JPH04274224A - Manufacture of semiconductor fine grain dispersed glass - Google Patents
Manufacture of semiconductor fine grain dispersed glassInfo
- Publication number
- JPH04274224A JPH04274224A JP5930991A JP5930991A JPH04274224A JP H04274224 A JPH04274224 A JP H04274224A JP 5930991 A JP5930991 A JP 5930991A JP 5930991 A JP5930991 A JP 5930991A JP H04274224 A JPH04274224 A JP H04274224A
- Authority
- JP
- Japan
- Prior art keywords
- porous glass
- semiconductor
- glass
- sol
- semiconductor fine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 73
- 239000011521 glass Substances 0.000 title claims description 40
- 238000004519 manufacturing process Methods 0.000 title claims description 16
- 239000005373 porous glass Substances 0.000 claims abstract description 71
- 239000011148 porous material Substances 0.000 claims abstract description 26
- 238000000034 method Methods 0.000 claims abstract description 24
- 150000001875 compounds Chemical class 0.000 claims abstract description 20
- 239000011259 mixed solution Substances 0.000 claims abstract description 10
- 239000010419 fine particle Substances 0.000 claims description 33
- 239000000243 solution Substances 0.000 claims description 28
- 239000011701 zinc Substances 0.000 claims description 16
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 claims description 13
- 229910000037 hydrogen sulfide Inorganic materials 0.000 claims description 12
- 229910052725 zinc Inorganic materials 0.000 claims description 9
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 8
- 229910052793 cadmium Inorganic materials 0.000 claims description 8
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 claims description 8
- YBNMDCCMCLUHBL-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 4-pyren-1-ylbutanoate Chemical compound C=1C=C(C2=C34)C=CC3=CC=CC4=CC=C2C=1CCCC(=O)ON1C(=O)CCC1=O YBNMDCCMCLUHBL-UHFFFAOYSA-N 0.000 claims description 7
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 claims description 7
- 239000007789 gas Substances 0.000 claims description 7
- VIDTVPHHDGRGAF-UHFFFAOYSA-N selenium sulfide Chemical compound [Se]=S VIDTVPHHDGRGAF-UHFFFAOYSA-N 0.000 claims description 5
- 229960005265 selenium sulfide Drugs 0.000 claims description 5
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 claims description 5
- 238000006243 chemical reaction Methods 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract 1
- 230000003287 optical effect Effects 0.000 description 18
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 15
- 239000002245 particle Substances 0.000 description 14
- 239000000499 gel Substances 0.000 description 10
- 239000000463 material Substances 0.000 description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 8
- 229910052681 coesite Inorganic materials 0.000 description 7
- 229910052906 cristobalite Inorganic materials 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 239000000377 silicon dioxide Substances 0.000 description 7
- 235000012239 silicon dioxide Nutrition 0.000 description 7
- 230000005476 size effect Effects 0.000 description 7
- 229910052682 stishovite Inorganic materials 0.000 description 7
- 229910052905 tridymite Inorganic materials 0.000 description 7
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- YKYOUMDCQGMQQO-UHFFFAOYSA-L cadmium dichloride Chemical compound Cl[Cd]Cl YKYOUMDCQGMQQO-UHFFFAOYSA-L 0.000 description 6
- XIEPJMXMMWZAAV-UHFFFAOYSA-N cadmium nitrate Chemical compound [Cd+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XIEPJMXMMWZAAV-UHFFFAOYSA-N 0.000 description 6
- RLJMLMKIBZAXJO-UHFFFAOYSA-N lead nitrate Chemical compound [O-][N+](=O)O[Pb]O[N+]([O-])=O RLJMLMKIBZAXJO-UHFFFAOYSA-N 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 5
- 238000000862 absorption spectrum Methods 0.000 description 4
- 239000005388 borosilicate glass Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000002096 quantum dot Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- 229910000011 cadmium carbonate Inorganic materials 0.000 description 3
- KOHRTFCSIQIYAE-UHFFFAOYSA-N cadmium;carbonic acid Chemical compound [Cd].OC(O)=O KOHRTFCSIQIYAE-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000001879 gelation Methods 0.000 description 3
- 150000002611 lead compounds Chemical class 0.000 description 3
- SPVXKVOXSXTJOY-UHFFFAOYSA-N selane Chemical compound [SeH2] SPVXKVOXSXTJOY-UHFFFAOYSA-N 0.000 description 3
- 229910000058 selane Inorganic materials 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 229910000003 Lead carbonate Inorganic materials 0.000 description 2
- 230000001476 alcoholic effect Effects 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 229940065285 cadmium compound Drugs 0.000 description 2
- 150000001662 cadmium compounds Chemical class 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- HWSZZLVAJGOAAY-UHFFFAOYSA-L lead(II) chloride Chemical compound Cl[Pb]Cl HWSZZLVAJGOAAY-UHFFFAOYSA-L 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 239000011669 selenium Substances 0.000 description 2
- 238000003980 solgel method Methods 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 238000005987 sulfurization reaction Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000011592 zinc chloride Substances 0.000 description 2
- 235000005074 zinc chloride Nutrition 0.000 description 2
- 150000003752 zinc compounds Chemical class 0.000 description 2
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 2
- 229910021589 Copper(I) bromide Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- RQQRAHKHDFPBMC-UHFFFAOYSA-L lead(ii) iodide Chemical compound I[Pb]I RQQRAHKHDFPBMC-UHFFFAOYSA-L 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- -1 silicon alkoxide Chemical class 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- KOECRLKKXSXCPB-UHFFFAOYSA-K triiodobismuthane Chemical compound I[Bi](I)I KOECRLKKXSXCPB-UHFFFAOYSA-K 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
Landscapes
- Glass Compositions (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は非線形光学効果を利用し
た光デバイス等の基礎をなす半導体微粒子分散ガラスの
製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing semiconductor fine particle-dispersed glass, which forms the basis of optical devices and the like that utilize nonlinear optical effects.
【0002】0002
【従来の技術】近年、非線形光学材料は高速光スイッチ
、高調波発生素子などの光デバイスとしての用途が考え
られている。特にその中核をなす半導体微粒子や非線形
光学特性を有する有機化合物を用いた非線形光学材料に
ついては、より高性能な材料の開発あるいはより改良さ
れた材料の製造方法が注目されている。BACKGROUND OF THE INVENTION In recent years, nonlinear optical materials have been considered for use as optical devices such as high-speed optical switches and harmonic generation elements. In particular, with regard to nonlinear optical materials that use semiconductor particles or organic compounds with nonlinear optical properties, which are the core of nonlinear optical materials, the development of materials with higher performance or improved methods for producing materials are attracting attention.
