JPH04273439A - Formation of layer insulation film for semiconductor device - Google Patents

Formation of layer insulation film for semiconductor device

Info

Publication number
JPH04273439A
JPH04273439A JP3460691A JP3460691A JPH04273439A JP H04273439 A JPH04273439 A JP H04273439A JP 3460691 A JP3460691 A JP 3460691A JP 3460691 A JP3460691 A JP 3460691A JP H04273439 A JPH04273439 A JP H04273439A
Authority
JP
Japan
Prior art keywords
wiring
vacuum
degree
insulating film
insulation film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3460691A
Other languages
Japanese (ja)
Other versions
JP2521379B2 (en
Inventor
Tadashi Hirata
平田 匡史
Nobuyoshi Sato
伸良 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP3034606A priority Critical patent/JP2521379B2/en
Publication of JPH04273439A publication Critical patent/JPH04273439A/en
Application granted granted Critical
Publication of JP2521379B2 publication Critical patent/JP2521379B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To uniformly form a film by continually changing the degree of vacuum in the chamber of a CVD device so as to successively lower the degree when forming the metal wiring layer insulation film for the semiconductor device using the plasma CVD device. CONSTITUTION:The degree of vacuum in a chamber 11 is changed from 0.35 Torr to 0.85 Torr at 6.8X10<-4> Torr/sec by the control instruction from a vacuum degree setting machine 19, and a 0.6mum layer insulation film 3 is formed on bottom layer Al wiring 2. The layer insulation film 3 is coated with photoresist 4 to be patterned, BHF etching and resistor peeling are performed, and 1.0mum top layer Al wiring 7 is formed on the layer insulation film 3 by sputtering as a contact. The thickness of the top layer Al wiring 7 on the side wall of a through hole 6 is 0.8mum, which is not much thinner than a target of 1.0mum.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、半導体装置の層間絶縁
膜の形成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming an interlayer insulating film for a semiconductor device.

【0002】0002

【従来の技術】従来から、半導体素子の層間絶縁膜は常
圧CVD法あるいは減圧CVD法などを用いて深さ方向
に均一な膜質の絶縁膜を形成するのが一般的なものであ
る。図2(a) 〜(f) は従来の層間絶縁膜の形成
過程を示したものである。図において、1は半導体基板
、2は半導体基板1の上に形成された下層Al配線、3
は下層Al配線2に積層される層間絶縁膜、4は層間絶
縁膜3の上に塗布されるフォトレジストである。5はこ
のフォトレジスト4に写真製版によりマスクパターンを
転写することにより形成されるレジストホール開口部で
あり、6はレジストホール開口部5が形成されたレジス
トパターンをマスクして、ウェットなどによる等方性エ
ッチングにより半導体基板1上に積層された層間絶縁膜
3をエッチングすることにより形成されるスルーホール
、7は下層Al配線2と回路を構成する上層Al配線で
ある。
2. Description of the Related Art Conventionally, an interlayer insulating film of a semiconductor device is generally formed using an atmospheric pressure CVD method or a low pressure CVD method to form an insulating film having uniform film quality in the depth direction. FIGS. 2A to 2F show the process of forming a conventional interlayer insulating film. In the figure, 1 is a semiconductor substrate, 2 is a lower layer Al wiring formed on the semiconductor substrate 1, and 3 is a semiconductor substrate.
4 is an interlayer insulating film laminated on the lower Al wiring 2, and 4 is a photoresist coated on the interlayer insulating film 3. 5 is a resist hole opening formed by transferring a mask pattern to this photoresist 4 by photolithography, and 6 is an isotropic process using a wet method by masking the resist pattern in which the resist hole opening 5 is formed. A through hole 7 is formed by etching the interlayer insulating film 3 laminated on the semiconductor substrate 1 by chemical etching, and is an upper layer Al wiring that forms a circuit with the lower layer Al wiring 2.

