JPH04273022A - Foaming detection method for water treatment device and defoaming device - Google Patents

Foaming detection method for water treatment device and defoaming device

Info

Publication number
JPH04273022A
JPH04273022A JP3325891A JP3325891A JPH04273022A JP H04273022 A JPH04273022 A JP H04273022A JP 3325891 A JP3325891 A JP 3325891A JP 3325891 A JP3325891 A JP 3325891A JP H04273022 A JPH04273022 A JP H04273022A
Authority
JP
Japan
Prior art keywords
water
electrode
level meter
reaction tank
bubbles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3325891A
Other languages
Japanese (ja)
Other versions
JP2884797B2 (en
Inventor
Nobuyuki Motoyama
信行 本山
Takayuki Morioka
崇行 森岡
Ryutaro Takahashi
龍太郎 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP3325891A priority Critical patent/JP2884797B2/en
Publication of JPH04273022A publication Critical patent/JPH04273022A/en
Application granted granted Critical
Publication of JP2884797B2 publication Critical patent/JP2884797B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To control deforming operation with foaming produced on a water surface in a reaction tank detected by combinedly using an ultrasensitive electrode type level meter responding to water or foam and a general use electrode type level meter responding to only water. CONSTITUTION:Bubble is generated in water with air diffusing tubes 8 in a reaction tank 1. Either of foam or water is judged for the foam 9 grew up on a water surface with an ultrasensitive type level switch 10 having an operating resistant sensitivity of several MOMEGA or more and a general use level switch 11 having an operating resistant sensitivity of several KOMEGA or more. Then liquid in a tank 2 is sprayed on the foam 9 from a washing spray nozzle 15 with a high pressure pump 14 to wash an electrode rod 12. Concurrently the liquid in the tank 2 is sprayed in an upper space 19 in a reaction tank 1 from a defoaming spray nozzle 18 with a high pressure pump 16 to dissolve the foam 9 expanding in the reaction tank 1, in water.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はオゾンを用いた上水の高
度処理設備における反応槽内で、河川や湖沼などの汚染
成分である界面活性剤を主原因として水面上に生ずる泡
を検出し、これを消泡すろ装置に関する。
[Industrial Application Field] The present invention detects bubbles that form on the water surface mainly due to surfactants, which are pollutants in rivers, lakes, etc., in reaction tanks in advanced water treatment equipment using ozone. , this relates to a defoaming filter device.

【0002】0002

【従来の技術】オゾンを用いた上水の高度処理設備にお
ける反応槽内での発泡は、水源である河川や湖沼の汚染
、さらに渇水による水中の界面活性剤の濃度の上昇が主
な原因である。
[Prior Art] Foaming in reaction tanks in advanced water treatment facilities using ozone is mainly caused by pollution of rivers and lakes, which are water sources, and an increase in the concentration of surfactants in water due to drought. be.

【0003】界面活性剤による発泡は、0.5mg/l
で起こると言われているが、実際にはそれより低い濃度
で生ずることを本発明者らは確認している。したがって
、手分析や連続式の分析計を用いて界面活性剤濃度の測
定を行なったとしても、発泡に関するその他の要因につ
いて不明確な点もあって、発泡の起こりやすさや、発泡
の程度に関する情報を得ることは困難である。
[0003] Foaming by surfactant is 0.5 mg/l.
However, the present inventors have confirmed that it actually occurs at lower concentrations. Therefore, even if the surfactant concentration is measured using manual analysis or a continuous analyzer, other factors related to foaming are unclear, and information regarding the likelihood of foaming and the degree of foaming remains unclear. is difficult to obtain.

【0004】オゾン反応槽内で水面上に生ずる泡を確認
する方法として、反応槽の側面に覗き窓を設けてある構
造のものについては、その覗き窓から観察することがで
きる。また、発泡は水位差のある所で空気を水中に巻き
込むときにも発生するので、そのような水処理工程で観
察することも可能である。しかし、その他に発泡を検出
する方法は知られていない。
[0004] As a method of checking bubbles generated on the water surface in an ozone reaction tank, if the reaction tank has a structure in which a viewing window is provided on the side surface, the bubbles can be observed through the viewing window. Foaming also occurs when air is drawn into water where there is a difference in water level, so it can also be observed during such water treatment processes. However, no other method for detecting foaming is known.