【0003】この分野における従来の技術としては、例
えばジャ−ナル オブ ノンクリスタライン ソ
リッド第122巻101ペ−ジ(J.Non−Crys
t.Solids,Vol.122,1990)に記載
されているようなゾル−ゲル法によるCdS 含有シリ
カガラスの作成法がある。As a conventional technique in this field, for example, Journal of Non-Crystalline Solids, Vol. 122, page 101 (J. Non-Crystalline Solids),
t. Solids, Vol. There is a method for producing CdS-containing silica glass by a sol-gel method as described in 122, 1990).
【0004】この方法はシリコンのアルコキシド(Si
(OC2 H5 )4 )を加水分解した後、メタノ−
ルに溶解させたCd(CH3 COO)2 ・2H2
Oを加えて撹拌する。その後、水、エタノ−ル、アンモ
ニア水の混合溶液を加えて撹拌を続け、この溶液をシャ
−レに移行しゲル板を作成する。このゲル板を硫化水素
(H2 S)ガスを含んだ雰囲気中に置き、硫化反応に
よってCdS 含有ガラスを作成するものである。This method uses silicon alkoxide (Si
After hydrolyzing (OC2 H5 )4), methanol
Cd(CH3COO)2 ・2H2 dissolved in
Add O and stir. Thereafter, a mixed solution of water, ethanol, and aqueous ammonia is added and stirring is continued, and this solution is transferred to a petri dish to prepare a gel plate. This gel plate is placed in an atmosphere containing hydrogen sulfide (H2S) gas, and a CdS-containing glass is created by a sulfurization reaction.
【0005】また、ジャ−ナル オブ オプティカ
ル ソサエティ オブ アメリカ第73巻647
ペ−ジ(J.Opt.Soc.Am.,Vol.73,
1983)に記載されているように、CdSX Se1
−X をホウケイ酸ガラスに分散したカットオフフィル
タ−ガラスを非線形光学材料に用いるものがある。この
カットオフフィルタ−ガラスはCdSXSe1−X と
をホウケイ酸ガラス材料を白金ルツボに入れ1000℃
程度の温度で溶融し作製している。[0005] Also, Journal of Optical Society of America Vol. 73, 647
Page (J.Opt.Soc.Am., Vol.73,
CdSX Se1 as described in (1983)
A cut-off filter glass in which -X is dispersed in borosilicate glass is used as a nonlinear optical material. This cut-off filter glass is made by placing CdSXSe1-X and borosilicate glass material in a platinum crucible at 1000°C.
It is manufactured by melting at a temperature of about
【0006】さらに、ジャ−ナル オブ アプライ
ド フィジックス 第63巻957ペ−ジ(J.A
ppl.Phys. 63(3),957 1988)
に開示されているCdS 微粒子ド−プ薄膜ガラスがあ
る。Furthermore, Journal of Applied Physics, Volume 63, page 957 (J.A.
ppl. Phys. 63(3), 957 1988)
There is a CdS fine particle doped thin film glass disclosed in .
【0007】この薄膜ガラスはタ−ゲットにコ−ニング
社製“7095ガラス”(Ba含有のホウケイ酸系ガラ
ス)とCdS とをタ−ゲットに用い高周波マグネトロ
ンスパッタリング法により、“7095ガラス”中にC
dS を2 〜4 重量%分散させたものである。This thin film glass is made by high-frequency magnetron sputtering using Corning's "7095 glass" (borosilicate glass containing Ba) and CdS as targets. C
2 to 4% by weight of dS is dispersed therein.
【0008】[0008]
【発明が解決しようとする課題】上記方法の半導体微粒
子分散ガラスの製造方法では、次のような課題がある。[Problems to be Solved by the Invention] The above-mentioned method for producing glass in which semiconductor fine particles are dispersed has the following problems.
【0009】イ)ゾル−ゲル法の場合:ゲル体を硫化水
素雰囲気中に置き硫化反応によってCdS 含有ガラス
を作成するため、ゲル体が厚い場合にはゲル体内部にま
で均一にCdS を分散させることが困難であり、表面
と内部とでCdS の粒径が異なり十分な粒径の制御が
できない。[0009] In the case of the sol-gel method: The gel body is placed in a hydrogen sulfide atmosphere and CdS-containing glass is created by a sulfurization reaction, so if the gel body is thick, CdS is uniformly dispersed even inside the gel body. The particle size of CdS differs between the surface and the inside, making it impossible to control the particle size sufficiently.
【0010】特に半導体微粒子分散ガラスを非線形光学
材料等に適用する場合には、ガラスマトリックス中に分
散された半導体微粒子の粒径の制御は重要であり、非線
形光学特性の性能に及ぼす影響は大きい。Particularly when semiconductor fine particle dispersed glass is applied to nonlinear optical materials, it is important to control the particle size of the semiconductor fine particles dispersed in the glass matrix, and this has a large effect on the performance of nonlinear optical characteristics.
【0011】ロ)カットオフフィルタ−ガラスの場合:
CdSX Se1−X をホウケイ酸ガラスに2−4w
t%以上均一に分散させることが困難であり、また10
00℃以上の高温で溶融しなければ作製できないため構
成成分の一部が蒸発してしまい目的とする半導体の組成
が変化する等の問題がありガラス組成、半導体組成の制
御も極めて困難なものとなる。B) In the case of cut-off filter-glass:
CdSX Se1-X on borosilicate glass 2-4w
It is difficult to uniformly disperse more than 10%
Since it cannot be manufactured unless it is melted at a high temperature of 00°C or higher, there are problems such as some of the constituent components evaporating and changing the composition of the target semiconductor, making it extremely difficult to control the glass composition and semiconductor composition. Become.
【0012】ハ)スパッタリング法を用いた場合:装置
が高価であるとともにガラス薄膜の形成に時間かかり、
(特にスパッタリング速度の小さなSiO2ガラスの形
成の場合など、1μmの厚みにするのに4−5時間かか
る。)厚膜を形成するのが困難である。c) When using sputtering method: The equipment is expensive and it takes time to form a glass thin film.
