JPH0427220Y2 - - Google Patents

Info

Publication number
JPH0427220Y2
JPH0427220Y2 JP1046684U JP1046684U JPH0427220Y2 JP H0427220 Y2 JPH0427220 Y2 JP H0427220Y2 JP 1046684 U JP1046684 U JP 1046684U JP 1046684 U JP1046684 U JP 1046684U JP H0427220 Y2 JPH0427220 Y2 JP H0427220Y2
Authority
JP
Japan
Prior art keywords
voltage
power supply
circuit
switch
supply terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1046684U
Other languages
Japanese (ja)
Other versions
JPS60124138U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1046684U priority Critical patent/JPS60124138U/en
Publication of JPS60124138U publication Critical patent/JPS60124138U/en
Application granted granted Critical
Publication of JPH0427220Y2 publication Critical patent/JPH0427220Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案はCMOS FETで構成されているスイツ
チ回路(CMOS SWまたはU2と略称)で発生す
るラツチアツプを防止する回路に関する。
[Detailed Description of the Invention] The present invention relates to a circuit that prevents latch-up occurring in a switch circuit (abbreviated as CMOS SW or U2 ) composed of CMOS FETs.

現在、商品化されているCMOS SWは通常単
一電源電圧で使用される。すなわち1方の電源端
子VEEに0Vを加え他方の端子VDDに例えば+15V
または6Vを加えて使用される。使用時にこの
CMOS SWによつてスイツチされる信号はほぼ
VDD〜VEE間の電圧範囲に制約される。例えば抵
抗式温度変換器に含まれる演算増幅器U1の出力
E2をCMOS SWに導びき切換える場合(第1図
参照)U1は例えば±15Vの2電源で駆動される
場合に、正常動作時はE2は1〜5Vの範囲にあり
0V以上の電圧であるが、U1の入力の開放時や、
スイツチSを切換えU2の出力をその上限側また
は下限側に振り切らせた場合に、U2のスイツチ
入出力に0V以下の信号電圧がかかる可能性があ
る。図に示すように増幅器の出力端2にダイオー
ドDの陰極を接続しE2の電圧は略−0.6〜−0.7V
にクリツプされる。このときCMOS SWのVEE
の電位が0Vであると、スイツチ入力電圧E2はVEE
の電位以下となりCMOS SWにラツチアツプ現
象が起こり入出力配線あるいは電源線の溶断が誘
起される原因とになる。この現象を防止するため
にVEEの電位を入力信号E2より低い電位に保つ必
要がある。その方法として、演算増幅器U1を駆
動する2電源±VSのうちスイツチ回路U2のVDD
電圧(例えば+15V)と反対極性の電圧−VS(−
15V)利用し、負の電圧端−VSと電位基準点Gと
の間の電圧をR1とR2とから成る分圧器で分圧し
分圧点4の電圧をVEEに与える回路(第2図参
照)、また第3図に示すごとく負の電源電圧端−
VSとGとの間にダイオードDと電流制限用抵抗
R1の直列回路を挿入し、DとR1との接続点4の
電圧をVEE端に与える回路、あるいは第4図に示
すごとく−VSとGとの間に電流制限用抵抗R1
ツエナーダイオードDZを挿入し、DZとR1接続点
4の電圧をVEEに与える回路等が提案されるがこ
れらの回路は何れも次に述べるような欠点があ
る。即ち、CMOS SWのスイツチSの切換時に
はVEE端からなり大きな電流I(数mA程度)が流
れ出るので、第2図の回路ではその電流が抵抗
R1,R2に分流しVEEの電位がもち上がり0V以上
になり、スイツチ入力信号E2との関係からU2
イツチがラツチアツプを起す可能性がある。VEE
の電位のもち上がりをおさえるためにR1,R2
値を小さくすればこれらの抵抗を常時流れる電流
が大きくなり消費電力が大きくなる欠点がある。
第3図の回路においても第2図の回路と同様にス
イツチSの切換わり時にR1に電流が流れVEE
0V以上になりラツチアツプの原因は解消されな
い。第4図の回路ではツエナーダイオードDZ
ツエナー電圧をVZとすると、VEEの電位は−Vz
保たれる。また、スイツチSの切換わり時にR1
に電流I1が流れVEEの電位がもち上がろうとした
時DZにI3方向の電流が流れ、VEEの電位は0.6V〜
0.7V程度におさえられる。したがつて、VEEの電
位がスイツチ入力信号の電圧を越える可能性が少
なくなり入出力信号の回路に電流制限抵抗Rを挿
入すればラツチアツプの起るの防止することがで
きる。しかしながら、ツエナー電圧VZが2V以下
のツエナーダイオードは現在入手不可能であり、
VDDの変換規格(15V±10%)を考慮するとVDD
VEE間の電圧はCMOS SWの絶対最大定格を超過
することになるのでこの回路は実用できないうら
みがある。第2図、第3図の回路の場合もスイツ
チ信号の入出力に抵抗Rを挿入しここを流れる電
流を制限しているが、VEEの電位のもち上りが大
きければRを通して流れる電流が多くなりこれが
ラツチアツプのトリガーとなる確率が高くなる。
いずれにしてもスイツチSの切換わり時にVEE
の電位の0V以上へのもち上りはできるかぎり小
さくおさえることがラツチアツプ防止の有効な解
決策である。本考案は、簡単な構成の回路て
CMOSスイツチの切換わり時にVEEの電位を+1V
以下におさえCMOS SWのラツチアツプを防止
する回路を実現するものである。以下本考案の実
施例図面を参照して詳しく説明する。
Currently commercialized CMOS SWs are usually used with a single power supply voltage. In other words, add 0V to one power supply terminal V EE and apply +15V to the other terminal V DD .
Or used with 6V added. When using this
The signals switched by CMOS SW are approximately
Constrained by voltage range between V DD and V EE . For example, the output of operational amplifier U 1 included in a resistive temperature transducer
When E 2 is led to a CMOS SW and switched (see Figure 1), when U 1 is driven by two power supplies of ±15V, for example, E 2 is in the range of 1 to 5V during normal operation.
Although the voltage is higher than 0V, when the input of U 1 is open,
When switch S is switched to swing the output of U2 to its upper limit or lower limit, there is a possibility that a signal voltage of 0V or less will be applied to the switch input and output of U2 . As shown in the figure, the cathode of diode D is connected to the output terminal 2 of the amplifier, and the voltage of E 2 is approximately -0.6 to -0.7V.