【0003】ここでスルーホール6の形成工程について
説明すると、まず図2(a) に示すように、下層Al
配線2の上に層間絶縁膜3を形成する。この層間絶縁膜
3をプラズマCVD法を用いて形成する順序について少
し詳しく説明すると、図3に示すようにプラズマCVD
装置10のチャンバ11に設けられた加熱体12上に下
層Al配線2が積層された半導体基板1を載置し、その
排気口13から真空ポンプ14で排気して0.3 To
rr程度の真空度に保持する。一方、ガス供給口15か
ら供給されるSiH4, N2O などの原料ガスはR
F電源16に接続された励磁電極17からのプラズマ放
電によって化学的活性種とされて、半導体基板1の下層
Al配線2上にSiO2の層間絶縁膜3を形成すること
になる。なお、このときの半導体基板1の加熱体12に
よる加熱温度はほぼ300 ℃に保たれる。そして、最
後にチャンバ11内を常圧に戻して成膜を終了する。
[0003] To explain the process of forming the through hole 6, first, as shown in FIG.
An interlayer insulating film 3 is formed on the wiring 2. To explain in a little more detail the order in which this interlayer insulating film 3 is formed using the plasma CVD method, as shown in FIG.
The semiconductor substrate 1 on which the lower layer Al wiring 2 is laminated is placed on the heating body 12 provided in the chamber 11 of the apparatus 10, and is evacuated from the exhaust port 13 with the vacuum pump 14 to 0.3 To
Maintain a vacuum level of about rr. On the other hand, raw material gases such as SiH4 and N2O supplied from the gas supply port 15 are R
They are converted into chemically active species by plasma discharge from the excitation electrode 17 connected to the F power source 16, and an interlayer insulating film 3 of SiO2 is formed on the lower layer Al wiring 2 of the semiconductor substrate 1. Note that the heating temperature of the semiconductor substrate 1 at this time by the heating body 12 is maintained at approximately 300°C. Finally, the pressure inside the chamber 11 is returned to normal pressure to complete the film formation.

【0004】引き続き、図2(b) に示すように層間
絶縁膜3の上にフォトレジスト4を塗布した後、写真製
版によりフォトレジスト4にスルーホール6を形成する
ためのマスクパターンを転写し、レジストホール開口部
5を形成する(図2(c) )。このレジストホール開
口部5が形成されたレジストパターンをマスクして、ウ
ェットなどによる等方性エッチングにより半導体基板1
上に積層された層間絶縁膜3をエッチングし、図2(d
) に示すようにスルーホール6を形成する。つぎに、
図2(e) に示すようにレジストパターンを除去し、
図2(f) に示すように上層Al配線7を形成するこ
とにより、下層および上層のAl配線2,7のコンタク
トを得るのである。
Subsequently, as shown in FIG. 2(b), a photoresist 4 is applied on the interlayer insulating film 3, and then a mask pattern for forming through holes 6 is transferred to the photoresist 4 by photolithography. A resist hole opening 5 is formed (FIG. 2(c)). The resist pattern in which the resist hole opening 5 is formed is masked, and the semiconductor substrate 1 is etched by wet isotropic etching.
The interlayer insulating film 3 laminated on top is etched, as shown in FIG. 2(d).
) A through hole 6 is formed as shown in FIG. next,
Remove the resist pattern as shown in Figure 2(e),
By forming the upper layer Al wiring 7 as shown in FIG. 2(f), contacts between the lower and upper layer Al wirings 2 and 7 are obtained.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記の
ような従来の成膜方法では膜質が深さ方向に一定である
ことから、下層Al配線2と上層Al配線7とのコンタ
クト部分において層間絶縁膜3が図4に示す部分(破線
で囲んだ部分)8のように順テーパ状にエッチングされ
、このことにより上層Al配線7の膜厚が層間絶縁膜3
の側壁部分に形成したスルーホール6の段差のために薄
くなり、コンタクト抵抗の上昇やコンタクト不良さらに
は断線の原因となる恐れがある。
[Problems to be Solved by the Invention] However, in the conventional film forming method as described above, since the film quality is constant in the depth direction, the interlayer insulating film is 3 is etched in a tapered shape as shown in the portion 8 shown in FIG.
The thickness of the through hole 6 formed in the side wall portion of the through hole 6 becomes thinner, which may cause an increase in contact resistance, a contact failure, or even a disconnection.