(It takes 4-5 hours to reach a thickness of 1 μm, especially in the case of forming SiO2 glass, which has a low sputtering rate.) It is difficult to form thick films.
【0013】本発明は、半導体微粒子を均一な細孔径と
大きな比表面積を有する多孔質ガラスに担持することに
より、簡便な方法でより迅速に半導体微粒子を均一な粒
子径に分散することができ、より大きな3次の非線形光
学特性を有する半導体微粒子分散ガラスの製造方法を提
供することを目的とする。[0013] The present invention enables semiconductor fine particles to be dispersed to a uniform particle size more quickly by a simple method by supporting semiconductor fine particles on porous glass having a uniform pore diameter and a large specific surface area. It is an object of the present invention to provide a method for manufacturing semiconductor fine particle dispersed glass having greater third-order nonlinear optical characteristics.
【0014】[0014]
【課題を解決するための手段】上記課題を解決するため
に本発明は次の構成を有する。[Means for Solving the Problems] In order to solve the above problems, the present invention has the following configuration.
【0015】(1)半導体または反応して半導体を形成
し得る化合物と、ガラス質となるゾルとの混合溶液に、
多孔質ガラスを加圧下浸漬し、前記多孔質ガラスの細孔
内に前記混合溶液を保持し、前記多孔質ガラスに保持し
たゾルをゲル化させ、熱処理することにより、前記多孔
質ガラスに前記半導体微粒子を分散担持させることを特
徴とする半導体微粒子分散ガラスの製造方法。(1) In a mixed solution of a semiconductor or a compound that can react to form a semiconductor and a sol that becomes glassy,
Porous glass is immersed under pressure, the mixed solution is held in the pores of the porous glass, the sol held in the porous glass is gelled, and the semiconductor is applied to the porous glass by heat treatment. A method for manufacturing semiconductor fine particle-dispersed glass, which comprises dispersing and supporting fine particles.
【0016】(2)カドミウム、亜鉛、または鉛を溶解
させたガラス質となるゾル溶液に多孔質ガラスを加圧下
浸漬し、前記多孔質ガラスの細孔内に前記溶液を保持し
、前記多孔質ガラスに保持したゾルをゲル化させ、さら
に硫化水素あるいは硫化セレンガスと反応させることに
よりCdS、CdSe,ZnS、ZnSe、PbSまた
はPbSeを前記多孔質ガラスに分散担持させることを
特徴とする半導体微粒子分散ガラスの製造方法。(2) Porous glass is immersed under pressure in a vitreous sol solution in which cadmium, zinc, or lead is dissolved, and the solution is held in the pores of the porous glass. A semiconductor fine particle dispersed glass characterized in that CdS, CdSe, ZnS, ZnSe, PbS or PbSe is dispersed and supported on the porous glass by gelling a sol held in the glass and further reacting with hydrogen sulfide or selenium sulfide gas. manufacturing method.
【0017】(3)多孔質ガラスの平均細孔径が10n
m以下である前記(1)もしくは(2)項のいずれかに
記載の半導体微粒子分散ガラスの製造方法。(3) The average pore diameter of the porous glass is 10n
The method for producing a glass in which semiconductor fine particles are dispersed according to any one of the above (1) or (2), wherein the particle diameter is less than or equal to m.
【0018】[0018]
【作用】本発明の半導体微粒子分散ガラスの製造方法で
は、多孔質ガラスに化合物半導体微粒子を担持させた半
導体微粒子分散ガラスを作製する過程において、半導体
または反応して半導体を形成し得る化合物と、ガラス質
となるゾルとの混合溶液に多孔質ガラスを加圧下浸漬し
、前記多孔質ガラスに保持したゾルをゲル化させ、熱処
理することにより、前記多孔質ガラスに半導体微粒子を
迅速に高濃度に、均一にそして強固に分散担持させるこ
とが可能である。また、半導体微粒子の周囲にゲルが介
在するので、半導体微粒子同士が合体して粒子が粗大化
するのをより防止しやすい。[Function] In the method for manufacturing semiconductor fine particle-dispersed glass of the present invention, in the process of producing semiconductor fine particle-dispersed glass in which compound semiconductor fine particles are supported on porous glass, a semiconductor or a compound that can react to form a semiconductor, and glass A porous glass is immersed under pressure in a mixed solution with a sol that will serve as a quality material, and the sol retained in the porous glass is gelled, and then heat treated to quickly bring semiconductor fine particles into the porous glass at a high concentration. It is possible to carry out dispersion and support uniformly and strongly. Furthermore, since the gel is present around the semiconductor fine particles, it is easier to prevent the semiconductor fine particles from coalescing and becoming coarse.
【0019】本発明の前記(2)項の半導体微粒子分散
ガラスの製造方法では、カドミウム、亜鉛、または鉛を
溶解させたガラス質となるゾル溶液に多孔質ガラスを加
圧下浸漬し、前記多孔質ガラスの細孔内に前記溶液を保
持し、前記多孔質ガラスに保持したゾルをゲル化させ、
さらに硫化水素あるいは硫化セレンガスと反応させるこ
とにより容易にCdS、CdSe,ZnS、ZnSe、
PbSまたはPbSeを前記多孔質ガラスに迅速に、高
濃度に、均一にそして強固に分散担持させることが可能
となる。また、析出する半導体微粒子の周囲にゲルが介
在するので、半導体微粒子同士が合体して粒子が粗大化
するのをより防止しやすい。In the method for manufacturing semiconductor fine particle dispersed glass according to item (2) of the present invention, porous glass is immersed under pressure in a vitreous sol solution in which cadmium, zinc, or lead is dissolved. holding the solution in the pores of the glass and gelling the sol held in the porous glass;
Furthermore, by reacting with hydrogen sulfide or selenium sulfide gas, CdS, CdSe, ZnS, ZnSe,
PbS or PbSe can be quickly, highly concentrated, uniformly and firmly dispersed and supported on the porous glass. Furthermore, since the gel is present around the precipitated semiconductor fine particles, it is easier to prevent the semiconductor fine particles from coalescing and becoming coarse.