【0005】現状で最も有効な消泡方法は、被処理水中
の界面活性剤を減少させるために、活性炭をオゾン処理
の前段の水処理工程で投入することであるが、オゾンを
用いた水処理設備を導入している浄水場が国内で十数個
所程度であることと、発泡が生ずると予想されるような
汚染の激しい河川や湖沼を原水としている浄水場のうち
、オゾンを用いた水処理設備を導入している所が僅かで
あることから、消泡対策についての検討はまだ十分行な
われていない。
[0005] Currently, the most effective defoaming method is to add activated carbon in the water treatment process before ozone treatment in order to reduce the surfactant in the water to be treated. There are only about a dozen water treatment plants in Japan that have installed this equipment, and among the water treatment plants that use heavily polluted rivers and lakes where foaming is expected to occur, water treatment using ozone is the only option. As there are only a few places that have introduced this equipment, antifoaming measures have not yet been sufficiently studied.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記の
ような発泡の確認方法は確実性に乏しく、消泡対策とし
てもコストアップや設備の拡大を伴なうという問題があ
る。即ち、発泡を確認する方法として、覗き窓から観察
するのは、泡の発生時にタイミングよく観察することが
できればよいが、そうでない場合は泡が排オゾン系に侵
入してしまっている危険製があり、排オゾン処理塔の汚
染によりオゾン分解触媒が劣化し、オゾンが分解されな
いまま大気中に排出されることや、濃度測定器の故障を
引き起こすことになり、覗き窓による観察は不適当であ
るばかりでなく、この時点で泡を見つけたときは手遅れ
になることが多い。水位差のある所で発泡を観察するの
も確実な方法とは言えない。
However, the above-mentioned method for confirming foaming is not reliable, and even as a countermeasure against foaming, there is a problem in that it involves an increase in cost and an expansion of equipment. In other words, observing through a viewing window is a good way to confirm foaming, as long as you can observe the foam at the right time, but if this is not the case, there is a risk of bubbles entering the exhaust ozone system. However, due to contamination of the exhaust ozone treatment tower, the ozone decomposition catalyst deteriorates, causing ozone to be emitted into the atmosphere without being decomposed and causing the concentration measuring device to malfunction, making observation through a viewing window inappropriate. Not only that, but by the time you find bubbles at this point, it's often too late. Observing foaming in places where there is a difference in water level is also not a reliable method.

【0007】一方、消泡方法については、オゾン処理の
前段の水処理工程で、活性炭を投入することにより、発
泡成分である界面活性剤を除去するのが確実であるが、
活性炭の投入量が多い上に、活性炭自体の価格が高いこ
とから大幅なコストアップになってしまう。
On the other hand, regarding the defoaming method, it is certain to remove the surfactant, which is a foaming component, by adding activated carbon in the water treatment process before the ozone treatment.
In addition to the large amount of activated carbon input, the cost of activated carbon itself is high, resulting in a significant increase in cost.

【0008】本発明は上述の点に鑑みてなされたもので
あり、その目的は、オゾンを用いた上水の高度処理設備
における反応槽内の水面上に生ずる発泡を検出し、その
情報に基づき運転制御を行なう消泡装置を提供すること
にある。
The present invention has been made in view of the above points, and its purpose is to detect foaming occurring on the water surface in a reaction tank in an advanced water treatment facility using ozone, and to detect foaming based on the information. An object of the present invention is to provide a defoaming device that performs operational control.

【0009】[0009]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明の泡沫検出方法は、制御対象が泡沫である
という観点から、動作抵抗が数MΩ以上の感度を有し、
水または泡沫に応答する超高感度の電極式レベル計と、
動作抵抗が数kΩ以上の感度を有し、水にしか応答しな
い一般用電極式レベル計とを組み合わせて用い、水位変
動か泡沫の発生かを判断するものであり、その信号によ
り消泡装置の運転を制御する。
[Means for Solving the Problems] In order to solve the above problems, the foam detection method of the present invention has a sensitivity with an operating resistance of several MΩ or more, from the viewpoint that the object to be controlled is foam.
Ultra-sensitive electrode level meter that responds to water or foam,
It is used in combination with a general-purpose electrode level meter that has a sensitivity of several kilohms or more and responds only to water, and determines whether the water level is changing or foam is generated, and the signal is used to control the defoaming device. Control driving.

【0010】消泡装置としては、泡沫に被処理水または
処理水を、スプレイ状に吹き付ける複数個のノズルを排
オゾンガス出口の下部に設ける。このノズルは、二つの
目的を持ちスプレイの形が充円錐状になるものを組み合
わせてある。即ち、一つは泡沫が反応槽に飛散して排オ
ゾン処理系に侵入するのを防ぐように、水面と45〜1
35°の角度を持たせ、他の一つは泡沫を水中に溶かし
込むように、水面と0〜45°の角度を持たせてある。
As the defoaming device, a plurality of nozzles for spraying treated water or treated water onto foam are provided below the exhaust ozone gas outlet. This nozzle has two purposes and is a combination of sprays that produce a full cone shape. That is, one is to prevent foam from scattering into the reaction tank and entering the exhaust ozonation treatment system.
One has an angle of 35 degrees, and the other one has an angle of 0 to 45 degrees with the water surface to dissolve the foam into the water.