clipped to At this time, if the potential at the V EE end of the CMOS SW is 0V, the switch input voltage E 2 is V EE
If the voltage drops below the potential, a latch-up phenomenon will occur in the CMOS SW, causing the input/output wiring or power supply line to melt. In order to prevent this phenomenon, it is necessary to keep the potential of V EE at a potential lower than that of the input signal E 2 . One way to do this is to use a voltage -V S (-
A circuit ( No. (see Figure 2), and the negative power supply voltage terminal - as shown in Figure 3.
Diode D and current limiting resistor between V S and G
A circuit in which a series circuit of R 1 is inserted and the voltage at the connection point 4 between D and R 1 is applied to the V EE terminal, or a current limiting resistor R 1 is inserted between -V S and G as shown in Figure 4. A circuit has been proposed in which a Zener diode DZ is inserted and the voltage at the connection point 4 between DZ and R1 is applied to VEE , but all of these circuits have the following drawbacks. In other words, when the switch S of the CMOS SW is switched, a large current I (about several mA) flows out from the V EE terminal, so in the circuit shown in Figure 2, that current flows through the resistor.
The potential of V EE , which is shunted to R 1 and R 2, rises to 0V or higher, and there is a possibility that the U 2 switch will latch up due to its relationship with the switch input signal E 2 . VEE
If the values of R 1 and R 2 are made small in order to suppress the rise in the potential of , the current that constantly flows through these resistors becomes large, which has the disadvantage of increasing power consumption.
In the circuit shown in Figure 3, as in the circuit shown in Figure 2, when switch S is switched, current flows through R1 and V EE increases.
If the voltage exceeds 0V, the cause of the latch-up will not be resolved. In the circuit shown in FIG. 4, when the Zener voltage of the Zener diode DZ is VZ , the potential of VEE is maintained at -Vz . Also, when switch S is switched, R 1
When a current I 1 flows in and the potential of V EE is about to rise, a current in the I 3 direction flows in D Z , and the potential of V EE increases from 0.6V to
It can be suppressed to about 0.7V. Therefore, the possibility that the potential of VEE exceeds the voltage of the switch input signal is reduced, and by inserting a current limiting resistor R into the input/output signal circuit, latch-up can be prevented. However, Zener diodes with a Zener voltage V Z of 2V or less are currently unavailable.
Considering the conversion standard of V DD (15V±10%), V DD ~
Since the voltage between V and EE exceeds the absolute maximum rating of the CMOS SW, this circuit may not be practical. In the case of the circuits shown in Figures 2 and 3, a resistor R is also inserted between the input and output of the switch signal to limit the current flowing through it, but if the potential of V EE increases significantly, a large amount of current flows through R. This increases the probability that this will trigger a latchup.
In any case, an effective solution for preventing latch-up is to suppress the potential at the VEE point from rising above 0V when the switch S is switched to as small as possible. This invention uses a circuit with a simple configuration.
The potential of V EE is +1V when the CMOS switch is switched.
A circuit that prevents CMOS SW latch-up is realized by following the steps below. DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the drawings.