【0020】更に、多孔質ガラスの平均細孔径が10n
m以下の多孔質ガラスを用いる本発明の好ましい態様に
よれば、半導体微粒子の粒子径を量子サイズ効果が現れ
る程度に小さくコントロールする事がより容易になり、
優れた非線形光学特性を有する半導体微粒子分散ガラス
の製造方法が提供できる。Furthermore, the average pore diameter of the porous glass is 10n.
According to a preferred embodiment of the present invention that uses porous glass with a size of less than m, it is easier to control the particle diameter of the semiconductor fine particles to a small enough extent that the quantum size effect appears.
A method for manufacturing semiconductor fine particle dispersed glass having excellent nonlinear optical properties can be provided.
【0021】[0021]
【実施例】本発明で担体として用いる多孔質ガラスは、
化学的に安定でありかつ光学的に広い波長範囲で透明な
SiO2 ガラスが好ましい。多孔質ガラスの平均細孔
径は半導体微粒子の量子サイズ効果が見られる10nm
以下が好ましい。平均細孔径10nm以下の多孔質ガラ
スを用いることにより、析出する半導体微粒子の粒子径
を量子サイズ効果が現れる程度に小さくコントロールす
る事がより容易になり、好ましい。[Example] The porous glass used as a carrier in the present invention is
SiO2 glass, which is chemically stable and optically transparent over a wide wavelength range, is preferred. The average pore diameter of porous glass is 10 nm, where the quantum size effect of semiconductor particles can be seen.
The following are preferred. By using porous glass with an average pore diameter of 10 nm or less, it becomes easier to control the particle diameter of the precipitated semiconductor fine particles to a small enough extent that the quantum size effect appears, which is preferable.
【0022】多孔質ガラスの平均細孔径の下限について
は特に制限するものではないが、析出させる半導体のボ
ーア半径以上であることが好ましく、通常0.5nm程
度である。The lower limit of the average pore diameter of the porous glass is not particularly limited, but it is preferably equal to or larger than the Bohr radius of the semiconductor to be deposited, and is usually about 0.5 nm.
【0023】本発明において半導体を用いる場合には、
分散させる半導体微粒子としては、非線形光学特性を発
揮し得る半導体を用いることが好ましく、例えば、Cu
Cl、CuBr、PbI2 、BiI3 などの金属ハ
ロゲン化物、CdS、CdSe、CdO、ZnS、Zn
Se、ZnOなどのII−VI族化合物半導体、GaA
s、InPなどのIII −V族化合物半導体、PbS
、PbSe等のIV−VI族化合物半導体などが好まし
い例としてあげられる。When using a semiconductor in the present invention,
As the semiconductor fine particles to be dispersed, it is preferable to use a semiconductor that can exhibit nonlinear optical properties, such as Cu.
Metal halides such as Cl, CuBr, PbI2, BiI3, CdS, CdSe, CdO, ZnS, Zn
II-VI group compound semiconductors such as Se and ZnO, GaA
III-V compound semiconductors such as s, InP, PbS
Preferred examples include IV-VI group compound semiconductors such as , PbSe, and the like.
【0024】この様に半導体自体を用いる場合には、ガ
ラス質となるゾルと混合溶液を形成するためには、半導
体を溶液にして用いる。これらの半導体を溶液にするに
は、半導体を溶解できる溶媒を用いるが、この溶媒は、
ゾルを完全に加水分解するようなものは、ゲル化が困難
となるので、半導体は溶解できるが、ゾルを完全に加水
分解しないような溶媒を選んで用いれば良く、通常比較
的稀薄な塩酸水溶液などが適用できる。When the semiconductor itself is used in this manner, the semiconductor is used in the form of a solution in order to form a glassy sol and mixed solution. To make these semiconductors into solutions, a solvent that can dissolve the semiconductors is used, but this solvent is
A solvent that completely hydrolyzes the sol will be difficult to gel, so it is best to choose a solvent that can dissolve the semiconductor but does not completely hydrolyze the sol, usually a relatively dilute aqueous hydrochloric acid solution. etc. can be applied.
【0025】また、本発明において反応して半導体を形
成する化合物とは、上述したような半導体を構成するカ
チオン成分を含有する化合物とアニオン成分を含有する
化合物との組合わせなどで、これらが反応して半導体化
合物を形成できるものであれば良く、本発明においては
、通常これらをゾル溶液中に添加することにより、ゾル
溶液中でこれらのカチオン成分とアニオン成分が反応し
て半導体化合物を形成するものである。通常これらの各
成分は、それぞれアルコール溶液や、水溶液の形にして
用いられる。In the present invention, the compound that reacts to form a semiconductor is a combination of a compound containing a cation component and a compound containing an anion component constituting the semiconductor as described above, and these compounds react to form a semiconductor. In the present invention, usually by adding these to a sol solution, these cation components and anion components react in the sol solution to form a semiconductor compound. It is something. Usually, each of these components is used in the form of an alcoholic solution or an aqueous solution.
【0026】上記のうち例えば、CdS 、ZnS 、
PbS などの例をとって説明すると、カチオン成分を
含有する化合物としてはカドミウム化合物として、例え
ばCdCl2 、CdCO3 、Cd(NO3 )2
、Cd(CH3 COO)2 、Cd(HCOO)2
等、亜鉛化合物としては、例えばZnCl2 、Zn(
CH3 COO)2 等、また鉛化合物としては、例え
ばPbCl2 、PbCO3 、Pb(NO3)2 、
Pb(CH3 COO)2 等をアルコ−ルに溶解させ
て調整する。Among the above, for example, CdS, ZnS,
Taking an example such as PbS, examples of compounds containing a cationic component include cadmium compounds such as CdCl2, CdCO3, and Cd(NO3)2.
, Cd(CH3COO)2 ,Cd(HCOO)2
Examples of zinc compounds include ZnCl2, Zn(
CH3COO)2, etc., and lead compounds include, for example, PbCl2, PbCO3, Pb(NO3)2,
It is prepared by dissolving Pb(CH3COO)2 etc. in alcohol.
【0027】さらにアニオン成分となるイオウを含有し
た化合物としては、例えばNaSH、(NH4 )2
S、SC(NH2 )2 等をアルコ−ルに溶解させて
調整する。Furthermore, examples of compounds containing sulfur that serve as anionic components include NaSH, (NH4)2
It is prepared by dissolving S, SC(NH2)2, etc. in alcohol.