【0011】[0011]

【作用】上記の発泡検出方法と消泡装置により、反応槽
内に発生した泡が水面上に浮上したとき、反応槽内に設
けた超高感度の電極式レベル計によってこの泡を検出す
ることができ、その信号に基づき、所定の角度に調節し
て設けたスプレイノズルから、被処理水または処理水を
泡沫に吹き付けることにより、泡沫が反応槽内に蓄積さ
れることなく、反応槽内の汚染、排オゾン処理系の性能
低下やオゾン濃度測定器の故障などが起きなくなる。
[Operation] When the bubbles generated in the reaction tank rise to the surface of the water using the above-mentioned foam detection method and defoaming device, the bubbles are detected by an ultra-sensitive electrode level meter installed in the reaction tank. Based on the signal, water to be treated or treated water is sprayed onto the foam from a spray nozzle adjusted at a predetermined angle, thereby preventing foam from accumulating in the reaction tank. Pollution, deterioration in the performance of the exhaust ozone treatment system, and failure of ozone concentration measuring instruments will no longer occur.

【0012】0012

【実施例】以下、本発明を実施例に基づき説明する。EXAMPLES The present invention will be explained below based on examples.

【0013】図1は本発明が適用される水処理装置の要
部構成とプロセスを説明するための模式図である。図1
において、反応槽1およびタンク2内の水には、界面活
性剤の濃度が約1ppmとなるように市販の液体合成洗
剤を添加し、タンク2 からポンプ3により界面活性剤
溶液を反応漕1の流入口4から流入し、反応槽1の流出
口5から流出させる。この状態でコンプレッサ6から流
量計7を介して、反応槽1内の散気管8により、水中に
気泡を発生させる。水面上に生長した泡沫9は、動作抵
抗が数MΩ以上の感度を有する超高感度式レベルスイッ
チ10および動作抵抗が数kΩ以上の感度を有する一般
用レベルスイッチ11に接続された電極棒12に接する
と、コントローラ13により泡沫か水かを判断した後、
高圧ポンプ14により洗浄用スプレイノズル15から、
タンク2内の液を泡沫9に吹き付け、電極棒12の洗浄
を行なう。電極棒12は反応槽1内の水面上で泡沫9が
最初に生長する部分に設ける。電極棒12の洗浄と同時
に、高圧ポンプ16により排オゾンガス出口17の下部
に設けた消泡用スプレイノズル18から、反応槽1内の
上部空間19にタンク2内の液を1〜5kg/cm2の
圧力でスプレイし、反応槽1内に拡がる泡沫9を水中に
溶かし込む。 このとき用いる水は被処理水、処理水のどちらでもよい
。なお、20,21,22は反応槽1内に設けた隔壁で
あり、矢印は水流の方向を示す。
FIG. 1 is a schematic diagram for explaining the main structure and process of a water treatment apparatus to which the present invention is applied. Figure 1
A commercially available liquid synthetic detergent is added to the water in reaction vessels 1 and 2 so that the surfactant concentration is approximately 1 ppm, and the surfactant solution is pumped from tank 2 to reaction vessel 1 using pump 3. It flows in from the inlet 4 and flows out from the outlet 5 of the reaction tank 1. In this state, air bubbles are generated in the water from the compressor 6 via the flow meter 7 and the aeration pipe 8 in the reaction tank 1. The foam 9 that has grown on the water surface is transferred to an electrode rod 12 connected to an ultra-sensitive level switch 10 having a sensitivity of several MΩ or more in operating resistance and a general level switch 11 having a sensitivity of several kilohms or more in operating resistance. When it comes into contact with the water, the controller 13 determines whether it is foam or water, and then
From the cleaning spray nozzle 15 by the high pressure pump 14,
The liquid in the tank 2 is sprayed onto the foam 9 to clean the electrode rod 12. The electrode rod 12 is provided at a portion of the water surface in the reaction tank 1 where the foam 9 first grows. At the same time as cleaning the electrode rod 12, the liquid in the tank 2 is sprayed into the upper space 19 of the reaction tank 1 at a rate of 1 to 5 kg/cm2 from the defoaming spray nozzle 18 provided at the bottom of the exhaust ozone gas outlet 17 using the high-pressure pump 16. Spray with pressure to dissolve the foam 9 that spreads in the reaction tank 1 into the water. The water used at this time may be either treated water or treated water. Note that 20, 21, and 22 are partition walls provided in the reaction tank 1, and arrows indicate the direction of water flow.