第5図は本考案の実施例回路の構成を示す。こ
の回路は第2図で例示せる回路を改良し、図の如
く電源端子の低電位端VEEと電位基準点Gとの間
に挿入されている抵抗R2と並列にダイオードD1
を接続する。この場合VEE端にD1の陽極電極をG
端に陰極電極をそれぞれ接続する。
FIG. 5 shows the configuration of a circuit according to an embodiment of the present invention. This circuit is an improvement on the circuit shown in Fig. 2, and as shown in the figure, a diode D 1 is connected in parallel to a resistor R 2 inserted between the low potential end V EE of the power supply terminal and the potential reference point G.
Connect. In this case, connect an anode electrode of D 1 to the V EE end.
Connect a cathode electrode to each end.

この構成によればスイツチ回路U2のスイツチ
Sの切換わる時にVEE端がここを通つて流れる電
流Iによつてもち上がるときその値をダイオード
D1の順方向電圧降下すなわち0.6〜07V以下にお
さえることができる。かくすればスイツチ回路
U2のスイツチ入力信号端2の電位がVEE端の電位
以下になつても入力信号回路に流れる電流は、こ
こに挿入されている電流制限用抵抗Rで小さい値
に制限されスイツチ回路U2にラツチアツプが生
ずるのを防止することができる。市販されている
ダイオードD1の順方向に流れる電流による電圧
降下は規格化されておりその最大値は予想可能で
ある。また、市販のCMOS SWにおいてスイツ
チSの入出力端子a,b,cを通つて流れる電流
が規定値以下(例えば10mA以下)の場合はラツ
チアツプが生じないと保証されている。したがつ
て入出力に接続する抵抗Rの値もスイツチ回路
U2にラツチアツプが生じな値に決定することが
できる。またスイツチ回路U2の電源電圧(VDD
VEE)も許容最大定格以下におさえられる。
According to this configuration, when the switch S of the switch circuit U2 is switched, the VEE terminal rises due to the current I flowing through it, and the value is set to the diode
The forward voltage drop of D1 can be kept below 0.6 to 0.7 V. This makes the switch circuit
Even if the potential of the switch input signal terminal 2 of U2 falls below the potential of the VEE terminal, the current flowing through the input signal circuit is limited to a small value by the current limiting resistor R inserted therein, preventing latch from occurring in the switch circuit U2 . The voltage drop caused by the current flowing in the forward direction of a commercially available diode D1 is standardized, and its maximum value is predictable. In addition, in commercially available CMOS SW, it is guaranteed that latch will not occur if the current flowing through the input/output terminals a, b, and c of switch S is below a specified value (for example, 10 mA or less). Therefore, the value of resistor R connected to the input and output is also set to a value that is within the range of the switch circuit
The power supply voltage (V DD -V DD ) of the switch circuit U2 can be determined so that no latch occurs in the switch circuit U2 .
V EE ) is also kept below the allowable maximum rating.