【0006】ところで、特開昭63− 34928号公
報にはスルーホールの形成方法が開示されているが、そ
の内容は半導体基板上に形成される配線金属の上に下層
の絶縁膜よりもエッチングレートが速い絶縁膜を上層に
して複数層の絶縁膜を形成し、その上にレジストパター
ンを形成したのちエッチングでテーパ状のスルーホール
を形成するようにしたものである。しかし、この方法に
おいても層間絶縁膜とエッチングレートが速い絶縁膜と
の境目に段差が生じて滑らかなテーパ状とはならず、し
たがってその上に形成される配線金属は階段状となって
その膜厚が均一にならないという問題があるから、根本
的な解決策とはなり得ないのである。
By the way, Japanese Patent Application Laid-Open No. 63-34928 discloses a method for forming through holes, but the content is that the etching rate is higher than that of the underlying insulating film on the wiring metal formed on the semiconductor substrate. In this method, a plurality of layers of insulating films are formed with an insulating film having a high rate of conductivity as the upper layer, a resist pattern is formed on the insulating film, and then tapered through holes are formed by etching. However, even with this method, a step is created at the boundary between the interlayer insulating film and the insulating film with a high etching rate, and a smooth tapered shape is not obtained. Since there is a problem that the thickness is not uniform, it cannot be a fundamental solution.

【0007】本発明はこのような課題を解消するために
なされた半導体装置の層間絶縁膜の形成方法を提供する
ことを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for forming an interlayer insulating film of a semiconductor device, which is designed to solve the above problems.

【0008】[0008]

【課題を解決するための手段】本発明は、プラズマCV
D装置を用いて半導体装置における金属配線の層間絶縁
膜を形成するに際し、前記CVD装置のチャンバ内の真
空度を順次低くなるように連続的に変化させながら成膜
することを特徴とする半導体装置の層間絶縁膜の形成方
法である。
[Means for Solving the Problems] The present invention provides plasma CV
A semiconductor device characterized in that when forming an interlayer insulating film for metal wiring in a semiconductor device using the D device, the film is formed while continuously changing the degree of vacuum in the chamber of the CVD device so as to gradually lower the degree of vacuum. This is a method for forming an interlayer insulating film.

【0009】[0009]

【作  用】本発明者は、上記の課題について鋭意研究
・実験を重ねた結果、プラズマCVD法を用いて層間絶
縁膜を形成する際に、チャンバ内の真空度を変化させる
ことにより膜質が変化し、さらに膜質によってエッチン
グ速度が変化することを見出し、本発明を完成させるに
至ったのである。
[Function] As a result of extensive research and experiments regarding the above-mentioned problems, the present inventor has found that when forming an interlayer insulating film using the plasma CVD method, the quality of the film changes by changing the degree of vacuum in the chamber. Furthermore, they discovered that the etching rate changes depending on the film quality, leading to the completion of the present invention.

【0010】すなわち、本発明によれば、プラズマCV
D装置のチャンバ内の真空度を所定の値から順次低くな
るように制御して垂直方向の膜質を変化させることによ
り、層間絶縁膜のエッチング速度を垂直方向の下部で遅
く上部にいくに従って速くすることができ、これによっ
てスルーホールの側壁部分の形状を滑らかなテーパ状に
することができ、したがって上層Al配線の膜厚をほぼ
均一にすることが可能である。なお、変化させる真空度
の上限値は0.33〜0.37Torrの範囲が望まし
く、またその下限値の範囲は0.83〜0.87Tor
rが望ましい。その理由は上限値はそれ以上真空度が高
くなると電極内に異常放電が生じて均一な成膜が困難に
なり、また下限値は真空度がそれ以下に低くなると成膜
速度が低くなってスループットが悪くなるからである。
That is, according to the present invention, plasma CV
By controlling the degree of vacuum in the chamber of D equipment so that it gradually decreases from a predetermined value and changing the film quality in the vertical direction, the etching rate of the interlayer insulating film is slowed at the bottom in the vertical direction and becomes faster toward the top. As a result, the shape of the side wall portion of the through hole can be made into a smooth tapered shape, and therefore, it is possible to make the film thickness of the upper layer Al wiring substantially uniform. In addition, the upper limit value of the degree of vacuum to be changed is preferably in the range of 0.33 to 0.37 Torr, and the lower limit value is preferably in the range of 0.83 to 0.87 Torr.
r is desirable. The reason for this is that if the degree of vacuum is higher than the upper limit, abnormal discharge will occur within the electrode, making it difficult to form a uniform film, and if the degree of vacuum is lower than the lower limit, the deposition rate will be lower and the throughput will be reduced. This is because it becomes worse.