【0014】以上のように、本発明は電極棒12に接続
した感度の異なるレベルスイッチ10,11を有する電
極式レベル計およびコントローラ13と、その指示によ
り作動する高圧ポンプ14,16および洗浄用スプレイ
ノズル15,消泡用スプレイノズル18を組み合わせた
消泡装置により、発泡を検出するとともに消泡作用を行
なうものである。
As described above, the present invention includes an electrode type level meter and controller 13 having level switches 10 and 11 with different sensitivities connected to an electrode rod 12, high pressure pumps 14 and 16 operated according to instructions thereof, and a cleaning sprayer. A defoaming device combining a nozzle 15 and a defoaming spray nozzle 18 detects foaming and performs a defoaming action.

【0015】図2は以上の消泡作用を、反応槽1内の水
位と発泡の有無に対して、レベルスイッチ10,11の
応答と、消泡ポンプ、即ち図1の高圧ポンプ14,16
の運転に関連させた説明図である。図2に示したように
、電極棒12はそれぞれ長さの異なる電極棒12a,1
2b,12cからなり、最も長い電極棒12aは図1に
示した超高感度レベルスイッチ10(図2では単に超高
感度とのみ記す)と、図1に示した一般用レベルスイッ
チ11(図2では単に一般用とのみ記す)の双方に接続
され、その他端は常時水中に没しており、これより長さ
の短い電極棒12bは一般用に接続され、その他端は平
常時(通常水位)には水面と一定の距離を保って接触せ
ず、最も長さの短い電極棒12cは超高感度に接続され
、その他端は水面と接触することはない。そして、動作
抵抗数MΩ以上の感度を有する超高感度の方は、泡沫ま
たは水に応答するが、動作抵抗が数kΩ以上の感度を有
する一般用は水にしか応答しない。ここで、図2に示す
各パターンについて説明する。
FIG. 2 shows the above-mentioned defoaming action, the responses of the level switches 10 and 11 to the water level in the reaction tank 1 and the presence or absence of foaming, and the defoaming pumps, that is, the high-pressure pumps 14 and 16 in FIG.
FIG. 2 is an explanatory diagram related to the operation of the vehicle. As shown in FIG. 2, the electrode rods 12 have electrode rods 12a and 1 having different lengths.
2b and 12c, and the longest electrode rod 12a is the ultra-high sensitivity level switch 10 shown in FIG. The other end is always submerged in water, and the shorter electrode rod 12b is connected for general use, and the other end is normally (normal water level). The electrode rod 12c, which has the shortest length, is connected with ultra-high sensitivity, and the other end does not come into contact with the water surface. Ultra-high sensitivity sensors with operating resistance of several MΩ or more respond to foam or water, but general-use sensors with operating resistance of several kilohms or more respond only to water. Here, each pattern shown in FIG. 2 will be explained.

【0016】■通常水位で発泡が生じなければ、各レベ
ルスイッチと各消泡ポンプは作動しない。
[0016] Unless foaming occurs at the normal water level, each level switch and each defoaming pump will not operate.

【0017】■水位が上昇して電極棒12bが水面に接
触すると、レベルスイッチは一般用のみが作動する。こ
のときは、ただ水位の上昇が検知されるだけである。
(2) When the water level rises and the electrode rod 12b comes into contact with the water surface, only the general level switch operates. At this time, only a rise in the water level is detected.

【0018】■通常水位にあって、水面上に発泡が生じ
電極棒12bと12cが泡に接触すると、レベルスイッ
チは一般用は応答しないが、超高感度の方は応答して各
消泡ポンプを作動させる。ただ、発泡状態が電極棒12
bには接触するが、電極棒12cの方には接触しないと
きは、レベルスイッチはいずれも全く応答しないことに
なるから、発泡状態が問題とならない程度に、電極棒1
2bと電極棒12cの長さの差を設定しておく必要があ
る。
[0018] When the water level is normal and bubbles occur on the water surface and the electrodes 12b and 12c come into contact with the bubbles, the general level switch will not respond, but the ultra-high sensitivity level switch will respond and each defoaming pump will Activate. However, the foamed state is electrode rod 12.
If the electrode rod 12c contacts the electrode rod 12c but not the electrode rod 12c, the level switch will not respond at all.
It is necessary to set a difference in length between the electrode rod 2b and the electrode rod 12c.

【0019】■水位が上昇して電極棒12bが水面に接
触し、水面上に発泡も生じて、泡が電極棒12cに接触
すると、レベルスイッチは両方共応答し、各消泡ポンプ
は作動する。
■When the water level rises and the electrode rod 12b comes into contact with the water surface, foaming also occurs on the water surface, and the bubbles contact the electrode rod 12c, both level switches respond and each defoaming pump operates. .

【0020】このように、本発明では感度の異なる電極
式レベル計を組み合わせ用い、これらの電極棒の長さを
変えているのは、水位が上昇したというだけで、消泡ポ
ンプを運転させることのないよう配慮したからである。
[0020] In this way, the present invention uses a combination of electrode level meters with different sensitivities and changes the lengths of these electrode rods so that the defoaming pump can be operated only when the water level has risen. This is because we have taken care to avoid this.