第6図は本考案のラツチアツプの防止回路を適
用せるCMOSスイツチU2を抵抗式温度変換器の
故障時に出力信号をバーンアウト信号への切換え
に応用せる場合の回路例を示す。図において、
Rtは測温抵抗体で基準電源Vrefから定電流I1が供
給されRtの温度による変化は電圧に変換される。
この変換電圧は増幅器U1により増幅されその出
力端2に出力電圧E2を生じる。E2はCMOSスイ
ツチU2のスイツチ信号の入力端に導びかれる。
ここに使用されているスイツチU2は切換スイツ
チS1,S2の2組みからなる複合回路でその電源端
VEEは第5図と同様に抵抗R1,R2およびダイオー
ドD1とで構成されるラツチアツプ防止回路に接
続されている。図においてはU2のスイツチS1
S2の切換えを制御する信号CONにはRtに電流を
供給する入力端1に発生する電圧E1が利用され
る。Rtに定電流が供給されている平常の動作状
態にあつては入力端1の電圧E1はほとんど零に
近く、この信号に制御されるスイツチS1,S2はそ
の出力端O1,O2がそれぞれL側端子と接続し増
幅器U1の出力電圧E2はスイツチS1を通つて出力
OUTに導びかれる。
FIG. 6 shows an example of a circuit in which the CMOS switch U2 to which the latch-up prevention circuit of the present invention is applied is applied to switch the output signal to a burnout signal when a resistance temperature converter fails. In the figure,
R t is a resistance temperature detector, and a constant current I 1 is supplied from the reference power supply V ref , and changes in R t due to temperature are converted into voltage.
This converted voltage is amplified by an amplifier U 1 and produces an output voltage E 2 at its output 2. E2 is led to the switch signal input end of CMOS switch U2 .
The switch U 2 used here is a composite circuit consisting of two sets of changeover switches S 1 and S 2 , and its power supply terminal is
V EE is connected to a latch-up prevention circuit composed of resistors R 1 , R 2 and diode D 1 as in FIG. 5. In the figure, switch S 1 of U 2 ,
The signal CON controlling the switching of S 2 utilizes the voltage E 1 occurring at the input 1 that supplies the current to R t . Under normal operating conditions when a constant current is supplied to R t , the voltage E 1 at the input terminal 1 is almost zero, and the switches S 1 and S 2 controlled by this signal have their output terminals O 1 , O 2 is connected to the L side terminal, and the output voltage E 2 of amplifier U 1 is output through switch S 1 .
Guided to OUT.