【0028】また、本発明においてカドミウム、亜鉛、
または鉛を溶解させた溶液は、溶液中にカドミウム、亜
鉛、または鉛のイオンが存在する溶液であればよく、か
かる溶液の成分として用いられるカドミウム化合物の具
体例としては、例えばCdCl2 、CdCO3 、C
d(NO3 )2 、Cd(CH3 COO)2 、C
d(HCOO)2 等があげられ、また、亜鉛化合物の
具体例としては、例えばZnCl2 、Zn(CH3
COO)2 等が、また鉛化合物の具体例としては、例
えばPbCl2 、PbCO3 、Pb(NO3 )2
、Pb(CH3 COO)2 等があげられ、通常こ
れらの化合物を水あるいはアルコ−ルに溶解させて溶液
を調整する。[0028] Furthermore, in the present invention, cadmium, zinc,
Alternatively, the solution in which lead is dissolved may be any solution in which cadmium, zinc, or lead ions are present. Specific examples of cadmium compounds used as a component of such a solution include, for example, CdCl2, CdCO3, CdCl2, CdCO3,
d(NO3)2, Cd(CH3COO)2, C
d(HCOO)2, etc., and specific examples of zinc compounds include, for example, ZnCl2, Zn(CH3
COO)2, etc., and specific examples of lead compounds include PbCl2, PbCO3, Pb(NO3)2, etc.
, Pb(CH3COO)2, etc., and solutions are usually prepared by dissolving these compounds in water or alcohol.
【0029】アルコールとしては低級アルコールが好ま
しく、メタノール、エタノール等が好ましい。[0029] As the alcohol, lower alcohols are preferred, and methanol, ethanol, etc. are preferred.
【0030】また、ゾルとなる溶液としてはゲル化して
ガラス質となる溶液であり、特に好ましくはSiO2
となるような溶液を用いることが好ましく、代表的な例
を挙げると、Si(OC2 H5 )4 などのシリコ
ンのアルコキシド類をC2 H5 OHなどの低級アル
コール類、H2 OおよびHClの混合溶液に加えて、
部分的に加水分解したものが用いられ、これに前述した
半導体の溶液または反応して半導体を形成し得る化合物
の溶液、あるいは、本発明の第2の発明の場合には、カ
ドミウム、亜鉛、または鉛の化合物のアルコール溶液な
どを添加して調整する。[0030] The solution that becomes the sol is a solution that gels and becomes glassy, particularly preferably SiO2.
It is preferable to use a solution such that hand,
A partially hydrolyzed product is used, to which is added a solution of the aforementioned semiconductor or a solution of a compound capable of reacting to form a semiconductor, or, in the case of the second aspect of the invention, cadmium, zinc, or Adjust by adding an alcoholic solution of a lead compound.
【0031】これらのゾル溶液中に多孔質ガラスを加圧
下で浸漬して、前記ゾルを多孔質ガラスの細孔内に導入
し保持させるが、この場合加圧にすることにより、多孔
質ガラスの細孔の内部まで迅速にゾル溶液を導入するこ
とができる。[0031] Porous glass is immersed in these sol solutions under pressure to introduce and hold the sol in the pores of the porous glass. The sol solution can be quickly introduced into the pores.
【0032】加圧の程度としては、特に限定するもので
はないが、例えば2〜60気圧程度である。The degree of pressurization is not particularly limited, but is, for example, about 2 to 60 atmospheres.
【0033】これらのゾルのゲル化は、前記ゾルを多孔
質ガラスの細孔内に導入した後ゲル化させるが、ゲル化
は真空乾燥で行ってもよいし、室温下で放置して水分を
蒸発させた後、例えば60〜80℃で長時間放置するな
どの方法などが採用できる。[0033] These sols are gelled after being introduced into the pores of the porous glass, but the gelation may be carried out by vacuum drying or left at room temperature to remove moisture. After evaporation, a method such as leaving it for a long time at 60 to 80° C. can be adopted.
【0034】本発明の第1の発明における上記ゲル化後
に行われる熱処理は、通常60〜500℃で1分〜10
時間程度である。[0034] The heat treatment performed after the gelation in the first aspect of the present invention is usually carried out at 60 to 500°C for 1 minute to 10 minutes.
It takes about an hour.
【0035】また、本発明の第2の発明において、前述
のようにして調整したカドミウム、亜鉛、または鉛を溶
解させたゾル溶液を保持させた多孔質ガラスは、用いた
カドミウム、亜鉛、または鉛化合物の種類によっても異
なるが、通常300〜600℃で10分〜10時間程度
加熱処理することによって、多孔質ガラスの細孔内に前
記金属および/またはその酸化物を担持した形になる。Furthermore, in the second aspect of the present invention, the porous glass holding the sol solution in which cadmium, zinc, or lead prepared as described above is Although it varies depending on the type of compound, the metal and/or its oxide is supported in the pores of the porous glass by heat treatment at 300 to 600°C for about 10 minutes to 10 hours.
【0036】次いでこれに更に硫化水素あるいは硫化セ
レンガスを反応させてCdS、CdSe,ZnS、Zn
Se、PbSまたはPbSeを前記多孔質ガラスに析出
させ担持させるが、この反応は前記ガスの雰囲気中で、
通常、室温〜500℃で1分〜2時間程度反応させる方
法が採用できる。Next, this is further reacted with hydrogen sulfide or selenium sulfide gas to form CdS, CdSe, ZnS, and Zn.
Se, PbS or PbSe is deposited and supported on the porous glass, and this reaction is carried out in the atmosphere of the gas,
Usually, a method of reacting at room temperature to 500°C for about 1 minute to 2 hours can be adopted.
【0037】以下本発明の具体的実施例について説明す
る。Specific embodiments of the present invention will be described below.
【0038】実施例1
厚さ0.5mm の多孔質ガラス(平均細孔径4nm、
比表面積200m2 /g)(以下多孔質ガラスをPV
Gと略称する。)に以下に示す方法によりCdS 微粒
子を分散担持させた。Example 1 Porous glass with a thickness of 0.5 mm (average pore diameter 4 nm,
Specific surface area: 200m2/g) (Hereinafter, porous glass will be referred to as PV
It is abbreviated as G. ) was dispersed and supported with CdS fine particles by the method shown below.
