬化性樹脂またはその前駆体
を、分離層を通じて流動させ、かくして分離層と型の間
および発泡粒子間に熱硬化性樹脂またはその前駆体を存
在せしめ、(g)次いで、該熱硬化性樹脂またはその前
駆体を硬化せしめ、固化を完了せしめて、前記表層部お
よび芯部を形成させ、 (h)かくして得られた複合成形品を型から取り出す、 工程よりなることを特徴とする複合成形品の製造方法。
(1) A surface layer made of a thermosetting resin phase containing a fibrous reinforcing material, a core made of the resin phase containing expanded particles, and a separation layer existing between the surface layer and the core. A method for producing an integrated composite molded article comprising: (a) a thermosetting material that substantially does not pass through a substantially closed molding mold, but has fluidity during molding; (b) providing the thermosetting resin or its precursor in a mold; (c) providing a separation layer through which the thermosetting resin or its precursor can pass; (c) providing a separation layer between the separation layer and the mold in the mold; (d) further providing an aggregate of expandable particles in the mold at a position opposite the inner surface of the mold of said separating layer; (e) foaming the expandable particles by raising the temperature to cause volumetric expansion of the aggregate; (f) pressing the separation layer toward the inner surface of the mold due to the volumetric expansion of (e); (g) flowing the resin or its precursor through the separation layer so that the thermosetting resin or its precursor is present between the separation layer and the mold and between the foamed particles; A method for manufacturing a composite molded product, comprising the steps of: hardening the body to complete solidification to form the surface layer and core; and (h) taking out the composite molded product thus obtained from the mold. .
(2)分離層が、繊維状補強材と一体化された構造材料
である請求項(1)に記載の製造方法。
(2) The manufacturing method according to claim (1), wherein the separation layer is a structural material integrated with a fibrous reinforcing material.
(3)分離層が、発泡性粒子を実質的に通過しない織物
、編物、不織布、紙、金網または多孔質膜である請求項
(1)または(2)のいずれかに記載の製造方法。
(3) The manufacturing method according to any one of claims (1) and (2), wherein the separation layer is a woven fabric, knitted fabric, nonwoven fabric, paper, wire mesh, or porous membrane that does not substantially allow the expandable particles to pass through.
(4)繊維状補強材が、織物、編物、不織布、一方向配
列フィラメントまたはウェブである請求項(1)〜(3
)のいずれかに記載の製造方法。
(4) Claims (1) to (3) wherein the fibrous reinforcing material is a woven fabric, a knitted fabric, a nonwoven fabric, a unidirectionally aligned filament, or a web.
).
(5)繊維状補強材の材質が、ガラス繊維、炭素繊維、
シリコンカーバイト繊維、金属繊維、アラミド繊維、ポ
リアリレート繊維およびポリオレフィン繊維よりなる群
から選ばれた少なくとも1種の繊維である請求項(1)
〜(4)のいずれかに記載の製造方法。
(5) The material of the fibrous reinforcing material is glass fiber, carbon fiber,
Claim (1) The fiber is at least one type of fiber selected from the group consisting of silicon carbide fiber, metal fiber, aramid fiber, polyarylate fiber, and polyolefin fiber.
The manufacturing method according to any one of -(4).
(6)発泡性粒子が、加熱により体積膨張することがで
き、かつ発泡後実質的に気泡が内包されているものであ
る請求項(1)〜(5)のいずれかに記載の製造方法。
(6) The manufacturing method according to any one of claims (1) to (5), wherein the expandable particles can expand in volume by heating and substantially contain air bubbles after foaming.
(7)発泡性粒子が、約1μm〜約5mmの平均粒径を
有する請求項(6)に記載の製造方法。
(7) The manufacturing method according to claim (6), wherein the expandable particles have an average particle size of about 1 μm to about 5 mm.
(8)発泡性粒子が、加熱により少なくとも10%の体
積膨張することができるものである請求項(6)または
(7)に記載の製造方法。
(8) The manufacturing method according to claim (6) or (7), wherein the expandable particles are capable of expanding in volume by at least 10% upon heating.
(9)発泡性粒子が、ポリ塩化ビニリデン共重合体、ポ
リスチレンまたはポリスチレン共重合体、ポリオレフィ
ンまたはポリフェニレンオキサイド共重合体により形成
されているものである請求項(6)〜(8)のいずれか
に記載の製造方法。
(9) Any one of claims (6) to (8), wherein the expandable particles are formed of polyvinylidene chloride copolymer, polystyrene or polystyrene copolymer, polyolefin or polyphenylene oxide copolymer. Manufacturing method described.
(10)熱硬化性樹脂またはその前駆体が、成形温度に
おいて少なくとも流動性を有するポリウレタン樹脂、エ
ポキシ樹脂、不飽和ポリエステル樹脂、ポリビニルエス
テル樹脂またはポリシクロオレフィン樹脂である請求項
(1)に記載の製造方法。
(10) The thermosetting resin or its precursor is a polyurethane resin, an epoxy resin, an unsaturated polyester resin, a polyvinyl ester resin, or a polycycloolefin resin, which has fluidity at least at the molding temperature. Production method.
(11)発泡性粒子集合体は、さらに非膨張性発泡粒子
を含有する請求項(1)〜(10)のいずれかに記載の
製造方法。
(11) The manufacturing method according to any one of claims (1) to (10), wherein the expandable particle aggregate further contains non-expandable expanded particles.
(12)該発泡性粒子:非膨張性発泡粒子の配合割合が
、重量で10:1〜1:2の範囲内にある請求項(12
)による製造方法。
(12) Claim (12) wherein the ratio of the expandable particles to the non-expandable expanded particles is within the range of 10:1 to 1:2 by weight.
) manufacturing method.
(13)非膨張性発泡粒子が、無機発泡粒子である請求
項(11)または(12)に記載の製造方法。
(13) The manufacturing method according to claim (11) or (12), wherein the non-expandable expanded particles are inorganic expanded particles.
(14)発泡性粒子集合体を袋状物の中に収納して使用
する請求項(1)に記載の製造方法。
(14) The manufacturing method according to claim (1), wherein the expandable particle aggregate is housed in a bag-like material.
(15)分離層の形態が、袋状構造体である請求項(1
)〜(3)のいずれかに記載の製造方法。
(15) Claim (1) wherein the separation layer is in the form of a bag-like structure.
) to (3).
(16)分離層は、袋状構造体でありかつ該袋状構造体
の中に、少なくとも発泡性粒子集合体を含有している請
求項(14)〜(15)に記載の製造方法。
(16) The manufacturing method according to any one of claims (14) to (15), wherein the separation layer is a bag-like structure and contains at least an expandable particle aggregate in the bag-like structure.
JP18148690A 1989-07-12 1990-07-11 Method for manufacturing composite molded article Expired - Lifetime JPH0712613B2 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP17983089 1989-07-12
JP1-255304 1990-04-12
JP1-248208 1990-04-12
JP2-18000 1990-04-12
JP2-95069 1990-04-12
JP1-179830 1990-04-12
JP1-227157 1990-04-12
JP1-229425 1990-04-12