いま、測温抵抗Rtの内部導線またはA,Cの
導線の何れかが断線すれば入力端1の電圧E1
上昇しスイツチ回路U2の中のスイチツ素子S1
S2の出力端子O1,O2はそれぞれH側端子に切り
換わる。第7図はこの故障時t1とこれに対応する
電源端VEEに発生する電圧波形を例示する。もし
VEEに接続するラツチアツプ防止回路に含まれる
ダイオードD1がない場合は、VEEの電位は点線で
示す如く4〜5V程度まで上昇しその最大値もま
ちまちである。この電位上昇はVEE点を通り抵抗
R1,R2に電流が流出するためである。図に示す
ごとくR2と並列にD1を付加してあれば、VEEの電
位は実線で示すごとく略+0.7V以下におさえら
れる。スイツチ素子S1,S2出力端O1,O2がH側
に切換わるとバーンアウト信号発生回路BUの出
力端10の電圧は抵抗R4を通りスイツチS2のO2
点に導かれる。いまBUのスイツチSW1の端子6
−7を閉成しておけばVB点の電圧6Vは抵抗R4
R6を通してコンデンサC1を充電しR4,R6とC1
で定まる充電時定数にしたがつてC1の電圧VC
6Vにむかつて上昇し、VCはR7とS1のH→O1を通
りS1の出力に増幅器U2の電圧E2の上限値より高
い電圧を送り出す。また、BU回路のSW1の8−
9を閉成せる場合はVCは0Vまで下降する。この
ようにU2回路の切換によりバーンアウト動作が
行なわれる。
Now, if either the internal conductor of the temperature sensing resistor R t or the conductors A and C is disconnected, the voltage E 1 at the input terminal 1 increases, and the switch element S 1 in the switch circuit U 2 ,
The output terminals O 1 and O 2 of S 2 are respectively switched to H-side terminals. FIG. 7 illustrates this failure time t1 and the corresponding voltage waveform generated at the power supply terminal VEE . if
If there is no diode D1 included in the latch-up prevention circuit connected to V EE , the potential of V EE rises to about 4 to 5 V as shown by the dotted line, and its maximum value also varies. This potential rise passes through the V EE point and resists
This is because current flows into R 1 and R 2 . If D 1 is added in parallel with R 2 as shown in the figure, the potential of V EE can be kept below approximately +0.7V as shown by the solid line. When the output terminals O 1 and O 2 of the switch elements S 1 and S 2 are switched to the H side, the voltage at the output terminal 10 of the burnout signal generation circuit BU passes through the resistor R 4 and is output to the O 2 of the switch S 2 .
lead to a point. Terminal 6 of switch SW 1 of current BU
–7 is closed, the voltage 6V at point VB is the resistance R 4 ,
When capacitor C 1 is charged through R 6 and the charging time constant is determined by R 4 , R 6 and C 1 , the voltage V C of C 1 is
6V, V C passes through R 7 and H→O 1 of S 1 and sends out a voltage higher than the upper limit of voltage E 2 of amplifier U 2 to the output of S 1 . Also, 8- of SW 1 of the BU circuit
9 can be closed, V C drops to 0V. In this way, the burnout operation is performed by switching the U2 circuit.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はCMOS SWの使用例の回路図を示す。
第2図、第3図および第4図はCMOS SWのラ
ツチアツプ防止するために提案された回路例を示
す。第5図は本考案のラツチアツプ防止回路の実
施例回路である。第6図は本考案のラツチアツプ
防止回路を実施せるCMOS SWを応用せる回路
例を示す。第7図はその動作説明のための電圧波
形図である。 U2……CMOS SW、VEE……電源端子、R1
R2……分圧抵抗、D1……ダイオード素子。
Figure 1 shows a circuit diagram of an example of CMOS SW usage.
FIGS. 2, 3, and 4 show examples of circuits proposed to prevent latch-up of CMOS SWs. FIG. 5 shows an embodiment of the latch-up prevention circuit of the present invention. FIG. 6 shows an example of a circuit to which a CMOS SW can be applied to implement the latch-up prevention circuit of the present invention. FIG. 7 is a voltage waveform diagram for explaining the operation. U 2 ... CMOS SW, V EE ... Power supply terminal, R 1 ,
R 2 ……divider resistance, D 1 ……diode element.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 1方の電源端子VEEに0Vを加え他方の電源端子
VDDに一定電圧を加え、スイツチされる信号をこ
の電圧範囲に制約するCMOSスイツチにつき、
入力電圧が前記電源端子VEE側の電位以下の際に
起こるラツチアツプを防止するCMOSスイツチ
のラツチアツプ防止回路において、前記電源端子
VDDに印加される電圧とは反対極性の電圧−VS
電位基準点Gとの間に設置されその共通接続点が
前記電源端子VEEに接続される2つの抵抗R1,R2
よりなる直列回路と、前記電源端子VEEと前記電
位基準点Gとの間に設置されその陽極電極が前記
電極端子VEEに接続されるとともにその陰極電極
が前記電位基準点Gに接続されるダイオード素子
とを設けたことを特徴とするCMOSスイツチの
ラツチアツプ防止回路。
Add 0V to one power supply terminal V EE and the other power supply terminal
For a CMOS switch that applies a constant voltage to V DD and constrains the switched signal to this voltage range,
In a latch-up prevention circuit for a CMOS switch that prevents latch-up that occurs when the input voltage is lower than the potential on the power supply terminal VEE side, the power supply terminal
Two resistors R 1 and R 2 are installed between a voltage −V S of opposite polarity to the voltage applied to V DD and a potential reference point G, and their common connection point is connected to the power supply terminal V EE .
a series circuit consisting of a series circuit, which is installed between the power supply terminal V EE and the potential reference point G, and whose anode electrode is connected to the electrode terminal V EE and whose cathode electrode is connected to the potential reference point G. A latch-up prevention circuit for a CMOS switch characterized by being provided with a diode element.
JP1046684U 1984-01-27 1984-01-27 CMOS switch latch-up prevention circuit Granted JPS60124138U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1046684U JPS60124138U (en) 1984-01-27 1984-01-27 CMOS switch latch-up prevention circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1046684U JPS60124138U (en) 1984-01-27 1984-01-27 CMOS switch latch-up prevention circuit