【0039】1.0mol%Cd(NO3 )2 とS
C(NH2 )2 とを溶解した表1に示した組成のC
dとS とを分散したSiO2 となるゾルを調製した
。このゾルに多孔質ガラスをオ−トクレ−ブに入れ室温
で3気圧30分間浸漬、真空乾燥後、空気中400 ℃
の温度で1時間加熱してCdS を担持する(CdS/
PVG) 。得られたCdS/PVG 中のCdSの粒
径は3 〜3.5nm 、CdS の担持量は9wt%
であった。
このCdS/PVG の吸収スペクトルから求めたバン
ドギャップはバルクCdS のバンドギャップと比べ0
.85eVブルーシフトが見られCdSが量子ドットと
なっていることが示唆される。1.0mol%Cd(NO3)2 and S
C(NH2)2 of the composition shown in Table 1 dissolved with C(NH2)2
A sol containing SiO2 in which d and S were dispersed was prepared. Porous glass was placed in this sol in an autoclave, immersed for 30 minutes at 3 atm at room temperature, dried under vacuum, and then heated at 400°C in air.
CdS is supported by heating at a temperature of 1 hour (CdS/
PVG). The particle size of CdS in the obtained CdS/PVG was 3 to 3.5 nm, and the amount of CdS supported was 9 wt%.
Met. The band gap determined from the absorption spectrum of CdS/PVG is 0 compared to the band gap of bulk CdS.
.. A blue shift of 85 eV was observed, suggesting that CdS was a quantum dot.
【0040】(比較例)実施例1においてオ−トクレ−
ブを用いず大気圧下室温で多孔質ガラスにCdS を担
持させたものはCdS を内部にまで担持させるのに長
時間を要した。(Comparative Example) In Example 1, autoclave
In the case where CdS was supported on porous glass at room temperature under atmospheric pressure without using a glass plate, it took a long time to support CdS inside the porous glass.
【0041】[0041]
【表1】
実施例2
厚さ0.5mm の多孔質ガラス(平均細孔径4nm、
比表面積200m2 /g)に以下に示す方法によりC
dS 微粒子を分散担持させた。[Table 1] Example 2 Porous glass with a thickness of 0.5 mm (average pore diameter 4 nm,
specific surface area 200m2/g) by the method shown below.
dS fine particles were dispersed and supported.
【0042】1)1.0mol%Cd(NO3 )2
を溶解した実施例1の表1に示した組成のCdを分散し
たSiO2 となるゾルを調製した。このゾルに多孔質
ガラスをオ−トクレ−ブに入れ室温で3気圧30分間浸
漬、真空乾燥後、空気中400 ℃の温度で1時間加熱
してCd及びその酸化物を担持する。1) 1.0 mol% Cd(NO3)2
A Cd-dispersed SiO2 sol having the composition shown in Table 1 of Example 1 was prepared. Porous glass was placed in an autoclave and immersed in this sol for 30 minutes at 3 atm at room temperature, dried under vacuum, and heated in air at 400° C. for 1 hour to support Cd and its oxides.
【0043】2)上記多孔質ガラスを硫化水素雰囲気中
150 ℃で10分間反応させ、CdS を担持した多
孔質ガラス(CdS/PVG) を作製する。CdS
の担持量は8wt%であった。2) The above porous glass is reacted in a hydrogen sulfide atmosphere at 150° C. for 10 minutes to produce a CdS-supported porous glass (CdS/PVG). CdS
The supported amount was 8 wt%.
【0044】得られたCdS/PVG 中のCdS の
粒径は3 〜3.5nm 、CdS の担持量は9wt
%であった。The particle size of CdS in the obtained CdS/PVG was 3 to 3.5 nm, and the amount of CdS supported was 9 wt.
%Met.
【0045】このCdS/PVG の吸収スペクトルか
ら求めたバンドギャップはバルクCdS のバンドギャ
ップと比べ0.85eVブルーシフトが見られCdS
が量子ドットとなっていることが示唆される。The band gap determined from the absorption spectrum of CdS/PVG shows a 0.85 eV blue shift compared to the band gap of bulk CdS.
It is suggested that these are quantum dots.
【0046】上記工程において硫化水素の代わりにセレ
ン化水素を用いるとCdSe/PVGが合成できこの試
料においてもCdSeの量子サイズ効果が確認できた。CdSe/PVG was synthesized by using hydrogen selenide instead of hydrogen sulfide in the above process, and the quantum size effect of CdSe was confirmed in this sample as well.
【0047】(比較例)実施例2においてオ−トクレ−
ブを用いずに大気圧下室温で多孔質ガラスにCdを担持
させたものは、内部にまでCdを担持させるのに長時間
を要した。(Comparative Example) In Example 2, the autoclave
When Cd was supported on porous glass at room temperature under atmospheric pressure without using a glass, it took a long time to support Cd inside the glass.
【0048】実施例3
厚さ0.5mm の多孔質ガラス(平均細孔径4nm、
比表面積200m2 /g)に以下に示す方法によりZ
nS 微粒子を分散担持させた。Example 3 Porous glass with a thickness of 0.5 mm (average pore diameter 4 nm,
specific surface area 200m2/g) by the method shown below.
nS fine particles were dispersed and supported.
【0049】1)1.0mol%Zn(CH3 COO
)2 を溶解した実施例1の表1に示した組成のZnを
分散したSiO2となるゾルを調製した。このゾルに多
孔質ガラスをオ−トクレ−ブに入れ室温で3気圧30分
間浸漬、真空乾燥後、空気中400 ℃の温度で1時間
加熱してZn及びその酸化物を担持した。1) 1.0mol%Zn(CH3COO
)2 was dissolved to prepare a Zn-dispersed SiO2 sol having the composition shown in Table 1 of Example 1. A porous glass was placed in an autoclave and immersed in this sol for 30 minutes at 3 atm at room temperature, dried under vacuum, and then heated in air at 400° C. for 1 hour to support Zn and its oxides.
【0050】2)上記多孔質ガラスを硫化水素雰囲気中
150 ℃で10分間反応させ、ZnS を担持した多
孔質ガラス(ZnS/PVG) を作製した。2) The above porous glass was reacted at 150° C. for 10 minutes in a hydrogen sulfide atmosphere to produce a porous glass supporting ZnS (ZnS/PVG).