【0021】図3は、図1に示した消泡用スプレイノズ
ル18を、さらに詳しく説明するための外観図であり、
(a) は下方から見た正面図,(b) はその側面図
を表わす。この消泡用スプレイノズル18は前述のよう
に、排オゾンガス出口17の下部に設けるが、図3のよ
うに、本体23と、水面上に生じて反応槽1内に拡がる
泡沫9を水平方向に広範囲に亘って潰し、泡沫9が反応
槽1内に飛散して、排オゾン処理系に侵入するのを防ぐ
ための複数個のノズル24と潰れた泡沫9を水中に溶か
し込むための複数個のノズル25とにより構成してある
。本体23は垂直胴体とその下部に一体となって形成さ
れる台形部を有し、ノズル24は本体23の垂直胴体の
円周に、水面に平行となるように等間隔に6個取り付け
てあり、ノズル25は本体23の台形部水平面に、水面
に対して垂直方向下向きに一つと、これと30°の角度
を持つもの6個を本体23の台形部傾斜面に、等間隔に
取り付けてある。
FIG. 3 is an external view for explaining the defoaming spray nozzle 18 shown in FIG. 1 in more detail.
(a) is a front view seen from below, and (b) is a side view. As described above, the defoaming spray nozzle 18 is installed at the bottom of the exhaust ozone gas outlet 17, but as shown in FIG. A plurality of nozzles 24 are provided to prevent the foam 9 from being crushed over a wide range from scattering into the reaction tank 1 and entering the exhaust ozonation treatment system, and a plurality of nozzles 24 are used to dissolve the crushed foam 9 into the water. It is composed of a nozzle 25. The main body 23 has a vertical body and a trapezoidal part formed integrally with its lower part, and six nozzles 24 are attached to the circumference of the vertical body of the main body 23 at equal intervals so as to be parallel to the water surface. The nozzles 25 are mounted on the horizontal surface of the trapezoidal part of the main body 23, one facing downward perpendicularly to the water surface, and six nozzles 25 that are at an angle of 30 degrees with this nozzle are mounted on the inclined surface of the trapezoidal part of the main body 23 at equal intervals. .

【0022】図4はノズル25の取り付け角度に対する
消泡効果を表わす線図である。即ち、図4は泡沫9を水
中に溶かし込むためのノズル25を、水面に対して垂直
方向と0〜60°の角度に取り付けて水を噴射したとき
の実験結果であり、それぞれの角度で泡沫9が水中に溶
け込むことにより現われる水面の面積の大きさを示すも
のである。図4によれば、ノズル25の取り付け角度は
、30°で噴射した場合が最も消泡効果が高く、0〜4
5°の範囲で充分な効果があった。しかし、それ以上大
きな角度にすると消泡効果は急激に低下する。
FIG. 4 is a diagram showing the defoaming effect with respect to the mounting angle of the nozzle 25. That is, FIG. 4 shows the experimental results when the nozzle 25 for dissolving the foam 9 into water was installed at an angle of 0 to 60 degrees perpendicular to the water surface and water was sprayed. 9 shows the size of the water surface area that appears when it dissolves in water. According to FIG. 4, the installation angle of the nozzle 25 is the highest when spraying at an angle of 30 degrees, and 0 to 4 degrees.
There was sufficient effect within the range of 5°. However, if the angle is made larger than that, the defoaming effect will drop sharply.

【0023】一方、泡沫9を潰すためのノズル24は、
水面と垂直な方向に対し45〜135°程度とするのが
よい。ノズル24,25の取り付け数は、スプレイ範囲
に隙間がなく本体23の全周をカバーするためには、各
ノズルの噴射広がり各が60°程度のものを用いれば6
個,120°程度のものを用いれば3個でよいから、3
〜6個とする。スプレイ範囲に隙間があると、そこから
泡が上昇し消泡することができなくなる。
On the other hand, the nozzle 24 for crushing the foam 9 is
The angle is preferably about 45 to 135 degrees with respect to the direction perpendicular to the water surface. In order to cover the entire circumference of the main body 23 without any gaps in the spray range, the number of installed nozzles 24 and 25 is 6 if the spray spread of each nozzle is approximately 60°.
If you use a piece of about 120 degrees, you only need 3 pieces, so 3 pieces are enough.
~6 pieces. If there is a gap in the spray area, bubbles will rise from there and cannot be defoamed.