【0011】[0011]

【実施例】以下に本発明の実施例について図1を用いて
説明する。図に示すように、本発明のプラズマCVD装
置10には、チャンバ11内の真空度を測定して真空ポ
ンプ14を制御する真空度制御装置18が設けられ、真
空度設定器19によってチャンバ11内の真空度を連続
的に高めるプログラムが設定される。
[Embodiment] An embodiment of the present invention will be described below with reference to FIG. As shown in the figure, the plasma CVD apparatus 10 of the present invention is provided with a vacuum degree control device 18 that measures the degree of vacuum inside the chamber 11 and controls the vacuum pump 14. A program is set to continuously increase the degree of vacuum.

【0012】そこで、真空度設定器19を用いて真空度
制御装置18にチャンバ11内の真空度を0.35To
rrから0.85Torrまで 6.8×10−4To
rr/secで変化させるように制御指示をさせて、前
出図2(a) に示したように下層Al配線2の上に 
0.6μm の層間絶縁膜3を形成した。そのときの成
膜時間は約740secであり、また加熱温度は300
 ℃とした。そして、その上に前出図2(b) 〜(f
) に示したように、フォトレジスト4を塗布しパター
ニングを行い、BHFエッチングおよびレジスト剥離し
たのち、1.0 μm の上層Al配線7をスパッタリ
ングでコンタクト部分を層間絶縁膜3上に形成した。こ
のときスルーホール6の側壁部分の上層Al配線7の膜
厚は0.8 μm で、目標の1.0 μm に比して
ほとんど薄くなっていなかった。この半導体素子を温度
121 ℃, 湿度100 %で 240時間のPCT
試験を行った結果の歩留りは100 %であった。なお
、真空度を0.3 Torrと一定にした従来例で層間
絶縁膜を形成したところ、スルーホール6の側壁部分の
上層Al配線7の膜厚は0.2 μm と薄く、またP
CT試験での歩留りは20%といずれも本発明例に比し
て低いものであった。
Therefore, the vacuum level controller 18 uses the vacuum level setting device 19 to set the vacuum level in the chamber 11 to 0.35To.
rr to 0.85Torr 6.8×10-4To
A control instruction is given to change the temperature at a rate of rr/sec, and as shown in Figure 2(a) above,
An interlayer insulating film 3 of 0.6 μm was formed. The film forming time at that time was about 740 seconds, and the heating temperature was 300 seconds.
℃. Then, on top of that, the above-mentioned figures 2(b) to (f
), a photoresist 4 was applied and patterned, and after BHF etching and peeling off the resist, a contact portion was formed on the interlayer insulating film 3 by sputtering an upper layer Al wiring 7 of 1.0 μm. At this time, the film thickness of the upper layer Al wiring 7 on the side wall of the through hole 6 was 0.8 .mu.m, which was hardly thinner than the target of 1.0 .mu.m. This semiconductor element was subjected to PCT for 240 hours at a temperature of 121 °C and a humidity of 100%.
The test yield was 100%. In addition, when an interlayer insulating film was formed using a conventional example with a constant vacuum level of 0.3 Torr, the film thickness of the upper layer Al wiring 7 on the side wall portion of the through hole 6 was as thin as 0.2 μm, and P
The yield in the CT test was 20%, which was lower than that of the inventive examples.

【0013】[0013]

【発明の効果】以上説明したように本発明によれば、層
間絶縁膜の膜質を垂直方向に変化させることができるか
ら、スルーホールの側壁部分に滑らかなテーパ状を形成
することができ、これによって上層Al配線の膜厚をほ
ぼ均一に成膜することが可能となり、半導体装置の歩留
り向上に大いに寄与する。
As explained above, according to the present invention, since the film quality of the interlayer insulating film can be changed in the vertical direction, a smooth tapered shape can be formed on the side wall portion of the through hole. This makes it possible to form the upper layer Al wiring with a substantially uniform thickness, which greatly contributes to improving the yield of semiconductor devices.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の実施例を模式的に示す構成図である。FIG. 1 is a configuration diagram schematically showing an embodiment of the present invention.

【図2】従来の層間絶縁膜の形成過程を示す説明図であ
る。
FIG. 2 is an explanatory diagram showing the process of forming a conventional interlayer insulating film.