Publications (2)

Publication Number Publication Date
JPS60124138U JPS60124138U (en) 1985-08-21
JPH0427220Y2 true JPH0427220Y2 (en) 1992-06-30

Family

ID=30491677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1046684U Granted JPS60124138U (en) 1984-01-27 1984-01-27 CMOS switch latch-up prevention circuit

Country Status (1)

Country Link
JP (1) JPS60124138U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2559141B2 (en) * 1989-06-29 1996-12-04 三菱電機株式会社 Analog switch

Also Published As

Publication number Publication date
JPS60124138U (en) 1985-08-21

Similar Documents

Publication Publication Date Title
US4906913A (en) Low dropout voltage regulator with quiescent current reduction
JP3639189B2 (en) Load drive circuit
CA1295676C (en) Device for limiting starting current in a dc converter
US4597036A (en) Blocking oscillator power pack
JPH0427220Y2 (en)
US20030006743A1 (en) Regulator circuit
JPS62210834A (en) Capacitor charging circuit
US4283638A (en) Field effect transistor switched temperature control circuit
JPH11160370A (en) Abnormal voltage detection circuit
JPH0793812B2 (en) SCR gate drive circuit with built-in power supply
JP2830648B2 (en) Voltage detection circuit
EP0079128B1 (en) Regulator for a dynamo
JPS647336Y2 (en)
SU1081698A1 (en) Device for control of electromagnetic mechanism
KR910002765Y1 (en) Power circuit
JPH0229441Y2 (en)
KR930006692Y1 (en) Switching time reducted circuit used for short diode
SU1160502A1 (en) Device for protection of converter
JPH0521991Y2 (en)
KR960007922Y1 (en) Support power circuit for charging battery
SU1202019A1 (en) Two-step power amplifier
JPS6114202Y2 (en)
JPH0445199Y2 (en)
JPH056640Y2 (en)
SU1173524A1 (en) Controlled multivibrator