【0024】[0024]

【発明の効果】オゾンを用いた上水の高度処理設備につ
いて、従来、反応槽内に発生する泡を効率よく検出し、
消泡する有効な手段がなかったが、本発明では実施例で
述べたように、高感度電極式レベル計と一般用電極式レ
ベル計とを組み合わせて、その電極棒端を泡沫の生長が
開始する箇所近傍に設置し、迅速確実に泡の発生を検出
し、その信号に基づいて高圧ポンプを稼動させ、所定の
圧力および流量に調節した水を、排オゾンガス出口下部
に水面に対して所定の角度に取り付けた複数個のノズル
によって、泡沫に充円錐状に吹き付け効果的な消泡を可
能にしたため、水面上に泡が滞留することなく、泡の発
生に起因する種々の不都合を解消し、保守管理が容易で
高効率の上水処理を行なうことができる。
[Effect of the invention] Conventionally, bubbles generated in a reaction tank have been efficiently detected in advanced water treatment equipment using ozone.
Although there was no effective means to eliminate foam, in the present invention, as described in the examples, a high-sensitivity electrode level meter and a general-purpose electrode level meter are combined, and foam growth begins at the end of the electrode rod. It quickly and reliably detects the occurrence of bubbles, operates a high-pressure pump based on the signal, and pumps water adjusted to a predetermined pressure and flow rate to the lower part of the exhaust ozone gas outlet at a predetermined height relative to the water surface. Multiple nozzles installed at an angle enable effective defoaming by spraying foam in a conical shape, eliminating the possibility of foam remaining on the water surface and eliminating various inconveniences caused by foam generation. Maintenance is easy and water treatment can be performed with high efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明が適用される水処理装置の要部構成とプ
ロセスを説明するための模式図
[Fig. 1] A schematic diagram for explaining the main part configuration and process of a water treatment device to which the present invention is applied.

【図2】本発明の発泡検出方法と消泡装置の関係説明図
[Fig. 2] An explanatory diagram of the relationship between the foaming detection method of the present invention and the defoaming device

【図3】本発明の消泡装置に用いる消泡用スプレイノズ
ルの外観図であり、(a)は下方から見た正面図、(b
)はその側面図
FIG. 3 is an external view of the defoaming spray nozzle used in the defoaming device of the present invention, in which (a) is a front view seen from below, and (b)
) is its side view

【図4】本発明の消泡装置に用いるノズルの取り付け角
度と消泡効果の関係線図
[Fig. 4] Relationship diagram between nozzle installation angle and defoaming effect used in the defoaming device of the present invention

【符号の説明】[Explanation of symbols]

1    反応槽 2    タンク 3    ポンプ 4    流入口 5    流出口 6    コンプレッサ 7    流量計 8    散気管 9    泡沫 10    超高感度式レベルスイッチ11    一
般用レベルスイッチ 12    電極棒 12a  電極棒 12b  電極棒 12c  電極棒 13    コントローラ 14    高圧ポンプ 15    洗浄用スプレイノズル 16    高圧ポンプ 17    排オゾンガス出口 18    消泡用スプレイノズル 19    上部空間 20    隔壁 21    隔壁 22    隔壁 23    本体 24    ノズル 25    ノズル
1 Reaction tank 2 Tank 3 Pump 4 Inlet 5 Outlet 6 Compressor 7 Flow meter 8 Diffusion tube 9 Foam 10 Ultra-high sensitivity level switch 11 General level switch 12 Electrode 12a Electrode 12b Electrode 12c Electrode 13 Controller 14 High pressure pump 15 Cleaning spray nozzle 16 High pressure pump 17 Exhaust ozone gas outlet 18 Defoaming spray nozzle 19 Upper space 20 Partition 21 Partition 22 Partition 23 Main body 24 Nozzle 25 Nozzle

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】オゾンを用いた水処理装置の反応槽内の水
面上に生ずる泡を検出する方法であって、動作抵抗が数
MΩ以上の感度を有する超高感度の電極式レベル計と動
作抵抗が数kΩ以上の感度を有する一般用電極式レベル
計とを組み合わせ、水または泡との接触時に超高感度の
電極式レベル計を応答させる電極棒を短くし、水との接
触時にのみ一般用電極式レベル計を応答させる電極棒を
長くして、これら電極棒の自由端を水面上の泡が最初に
生長する領域に位置させることにより、水位の上昇と泡
の発生とを別々に検出することを特徴とする水処理装置
の発泡検出方法。
Claim 1: A method for detecting bubbles formed on the water surface in a reaction tank of a water treatment device using ozone, comprising an ultra-high sensitivity electrode-type level meter with a sensitivity of several MΩ or more and an operation resistance. Combined with a general-purpose electrode level meter with a sensitivity of several kilohms or more, the electrode rod is shortened to allow the ultra-sensitive electrode level meter to respond when it comes in contact with water or foam, making it suitable for general use only when in contact with water. By increasing the length of the electrode rods that respond to the water level meter and positioning the free ends of these electrode rods in the area where bubbles first grow on the water surface, the rising water level and the formation of bubbles can be detected separately. A method for detecting foaming in a water treatment device, characterized in that:
【請求項2】請求項1記載の方法が適用される装置であ
って、 a.動作抵抗が数MΩ以上の感度を有する超高感度の電
極式レベル計と動作抵抗が数kΩ以上の感度を有する一
般用電極式レベル計の双方に接続され、その自由端は反
応漕内水面上の泡が最初に生長する領域の水中に位置し
て最も大きい長さを持つ電極棒と,超高感度の電極式レ
ベル計に接続され、その自由端は反応槽内水面上の泡が
最初に生長する領域近傍に位置して水または泡との接触
時にそのレベル計を応答させる最も短い長さを持つ電極
棒と,一般用電極式レベル計に接続され、その自由端は
反応槽内水面上の泡が最初に生長する領域近傍に位置し
て水との接触時にのみそのレベル計を応答させる前記二
つの中間の長さを持つ電極棒, b.前記超高感度の電極式レベル計と前記一般用電極式
レベル計を備えたコントローラ, c.前記超高感度の電極式レベル計からの信号により処
理水または被処理水を前記反応槽内に輸送する高圧ポン
プと、これらの水を前記反応槽内の水面近傍で前記電極
棒に向けて吹き付ける洗浄用スプレイノズル,d.前記
超高感度の電極式レベル計からの信号により処理水また
は被処理水を前記反応槽内に輸送する前記とは別の高圧
ポンプと、前記反応槽内の排オゾンガス出口下部に設け
られ、前記輸送された水を前記反応槽内の水面上に拡が
る泡に吹き付ける消泡用スプレイノズルを備えたことを
特徴とするオゾンを用いた水処理装置の消泡装置。
2. An apparatus to which the method according to claim 1 is applied, comprising: a. It is connected to both an ultra-sensitive electrode level meter with a sensitivity of several MΩ or more in operating resistance and a general electrode level meter with a sensitivity of several kΩ or more in operating resistance, and its free end is connected above the water surface in the reaction tank. The electrode rod with the longest length is located in the water in the area where the bubbles first grow, and is connected to an ultra-sensitive electrode level meter, and its free end is connected to the electrode rod with the longest length located in the water area where the bubbles first grow. The electrode rod is located near the growing area and has the shortest length to make the level meter respond when it comes in contact with water or bubbles, and is connected to a general electrode type level meter, with its free end above the water surface in the reaction tank. an electrode rod having a length intermediate between said two electrode rods located near the area where bubbles first grow and causing its level meter to respond only upon contact with water; b. a controller comprising the ultra-high sensitivity electrode level meter and the general electrode level meter; c. a high-pressure pump that transports treated water or water to be treated into the reaction tank based on a signal from the ultra-sensitive electrode level meter, and sprays this water toward the electrode rod near the water surface in the reaction tank. cleaning spray nozzle, d. A high-pressure pump separate from the above for transporting treated water or water to be treated into the reaction tank according to a signal from the ultra-sensitive electrode level meter; A defoaming device for a water treatment system using ozone, characterized in that it is equipped with a defoaming spray nozzle that sprays the transported water onto the foam spreading on the water surface in the reaction tank.
【請求項3】請求項2記載の消泡用スプレイノズルは、
垂直胴体とその下方に一体形成された台形部からなる本
体の前記垂直胴体の周側面に、反応槽内水面と45〜1
35°の角度を持ち等間隔に配置した3〜6個の泡を潰
すノズルと、前記台形部の水平面に前記水面と垂直な方
向を持つ一つのノズルおよび前記台形部の計斜面に前記
水面と0〜45°の角度を持ち等間隔に配置した3〜6
個の泡を水中に溶かし込むノズルからなることを特徴と
するオゾンを用いた水処理装置の消泡装置。
3. The defoaming spray nozzle according to claim 2,
The main body consists of a vertical body and a trapezoidal part integrally formed below the vertical body, and on the circumferential side of the vertical body, there is a water surface of 45 to 1
3 to 6 bubble-crushing nozzles having an angle of 35° and arranged at equal intervals; one nozzle having a direction perpendicular to the water surface on the horizontal plane of the trapezoidal portion; and a nozzle having a direction perpendicular to the water surface on the horizontal plane of the trapezoidal portion, and 3 to 6 arranged at equal intervals with an angle of 0 to 45 degrees
A defoaming device for water treatment equipment using ozone, characterized by comprising a nozzle that dissolves bubbles into water.
JP3325891A 1991-02-28 1991-02-28 Defoaming equipment for water treatment equipment using ozone Expired - Lifetime JP2884797B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3325891A JP2884797B2 (en) 1991-02-28 1991-02-28 Defoaming equipment for water treatment equipment using ozone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3325891A JP2884797B2 (en) 1991-02-28 1991-02-28 Defoaming equipment for water treatment equipment using ozone

Publications (2)

Publication Number Publication Date
JPH04273022A true JPH04273022A (en) 1992-09-29
JP2884797B2 JP2884797B2 (en) 1999-04-19

Family

ID=12381486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3325891A Expired - Lifetime JP2884797B2 (en) 1991-02-28 1991-02-28 Defoaming equipment for water treatment equipment using ozone

Country Status (1)

Country Link
JP (1) JP2884797B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008302264A (en) * 2007-06-05 2008-12-18 Osaka Gas Engineering Co Ltd Defoaming tank
JP2010023003A (en) * 2008-07-24 2010-02-04 Aisin Seiki Co Ltd Fine bubble defoaming apparatus and bubble bath apparatus
CN104707367A (en) * 2015-03-02 2015-06-17 南宁苏格尔科技有限公司 Automatic defoaming control system of sugar mill and operating method of automatic defoaming control system
EP2980568A4 (en) * 2013-03-29 2016-12-14 Amorepacific Corp Device and method for detecting bubbles of vacuum container for manufacturing cosmetic contents, and recording medium for storing program code for executing method thereof by computer
CN107884027A (en) * 2016-09-30 2018-04-06 佛山市顺德区美的电热电器制造有限公司 For cooking apparatus anti-overflow detection means and there is its cooking apparatus
CN115124144A (en) * 2022-05-07 2022-09-30 上海同济建设科技股份有限公司 Energy-saving control method for leachate treatment device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008302264A (en) * 2007-06-05 2008-12-18 Osaka Gas Engineering Co Ltd Defoaming tank
JP2010023003A (en) * 2008-07-24 2010-02-04 Aisin Seiki Co Ltd Fine bubble defoaming apparatus and bubble bath apparatus
EP2980568A4 (en) * 2013-03-29 2016-12-14 Amorepacific Corp Device and method for detecting bubbles of vacuum container for manufacturing cosmetic contents, and recording medium for storing program code for executing method thereof by computer
CN104707367A (en) * 2015-03-02 2015-06-17 南宁苏格尔科技有限公司 Automatic defoaming control system of sugar mill and operating method of automatic defoaming control system
CN104707367B (en) * 2015-03-02 2016-08-31 南宁苏格尔科技有限公司 A kind of sugar refinery automatic froth breaking control system and method for work thereof
CN107884027A (en) * 2016-09-30 2018-04-06 佛山市顺德区美的电热电器制造有限公司 For cooking apparatus anti-overflow detection means and there is its cooking apparatus
CN107884027B (en) * 2016-09-30 2021-04-20 佛山市顺德区美的电热电器制造有限公司 A cooking utensil that is used for cooking utensil's anti-overflow detection device and has it
CN115124144A (en) * 2022-05-07 2022-09-30 上海同济建设科技股份有限公司 Energy-saving control method for leachate treatment device

Also Published As

Publication number Publication date
JP2884797B2 (en) 1999-04-19

Similar Documents

Publication Publication Date Title
US7611684B2 (en) Effluent gas scrubber and method of scrubbing effluent gasses
JPH04273022A (en) Foaming detection method for water treatment device and defoaming device
JP2012091098A (en) Method and apparatus for removing acidic mist
KR100625281B1 (en) Apparatus for dissolving gas
JPH04370931A (en) Cleaning of substrate
CA2531344C (en) Apparatus for measuring mercury contained in gaseous medium
US5820658A (en) Apparatus and method for processing exhaust gas
JP3688269B2 (en) Method and module and apparatus for contact between gas and liquid
JP2013104830A (en) Water quality measuring device
CN107398158A (en) A kind of absorption tower of purification DMC heat-conducting oil furnace flue gases
JP2005013788A (en) AIR CLEANER AND METHOD FOR CONTROLLING pH VALUE OF TREATING LIQUID
CN115032360A (en) Pollution source process water quality on-line monitoring system
JPH06315696A (en) Defoaming device for activated sludge tank
KR100242956B1 (en) A residual removal and blocking apparatus of gas exhausting system
JP2005211858A (en) Intermittently cleaning method and intermittently cleaning apparatus
CN111634990A (en) Device for removing carbonate and bicarbonate radical in cobaltic wastewater
CN211677059U (en) Laboratory exhaust treatment system
JP2821887B2 (en) Ultrasonic cleaning equipment
CN214552389U (en) Waste gas treatment device
CN218077293U (en) Micro-nano aeration tower device for purifying high-concentration ethylene oxide waste gas
CN219657435U (en) Self-cleaning sewage suspended matter content detector
US20010021357A1 (en) Apparatus for removing impurities from effluent waste gas streams
CN215711953U (en) Cleaning equipment for membrane column
CN218043000U (en) Soil filter
CN212440735U (en) Hazardous chemical decontamination equipment