Publications (2)

Publication Number Publication Date
JPH0427532A true JPH0427532A (en) 1992-01-30
JPH0712613B2 JPH0712613B2 (en) 1995-02-15

Family

ID=16072640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18148690A Expired - Lifetime JPH0712613B2 (en) 1989-07-12 1990-07-11 Method for manufacturing composite molded article

Country Status (1)

Country Link
JP (1) JPH0712613B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5951956A (en) * 1992-03-23 1999-09-14 Kabushiki Kaisha Toyota Chuo Kenkyusho Catalyst for purifying exhaust gas and method for purifying exhaust gas
JP2015017190A (en) * 2013-07-11 2015-01-29 株式会社ジェイエスピー Composite molding
JP2015224272A (en) * 2014-05-27 2015-12-14 株式会社ジェイエスピー Method for manufacturing polyimide resin madreporite and composite
JP2018020483A (en) * 2016-08-03 2018-02-08 積水化成品工業株式会社 Resin composite
JP2018089953A (en) * 2016-11-30 2018-06-14 ザ・ボーイング・カンパニーThe Boeing Company Particulate-binder composite article and associated system and method for manufacturing the same
WO2019073848A1 (en) * 2017-10-11 2019-04-18 株式会社 Monopost Method for manufacturing fiber-reinforced resin molded article
WO2021171716A1 (en) * 2020-02-25 2021-09-02 株式会社すぎはら Laminated sheet and method for manufacturing laminated sheet
CN114030110A (en) * 2021-09-23 2022-02-11 甘肃旭晶新材料有限公司 Method for eliminating corner stress concentration of megawatt wind power generation blade and blade
WO2023281629A1 (en) * 2021-07-06 2023-01-12 昭和電工マテリアルズ株式会社 Method for producing molded object

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0970809A (en) * 1995-09-05 1997-03-18 Teijin Ltd Form made of composite molded article and its manufacture
KR100652478B1 (en) * 2004-12-21 2006-12-01 김정근 The method of preparing plastic forms material of bath and wash bowl
JP5215734B2 (en) * 2008-05-29 2013-06-19 三菱重工業株式会社 Wing structure of marine propeller

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5951956A (en) * 1992-03-23 1999-09-14 Kabushiki Kaisha Toyota Chuo Kenkyusho Catalyst for purifying exhaust gas and method for purifying exhaust gas
JP2015017190A (en) * 2013-07-11 2015-01-29 株式会社ジェイエスピー Composite molding
JP2015224272A (en) * 2014-05-27 2015-12-14 株式会社ジェイエスピー Method for manufacturing polyimide resin madreporite and composite
JP2018020483A (en) * 2016-08-03 2018-02-08 積水化成品工業株式会社 Resin composite
JP2018089953A (en) * 2016-11-30 2018-06-14 ザ・ボーイング・カンパニーThe Boeing Company Particulate-binder composite article and associated system and method for manufacturing the same
KR20200047710A (en) * 2017-10-11 2020-05-07 가부시키가이샤 모노포스트 Method for manufacturing fiber-reinforced resin molded article
WO2019073848A1 (en) * 2017-10-11 2019-04-18 株式会社 Monopost Method for manufacturing fiber-reinforced resin molded article
EP3695947A4 (en) * 2017-10-11 2021-07-07 Monopost Company, Limited Method for manufacturing fiber-reinforced resin molded article
WO2021171716A1 (en) * 2020-02-25 2021-09-02 株式会社すぎはら Laminated sheet and method for manufacturing laminated sheet
JP2021133524A (en) * 2020-02-25 2021-09-13 株式会社すぎはら Production method of laminate plate
WO2023281629A1 (en) * 2021-07-06 2023-01-12 昭和電工マテリアルズ株式会社 Method for producing molded object
CN114030110A (en) * 2021-09-23 2022-02-11 甘肃旭晶新材料有限公司 Method for eliminating corner stress concentration of megawatt wind power generation blade and blade
CN114030110B (en) * 2021-09-23 2024-06-11 甘肃旭晶新材料有限公司 Megawatt wind power generation blade corner stress concentration eliminating method and blade

Also Published As

Publication number Publication date
JPH0712613B2 (en) 1995-02-15

Similar Documents

Publication Publication Date Title
US5242637A (en) Process for the production of composite molded articles
KR960007303B1 (en) Process for producing composite molded articles
JPH0427532A (en) Preparation of composite molded product
CN108248124A (en) A kind of pp cellular sandwich compound plates and preparation method thereof
EP0345855B1 (en) Process for adhering materials together
JPH06315995A (en) Production of composite molded product
JP2553206B2 (en) Method for manufacturing lightweight composite molded article
JPH08276441A (en) Light-weight composite molding strengthened at peripheral edge and manufacture thereof
JP3124301B2 (en) Manufacturing method of composite molded products
JPH07100847A (en) Manufacture of composite molded form with high surface quality
JPH06155599A (en) Fiber reinforced resin product and its manufacture
JP2986564B2 (en) Composite molded product, its production method and its intermediate material, and backing material for panel
JPH0557805A (en) Manufacture of light composition molded material
JP2809861B2 (en) Intermediate material for manufacturing lightweight composite molded products
JP2011114409A (en) Diaphragm for speaker and method of manufacturing the same
JP2986561B2 (en) Composite molded article and method for producing the same
JPH08276524A (en) Manufacture of composite molded article with porous core
JPH06218830A (en) Manufacture of composite molded piece
JPH0712614B2 (en) Method for producing composite molded article and intermediate material used therefor
JPH04282231A (en) Preparation of composite molded product
JP2662038B2 (en) Manufacturing method of composite molded products
JPH03183511A (en) Manufacture of composite molded product
JP2776973B2 (en) Manufacturing method of composite molded product
JPH09169057A (en) Production of composite molded product having porous core
JPH08207173A (en) Composite molded product having porous core susceptible to on-line electrostatic painting and production thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080215

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090215

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090215

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100215

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 16