【0051】得られたZnS/PVG 中のZnS の
粒径は3 〜3.5nm 、ZnS の担持量は7.5
wt%であった。このZnS/PVG の吸収スペクト
ルから求めたバンドギャップはバルクZnS のバンド
ギャップと比べ0.8eV ブルーシフトが見られZn
S が量子ドットとなっていることが示唆される。The particle size of ZnS in the obtained ZnS/PVG was 3 to 3.5 nm, and the amount of ZnS supported was 7.5 nm.
It was wt%. The band gap determined from the absorption spectrum of this ZnS/PVG shows a 0.8 eV blue shift compared to the band gap of bulk ZnS.
It is suggested that S is a quantum dot.
【0052】上記工程において硫化水素の代わりにセレ
ン化水素を用いるとZnSe/PVGが合成できこの試
料においてもZnSeの量子サイズ効果が確認できた。When hydrogen selenide was used instead of hydrogen sulfide in the above process, ZnSe/PVG could be synthesized, and the quantum size effect of ZnSe was confirmed in this sample as well.
【0053】(比較例)実施例3においてオ−トクレ−
ブを用いずに、大気圧下室温で多孔質ガラスにZnを担
持させたものは内部にまでZnを担持させるのに長時間
を要した。(Comparative Example) In Example 3, autoclave
When Zn was supported on porous glass at room temperature under atmospheric pressure without using a glass plate, it took a long time to support Zn inside the glass.
【0054】実施例4
厚さ0.5mm の多孔質ガラス(平均細孔径4nm、
比表面積200m2 /g)に以下に示す方法によりP
bS 微粒子を分散担持させた。Example 4 Porous glass with a thickness of 0.5 mm (average pore diameter 4 nm,
specific surface area 200m2/g) by the method shown below.
bS fine particles were dispersed and supported.
【0055】1)1.0mol%Pb(NO3 )2
を溶解した実施例1の表1に示した組成のPbを分散し
たSiO2 となるゾルを調製した。このゾルに多孔質
ガラスをオ−トクレ−ブに入れ室温で3気圧30分間浸
漬、真空乾燥後、空気中400 ℃の温度で1時間加熱
してPbおよびその酸化物を担持した。1) 1.0 mol% Pb(NO3)2
A Pb-dispersed SiO2 sol having the composition shown in Table 1 of Example 1 was prepared. A porous glass was placed in this sol in an autoclave, immersed at room temperature for 30 minutes at 3 atmospheres, dried under vacuum, and then heated in air at 400° C. for 1 hour to support Pb and its oxides.
【0056】2)上記多孔質ガラスを硫化水素雰囲気中
150 ℃で10分間反応させ、PbS を担持した多
孔質ガラス(PbS/PVG) を作製した。PbS
の担持量は8.5wt%であった。2) The above porous glass was reacted at 150° C. for 10 minutes in a hydrogen sulfide atmosphere to produce a porous glass supporting PbS (PbS/PVG). PbS
The amount supported was 8.5 wt%.
【0057】このPbS/PVG の吸収スペクトルか
ら求めたバンドギャップはバルクPbS のバンドギャ
ップと比べ0.8eV ブルーシフトが見られPbS
が量子ドットとなっていることが示唆される。The band gap determined from the absorption spectrum of this PbS/PVG shows a blue shift of 0.8 eV compared to the band gap of bulk PbS.
It is suggested that these are quantum dots.
【0058】上記工程において硫化水素の代わりにセレ
ン化水素を用いるとPbSe/PVGが合成できこの試
料においてもPbSeの量子サイズ効果が確認できた。When hydrogen selenide was used instead of hydrogen sulfide in the above process, PbSe/PVG could be synthesized, and the quantum size effect of PbSe was confirmed in this sample as well.
【0059】(比較例)実施例4においてオ−トクレ−
ブを用いずに大気圧下室温で多孔質ガラスにPbを担持
させたものは内部にまでPbが担持されるのに長時間を
要した。(Comparative Example) In Example 4, autoclave
When Pb was supported on porous glass at room temperature under atmospheric pressure without using a glass, it took a long time for Pb to be supported inside the porous glass.
【0060】実施例5
実施例1に示した薄膜を用いて光双安定素子を作製した
。Example 5 An optical bistable device was fabricated using the thin film shown in Example 1.
【0061】この素子に波長380nm のレ−ザ光を
スポット径5μmで入射し、入射光の強度と出射光の強
度の関係を室温(25℃)にて測定したところ双安定特
性を示した。When laser light with a wavelength of 380 nm was incident on this device with a spot diameter of 5 μm and the relationship between the intensity of the incident light and the intensity of the emitted light was measured at room temperature (25° C.), it showed bistable characteristics.
【0062】[0062]
【発明の効果】本発明の、半導体または反応して半導体
を形成し得る化合物と、ガラス質となるゾルとの混合溶
液に多孔質ガラスを加圧下浸漬し、前記多孔質ガラスに
保持したゾルをゲル化させ、熱処理することにより、化
合物半導体を多孔質ガラスに分散担持させる半導体微粒
子分散ガラスの製造方法によれば、迅速に高濃度の均一
な粒径の半導体を担持した優れた非線形光学特性を有す
る半導体微粒子分散ガラスを得ることが可能となる。更
にゲルが介在することにより、半導体微粒子同士が合体
して粒子が粗大化するのをより防止しやすいという効果
を達成できる。Effects of the Invention: A porous glass is immersed under pressure in a mixed solution of a semiconductor or a compound capable of reacting to form a semiconductor of the present invention and a sol that becomes glassy, and the sol retained in the porous glass is removed. According to the manufacturing method of semiconductor fine particle dispersed glass, in which compound semiconductors are dispersed and supported on porous glass by gelation and heat treatment, excellent nonlinear optical properties can be quickly achieved by supporting semiconductors with a uniform particle size at a high concentration. It becomes possible to obtain a glass in which semiconductor fine particles are dispersed. Furthermore, the presence of the gel makes it possible to more easily prevent semiconductor fine particles from coalescing and becoming coarse.
【0063】また、本発明のカドミウム、亜鉛、または
鉛を溶解させたガラス質となるゾル溶液に多孔質ガラス
を加圧下浸漬し、前記多孔質ガラスの細孔内に前記溶液
を保持し、前記多孔質ガラスに保持したゾルをゲル化さ
せ、さらに硫化水素あるいは硫化セレンガスと反応させ
る方法によれば、前述の効果のほか、半導体の分散をよ
り均一に内部まで析出させることが可能となる。Further, porous glass is immersed under pressure in a vitreous sol solution in which cadmium, zinc, or lead of the present invention is dissolved, and the solution is held in the pores of the porous glass. According to the method of gelling the sol held in the porous glass and further reacting it with hydrogen sulfide or selenium sulfide gas, in addition to the above-mentioned effects, it becomes possible to more uniformly precipitate the semiconductor dispersion to the inside.
【0064】更に、多孔質ガラスの平均細孔径が10n
m以下の多孔質ガラスを用いる本発明の好ましい態様に
よれば、析出する半導体微粒子の粒子径を量子サイズ効
果が現れる程度に小さくコントロールする事がより容易
になり、優れた非線形光学特性を有する半導体微粒子分
散ガラスの迅速で簡便な製造方法が提供できる。Furthermore, the average pore diameter of the porous glass is 10n.
According to a preferred embodiment of the present invention using a porous glass with a size of less than m, it is easier to control the particle diameter of the precipitated semiconductor fine particles to a small enough extent that the quantum size effect appears, and the semiconductor has excellent nonlinear optical properties. A quick and simple manufacturing method for fine particle dispersed glass can be provided.
Claims (3)
得る化合物と、ガラス質となるゾルとの混合溶液に、多
孔質ガラスを加圧下浸漬し、前記多孔質ガラスの細孔内
に前記混合溶液を保持し、前記多孔質ガラスに保持した
ゾルをゲル化させ、熱処理することにより、前記多孔質
ガラスに前記半導体微粒子を分散担持させることを特徴
とする半導体微粒子分散ガラスの製造方法。1. Porous glass is immersed under pressure in a mixed solution of a semiconductor or a compound that can react to form a semiconductor and a sol that becomes glassy, and the mixed solution is poured into the pores of the porous glass. A method for manufacturing a semiconductor fine particle-dispersed glass, characterized in that the semiconductor fine particles are dispersed and supported on the porous glass by gelling the sol held on the porous glass and heat-treating the sol.
せたガラス質となるゾル溶液に多孔質ガラスを加圧下浸
漬し、前記多孔質ガラスの細孔内に前記溶液を保持し、
前記多孔質ガラスに保持したゾルをゲル化させ、さらに
硫化水素あるいは硫化セレンガスと反応させることによ
りCdS、CdSe,ZnS、ZnSe、PbSまたは
PbSeを前記多孔質ガラスに分散担持させることを特
徴とする半導体微粒子分散ガラスの製造方法。2. Porous glass is immersed under pressure in a vitreous sol solution in which cadmium, zinc, or lead is dissolved, and the solution is held in the pores of the porous glass,
A semiconductor characterized in that CdS, CdSe, ZnS, ZnSe, PbS or PbSe is dispersed and supported on the porous glass by gelling the sol held in the porous glass and further reacting with hydrogen sulfide or selenium sulfide gas. A method for manufacturing fine particle dispersed glass.
以下である請求項1または2のいずれかに記載の半導体
微粒子分散ガラスの製造方法。[Claim 3] The average pore diameter of the porous glass is 10 nm.
The method for producing semiconductor fine particle dispersed glass according to claim 1 or 2, wherein the method is as follows.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5930991A JPH04274224A (en) | 1991-02-28 | 1991-02-28 | Manufacture of semiconductor fine grain dispersed glass |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5930991A JPH04274224A (en) | 1991-02-28 | 1991-02-28 | Manufacture of semiconductor fine grain dispersed glass |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04274224A true JPH04274224A (en) | 1992-09-30 |
Family
ID=13109645
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5930991A Pending JPH04274224A (en) | 1991-02-28 | 1991-02-28 | Manufacture of semiconductor fine grain dispersed glass |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04274224A (en) |
-
1991
- 1991-02-28 JP JP5930991A patent/JPH04274224A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Joy et al. | Effects of annealing temperature on the structural and photoluminescence properties of nanocrystalline ZrO2 thin films prepared by sol–gel route | |
JP2539062B2 (en) | Multi-component glass containing semiconductor crystallites | |
US20070065670A1 (en) | Coating with infrared and ultraviolet blocking characterstics | |
JPH02275733A (en) | Semiconductor-containing glass and its production | |
US20100072420A1 (en) | Method of producing a metallic nanoparticle inorganic composite, metallic nanoparticle inorganic composite, and plasmon waveguide | |
KR101629474B1 (en) | Core-Shell Nano Particle for Formation of Transparent Conductive Film, and Manufacturing Method of Transparent Conductive Film Using the Same | |
KR101804173B1 (en) | BaSnO3 film, and method of low- temperature manufacturing the same | |
JP2002114917A (en) | Crystalline organic-inorganic hybrid material and method of manufacturing the same | |
US5432635A (en) | Nonlinear optical material and method of manufacturing the same | |
JPH07206451A (en) | Production of synthetic quartz glass | |
JPH04274224A (en) | Manufacture of semiconductor fine grain dispersed glass | |
CN113511810B (en) | High-refractive-index optical glass and preparation method thereof | |
Swain | Investigation of fractal behavior, optical properties and electronic environments of carbon-doped of ZnO Thin Films | |
JPH04276724A (en) | Production of semiconductor particle dispersed glass | |
JPH04274223A (en) | Manufacture of semiconductor fine grain dispersed glass | |
JPH04274222A (en) | Nonlinear optical material and its manufacture | |
KR101912735B1 (en) | BaSnO3 film, and method of low- temperature manufacturing the same | |
CN107827369B (en) | ZnMgO nano column and preparation method thereof | |
JPH04270131A (en) | Production of semiconductor fine particle-dispersed glass | |
JP2803229B2 (en) | Method for producing semiconductor fine particle dispersed glass | |
JPH03295826A (en) | Manufacture of semiconductor fine particles-doped silica glass | |
JPH06208149A (en) | Non-linear optical material and manufacture thereof | |
JP2813393B2 (en) | Method for producing semiconductor-containing glass | |
JPH03141134A (en) | Production of silica glass with semiconductor fine particle dispersed | |
JP3234264B2 (en) | Heat-resistant transparent yellow film and composition for forming the film |