【図3】従来のプラズマCVD装置の概要図である。FIG. 3 is a schematic diagram of a conventional plasma CVD apparatus.

【図4】半導体装置の従来例を示す断面図である。FIG. 4 is a cross-sectional view showing a conventional example of a semiconductor device.

【符号の説明】[Explanation of symbols]

1  半導体基板 2  下層Al配線 3  層間絶縁膜 4  フォトレジスト 6  スルーホール 7  上層Al配線 10  プラズマCVD装置 11  チャンバ 14  真空ポンプ 16  RF電源 17  励磁電極 18  真空度制御装置 19  真空度設定器 1 Semiconductor substrate 2 Lower layer Al wiring 3 Interlayer insulation film 4 Photoresist 6 Through hole 7 Upper layer Al wiring 10 Plasma CVD equipment 11 Chamber 14 Vacuum pump 16 RF power supply 17 Excitation electrode 18 Vacuum degree control device 19 Vacuum degree setting device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】    プラズマCVD装置を用いて半導
体装置における金属配線の層間絶縁膜を形成するに際し
、前記CVD装置のチャンバ内の真空度を順次低くなる
ように連続的に変化させながら成膜することを特徴とす
る半導体装置の層間絶縁膜の形成方法。
1. When forming an interlayer insulating film for metal wiring in a semiconductor device using a plasma CVD apparatus, the film is formed while continuously changing the degree of vacuum in a chamber of the CVD apparatus so as to gradually lower the degree of vacuum. A method for forming an interlayer insulating film for a semiconductor device, characterized by:
JP3034606A 1991-02-28 1991-02-28 Semiconductor device and manufacturing method thereof Expired - Fee Related JP2521379B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3034606A JP2521379B2 (en) 1991-02-28 1991-02-28 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3034606A JP2521379B2 (en) 1991-02-28 1991-02-28 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH04273439A true JPH04273439A (en) 1992-09-29
JP2521379B2 JP2521379B2 (en) 1996-08-07

Family

ID=12419021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3034606A Expired - Fee Related JP2521379B2 (en) 1991-02-28 1991-02-28 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2521379B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111519171A (en) * 2020-02-17 2020-08-11 佛山市思博睿科技有限公司 Hydrophobic film plating method by plasma chemical vapor deposition method with compact film layer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111519171A (en) * 2020-02-17 2020-08-11 佛山市思博睿科技有限公司 Hydrophobic film plating method by plasma chemical vapor deposition method with compact film layer

Also Published As

Publication number Publication date
JP2521379B2 (en) 1996-08-07

Similar Documents

Publication Publication Date Title
JPH04137751A (en) Formation of via hole
JPH08181276A (en) Manufacture of semiconductor device
JPH05102107A (en) Manufacture of semiconductor device
JP2002110654A (en) Method of manufacturing semiconductor device
JPH04273439A (en) Formation of layer insulation film for semiconductor device
JPH02219227A (en) Residnal remdual method making use of plasma scattering phenomenon
JPS6022340A (en) Semiconductor device and manufacture of the same
JPH11330047A (en) Etching apparatus and method thereof
JP3959790B2 (en) Manufacturing method of semiconductor device
JPH0817798A (en) Dry etching processing method for benzocyclobutene layer, and forming method for insulating layer for multilayer interconnection by it
US5110410A (en) Zinc sulfide planarization
US6800922B2 (en) Semiconductor device with layer peeling resistance
KR100201721B1 (en) A method for manufacturing a semiconductor device
JPH05217965A (en) Manufacture of semiconductor device
JP2900525B2 (en) Method for manufacturing semiconductor device
JPH03104127A (en) Formation of fine pattern
JPH04132221A (en) Manufacture of semiconductor integrated circuit
JP2000156367A (en) Dry etching method
JPH08203892A (en) Method and system for producing semiconductor device
JPH01238121A (en) Manufacture of semiconductor device
JP2797351B2 (en) Method for manufacturing semiconductor integrated circuit
JPH05291416A (en) Formation of multilayer interconnection
JPH08195394A (en) Formation of wiring of semiconductor device
JP2001274053A (en) Method of manufacturing semiconductor
JPH04133426A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080517

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090517

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100517

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees