JPH04271893A - Treatment of sulfuric acid ion-containing waste liquid and improved reaction chamber - Google Patents

Treatment of sulfuric acid ion-containing waste liquid and improved reaction chamber

Info

Publication number
JPH04271893A
JPH04271893A JP3053751A JP5375191A JPH04271893A JP H04271893 A JPH04271893 A JP H04271893A JP 3053751 A JP3053751 A JP 3053751A JP 5375191 A JP5375191 A JP 5375191A JP H04271893 A JPH04271893 A JP H04271893A
Authority
JP
Japan
Prior art keywords
gypsum
reaction chamber
intermediate zone
reaction
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3053751A
Other languages
Japanese (ja)
Other versions
JP2863820B2 (en
Inventor
Kinji Kinebuchi
杵渕 欽治
Yasushi Yoshida
靖 吉田
Katsuo Takada
高田 尅男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP3053751A priority Critical patent/JP2863820B2/en
Publication of JPH04271893A publication Critical patent/JPH04271893A/en
Application granted granted Critical
Publication of JP2863820B2 publication Critical patent/JP2863820B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

PURPOSE:To sufficiently prevent the generation of gypsum scale in a reaction chamber, intermediate zone and acceleration chamber and to drastically reduce the cost of equipment by settling and holding the gypsum particles of the set particle concn. at which a seed crystal effect can effectively be exhibited into the reaction chamber, and discharging the excess gypsum particles exceeding the set particle concn. CONSTITUTION:A reactive liquid mixture contg. the gypsum particles generated when a Ca compd. is brought into reaction with a sulfuric acid ion-contg. waste liquid are made to flow upward in the reaction chamber 1, then flow upward the intermediate zone P connecting to the top end of the reaction chamber 1 at the flow velocity higher than the rising flow velocity in the reaction chamber 1, and then toward a discharge direction in the acceleration chamber 2 connecting to the zone P at the flow velocity higher than the flow velocity of the zone P. The settling rate of the gypsum particles at the above-mentioned set particle concn. is then selected in accordance with the relation between the precipitated gypsum particle concn. and the settling rate of the gypsum particles at this concn. and the preset gypsum particle concn. at which the seed crystal effect in the gypsum precipitation reaction can be exhibited, by which the flow velocity of the zone P is set nearly equal to the selected settling rate of the gypsum particles.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本願発明は、石炭燃焼排煙の脱硫
装置等から排出される硫酸イオン含有廃液を処理する際
に硫酸イオンが石膏(硫酸カルシウム)として生成、析
出する反応において、反応槽の障害となる石膏スケール
の発生を防止しうる硫酸イオン含有廃液の処理方法及び
それに使用される改良反応槽に関する。
[Industrial Application Field] The present invention is applicable to a reaction tank in which sulfate ions are generated and precipitated as gypsum (calcium sulfate) when treating sulfate ion-containing waste liquid discharged from coal combustion flue gas desulfurization equipment, etc. The present invention relates to a method for treating sulfate ion-containing waste liquid that can prevent the formation of gypsum scale, which is a hindrance to the production of gypsum scale, and an improved reaction tank used therein.

【0002】0002

【従来の技術】従来、硫酸イオンと、フッ素イオン等の
有害物質を含有する廃液の処理方法として、反応槽内に
おいて該廃液に水酸化カルシウム、塩化カルシウム等の
カルシウム化合物を添加して撹拌し、上記フッ素イオン
をフッ化カルシウムとして除去する方法が広く知られて
いる。しかし、この周知の方法では、反応槽内で硫酸カ
ルシウムが多量に生成され、その多くは速かに析出する
が、残部が過飽和のまま溶液中に残留し、該残留分がそ
の後石膏スケールとなって反応槽内壁、撹拌機等に析出
し、そのままでは操業不能に至るため、しばしば運転を
中断して人力によるスケール除去作業を行わなければな
らない不便があった。
[Prior Art] Conventionally, as a method for treating waste liquid containing harmful substances such as sulfate ions and fluoride ions, calcium compounds such as calcium hydroxide and calcium chloride are added to the waste liquid in a reaction tank and the mixture is stirred. A widely known method is to remove the fluorine ions as calcium fluoride. However, in this well-known method, a large amount of calcium sulfate is produced in the reaction tank, and although most of it is quickly precipitated, the remainder remains in the solution as a supersaturated state, and this residue subsequently becomes gypsum scale. It deposits on the inner walls of the reaction tank, the stirrer, etc., and if left untreated, it becomes impossible to operate, resulting in the inconvenience of having to frequently interrupt operation and perform scale removal work manually.

【0003】この対策として、種晶添加法が石膏スケー
ルの発生を防止する手段としてその卓効性がすでに報告
されており、それによると種晶効果は図3の「種晶効果
による硫酸カルシウムの過飽和度の抑制状況」を示すグ
ラフにみられるように種晶として添加する石膏粒子濃度
に大きく影響されることも知られている。
[0003] As a countermeasure against this problem, the excellent effectiveness of the seed crystal addition method as a means of preventing the formation of gypsum scale has already been reported, and the seed crystal effect is shown in Figure 3. It is also known that the concentration of gypsum particles added as seed crystals has a large effect, as shown in the graph showing "Suppression of supersaturation".

【0004】そこで、この種晶添加法に基づいて、従来
、フッ化物イオン及び硫酸イオンを含有する排煙脱硫ま
たは脱硝廃水にカルシウム化合物を加えて懸濁液をうる
反応工程と、上記懸濁液を処理水と、硫酸カルシウム、
フッ化カルシウムを主とする沈殿物とに分離する工程と
を有する構成において、上記沈殿物を上記反応工程に返
送する工程を付加し、それにより該沈殿物に含まれる石
膏を種晶として循環使用することにより反応工程におけ
る石膏スケールの発生を防止する廃水処理方法が提案さ
れた(特公平1−26755号)。
[0004] Based on this seed crystal addition method, conventional methods include a reaction step in which a calcium compound is added to flue gas desulfurization or denitrification wastewater containing fluoride ions and sulfate ions to obtain a suspension, and The treated water and calcium sulfate,
and a step of separating calcium fluoride into a precipitate and a precipitate, in which a step of returning the precipitate to the reaction step is added, thereby recycling and using the gypsum contained in the precipitate as a seed crystal. A wastewater treatment method was proposed that prevents the generation of gypsum scale in the reaction process by doing so (Japanese Patent Publication No. 1-26755).

【0005】[0005]

【発明が解決しようとする課題】しかし、上記のような
従来の廃水処理方法では、スケール防止効果がでるよう
に石膏粒子濃度を高めるために廃水供給量の2倍以上の
沈殿物を循環させる必要があり、そのため実際の処理装
置において、溶解槽、反応槽及び沈殿槽の容量をそれぞ
れ2倍以上に増大しなければならないばかりでなく、沈
殿槽における沈殿物を所定の濃度に調整するための制御
手段や、摩耗性、沈降性のある沈殿物を循環させるため
のポンプ、配管等が必要となり、それらが相まって設備
コストが大幅に増加する欠点があった。
[Problems to be Solved by the Invention] However, in the conventional wastewater treatment method as described above, it is necessary to circulate more than twice the amount of wastewater supplied in order to increase the concentration of gypsum particles so that the scale prevention effect is achieved. Therefore, in the actual processing equipment, not only do the capacities of the dissolution tank, reaction tank, and precipitation tank each have to be more than doubled, but also controls are required to adjust the precipitate in the precipitation tank to a predetermined concentration. This method requires pumps, piping, and the like to circulate the abrasive and sedimentary precipitate, which has the drawback of significantly increasing equipment costs.

【0006】又、上記処理工程の外部から石膏粒子を反
応工程に添加する方法も考えられるが、石膏粒子貯槽、
反応工程への供給装置等の設備が必要となるばかりでな
く、処理工程で発生する汚泥量が増加し、それに伴い沈
殿槽から排出される汚泥の濃縮、脱水装置の容量を増大
させなければならない設備コストの難点が同様に残るの
である。本願発明は、設備コストを低減しつつ十分なス
ケール発生防止を図ることを課題とする。
[0006]Also, a method of adding gypsum particles to the reaction process from outside the treatment process can be considered, but a gypsum particle storage tank,
Not only will equipment such as supply equipment to the reaction process be required, but the amount of sludge generated in the treatment process will increase, and as a result, the capacity of the sludge concentration and dehydration equipment discharged from the settling tank must be increased. The problem of equipment costs remains as well. An object of the present invention is to sufficiently prevent scale generation while reducing equipment costs.

【0007】[0007]

【課題を解決するための手段】ところで、石炭燃焼排煙
の脱硫装置から排出される脱硫廃液についてみると、該
廃液には多量の硫酸イオンのほかフッ素イオン、アルミ
ニウムイオン及び鉄イオンが含まれており、これらを除
去するため反応槽に水酸化カルシウムを注入した場合、
一例として石膏が50〜70%と最も多く生成し、つい
でフッ化カルシウム、水酸化アルミニウム、水酸化鉄の
順で生成するのが通常である。そこで、これら生成物単
独の沈殿速度を実験により測定してみると、図4の「生
成結晶粒子の濃度と沈殿速度との関係」グラフに示すよ
うに粒子濃度の影響が大きいことと、石膏粒子の沈殿速
度(界面沈殿速度)が速いことが確認された。一例とし
て粒子濃度5%の石膏スラリーの沈殿速度は0.5m/
hであり、水酸化鉄は0.06%前後では凝集性も良く
、沈殿速度も速いが、0.1%では凝集も起こさず沈殿
性が極めて悪くなる(但し、沈殿速度が著しく遅いので
0.1%のデータは示していない)ことも認められた。
[Means for Solving the Problem] By the way, when we look at the desulfurization waste liquid discharged from a coal combustion flue gas desulfurization device, we find that the waste liquid contains a large amount of sulfate ions, as well as fluorine ions, aluminum ions, and iron ions. If calcium hydroxide is injected into the reaction tank to remove these substances,
As an example, gypsum is usually produced in the largest amount at 50 to 70%, followed by calcium fluoride, aluminum hydroxide, and iron hydroxide in that order. Therefore, when we experimentally measured the sedimentation rate of these products alone, we found that the influence of the particle concentration was large, as shown in the graph of "Relationship between the concentration of crystal particles produced and the sedimentation rate" in Figure 4. It was confirmed that the precipitation rate (interfacial precipitation rate) was high. As an example, the sedimentation velocity of gypsum slurry with a particle concentration of 5% is 0.5 m/
At around 0.06%, iron hydroxide has good flocculation and a fast precipitation rate, but at 0.1%, no flocculation occurs and the sedimentation rate is extremely poor (however, since the precipitation rate is extremely slow, .1% data not shown) was also observed.

【0008】つづいて、石膏5%、フッ化カルシウム1
%、水酸化アルミニウム0.5%及び水酸化鉄0.06
%の混合生成物の沈殿状況を観察したところ、石膏粒子
が沈殿速度の遅いフッ化カルシウム、水酸化アルミニウ
ムあるいは水酸化鉄と共凝集沈殿することなく、これら
生成物よりかなり速い速度で沈殿することが確認された
Next, 5% gypsum, 11% calcium fluoride
%, aluminum hydroxide 0.5% and iron hydroxide 0.06
% of the mixed product, it was found that the gypsum particles did not coagulate with calcium fluoride, aluminum hydroxide, or iron hydroxide, which have a slow precipitation rate, but precipitated at a much faster rate than these products. was confirmed.

【0009】これらの実験に基づいて、本願第1発明は
、硫酸イオン含有廃液にカルシウム化合物を反応させた
際に生じる石膏粒子を含む反応混合液を、反応室内を上
方へ、ついで上記反応室上端と連続する中間ゾーンを上
記反応室内の上昇流速より早い流速で上方へ、ついで上
記中間ゾーンと連続する加速室内を上記中間ゾーンの流
速より速い流速で排出方向へ流動させ、予め求めた析出
石膏粒子濃度とその濃度における石膏粒子の沈殿速度と
の関係と、石膏析出反応における種晶効果を有効に発揮
しうる予め設定された石膏粒子濃度とに基づいて、上記
設定粒子濃度における石膏粒子の沈殿速度を選定し、上
記中間ゾーンの流速を上記石膏粒子の選定沈殿速度とほ
ぼ等しくして、上記反応室内にほぼ上記設定粒子濃度分
の石膏粒子を沈殿保持させると共に、上記加速室内で上
記設定粒子濃度をこえる余剰石膏粒子を排出する、硫酸
イオン含有廃液の処理方法を提案し、
Based on these experiments, the first invention of the present application aims to move a reaction mixture containing gypsum particles generated when a calcium compound is reacted with a waste liquid containing sulfate ions upwardly into the reaction chamber, and then to the upper end of the reaction chamber. The precipitated gypsum particles obtained in advance are made to flow upward through the intermediate zone which is continuous with the intermediate zone at a flow rate higher than the upward flow rate in the reaction chamber, and then in the discharge direction through the acceleration chamber which is continuous with the intermediate zone at a flow rate higher than the flow rate in the intermediate zone. Based on the relationship between the concentration and the sedimentation rate of gypsum particles at that concentration, and a preset gypsum particle concentration that can effectively exhibit the seed crystal effect in the gypsum precipitation reaction, the sedimentation rate of gypsum particles at the above-determined particle concentration is determined. is selected, and the flow rate in the intermediate zone is made approximately equal to the selected sedimentation rate of the gypsum particles, so that the gypsum particles at approximately the set particle concentration are precipitated and held in the reaction chamber, and the set particle concentration is maintained in the acceleration chamber. We proposed a treatment method for wastewater containing sulfate ions, which discharges excess gypsum particles exceeding

【0010】本願
第2発明は、上記第1発明の実施に有効に使用されるも
のとして、反応室の上端に中間ゾーンを、該中間ゾーン
の上に加速室を三者連通状態でそれぞれ連設し、硫酸イ
オン含有廃液にカルシウム化合物を反応させた際に生じ
る石膏粒子を含む反応混合液を上記反応室内、中間ゾー
ンついで加速室内に上方へ連続的に流動させる流動付勢
手段を備え、上記中間ゾーンの上昇流速を反応室のそれ
より速くすべく該中間ゾーンの横断面積を反応室のそれ
より小さくし、上記加速室の上端部に排出口を設けると
共に該加速室の上昇流速を中間ゾーンのそれより速くす
べく該加速室の横断面積を中間ゾーンのそれより小さく
した、硫酸イオン含有廃液の処理における改良反応槽を
提案する。
[0010] The second invention of the present application, which is effectively used for carrying out the first invention, provides an intermediate zone at the upper end of the reaction chamber, and an acceleration chamber above the intermediate zone in a three-way communication state. and a flow urging means for continuously flowing a reaction mixture containing gypsum particles produced when a calcium compound is reacted with a sulfate ion-containing waste liquid upward into the reaction chamber, the intermediate zone, and then into the acceleration chamber; In order to make the upward flow rate of the zone faster than that of the reaction chamber, the cross-sectional area of the intermediate zone is made smaller than that of the reaction chamber, and a discharge port is provided at the upper end of the acceleration chamber. We propose an improved reaction tank for the treatment of sulfate ion-containing waste liquid, in which the cross-sectional area of the acceleration chamber is smaller than that of the intermediate zone in order to achieve faster speed.

【0011】以下、石炭排煙の脱硫装置から排出される
硫酸イオン含有廃液から硫酸イオン等を除去する工程に
おける石膏スケール発生防止構造を備えた改良反応槽の
実施例について説明する。
[0011] Hereinafter, an embodiment of an improved reaction tank equipped with a gypsum scale prevention structure in the process of removing sulfate ions, etc. from a sulfate ion-containing waste liquid discharged from a coal flue gas desulfurization device will be described.

【0012】0012

【実施例】図1において、反応槽は、反応室(1)の上
に中間ゾーン(P)、ついでその上に加速室(2)を三
者連通状態に形成したもので、そのうち反応室(1)は
有底円筒状に形成され、その側壁に廃液供給管(3)及
びカルシウム化合物供給管(4)をそれぞれ接続すると
共に、各供給管(3)、(4)の先端部を反応室(1)
内に延出し、延出先端の供給口(5)、(6)を反応室
(1)内底面近くに垂下させている。各供給管(3)、
(4)の後端は脱硫廃液タンク及び水酸化カルシウムス
ラリータンク(いずれも図示略)にそれぞれ接続される
が、それらの中間部に、上記各タンク内の廃液及び水酸
化カルシウムスラリーを反応室(1)内に供給すると共
に該廃液と水酸化カルシウムとの反応混合液を反応室(
1)内を上方へ、ついで中間ゾーン(P)、加速室(2
)内を上方へ連続的に流動させる流動付勢手段としてポ
ンプ(7)、(8)をそれぞれ接続してある。
[Example] In Fig. 1, the reaction tank has an intermediate zone (P) above the reaction chamber (1), and an acceleration chamber (2) formed above it in a three-way communication state, of which the reaction chamber ( 1) is formed into a cylindrical shape with a bottom, and a waste liquid supply pipe (3) and a calcium compound supply pipe (4) are connected to its side wall, and the tips of each supply pipe (3) and (4) are connected to the reaction chamber. (1)
The supply ports (5) and (6) at the ends of the extension are suspended near the inner bottom surface of the reaction chamber (1). each supply pipe (3),
The rear end of (4) is connected to a desulfurization waste liquid tank and a calcium hydroxide slurry tank (both not shown), and the waste liquid and calcium hydroxide slurry in each tank are transferred to the reaction chamber ( 1), and the reaction mixture of the waste liquid and calcium hydroxide is supplied to the reaction chamber (
1) Inside upwards, then the middle zone (P), the acceleration chamber (2
Pumps (7) and (8) are respectively connected as flow urging means for continuously causing the fluid to flow upwardly through the fluid.

【0013】上記反応室(1)の開放上端に、大径部が
該反応室(1)と同径の中空切頭円錐体を、その大径部
において、接続し、この中空切頭円錐体の大径部分内を
上記反応室(1)より次第に小径となる中間ゾーン(P
)に、その上部全体を上記中間ゾーン(P)より次第に
小径となる加速室(2)にそれぞれ形成してある。 上記加速室(2)の上端部には溢流排出口(9)を設け
ると共に、該排出口(9)に接続された排出管(10)
を次工程の沈殿槽(図示略)に接続してあり、又加速室
(2)の上面にギャードモータ(11)を設置し、該モ
ータ(11)の出力軸に接続された撹拌軸(12)を加
速室(2)内及び反応室(1)内の中心線上に垂下させ
ると共に反応室内の下端部に撹拌羽根(13)…を取付
けてある。
[0013] A hollow truncated cone whose large diameter part has the same diameter as the reaction chamber (1) is connected to the open upper end of the reaction chamber (1), and this hollow truncated cone Inside the large diameter part of the reaction chamber (1), there is an intermediate zone (P
), the entire upper part of which is formed into an acceleration chamber (2) whose diameter is gradually smaller than that of the intermediate zone (P). An overflow discharge port (9) is provided at the upper end of the acceleration chamber (2), and a discharge pipe (10) connected to the discharge port (9).
A geared motor (11) is installed on the top surface of the acceleration chamber (2), and a stirring shaft (12) is connected to the output shaft of the motor (11). is suspended on the center line of the acceleration chamber (2) and the reaction chamber (1), and stirring blades (13) are attached to the lower end of the reaction chamber.

【0014】上例の反応槽を使用して硫酸イオン含有廃
液の処理方法について次に説明する。便宜上、硫酸イオ
ン15000mg/l、フッ素イオン1900mg/l
、カルシウムイオン680mg/l、アルミニウムイオ
ン460mg/l、鉄イオン460mg/l、ナトリウ
ムイオン3000mg/lの成分割合でPH=1(塩酸
添加による調整)の模擬廃液を調整し、これをポンプ(
7)の駆動により供給管(3)を通じて供給口(5)か
ら反応室(1)内に供給すると同時に、水酸化カルシウ
ムスラリーをポンプ(8)の駆動により供給管(4)を
通じて供給口(6)から反応室(1)内に供給し、それ
と共にモータ(11)の始動により撹拌軸(12)を回
転させて反応室内を撹拌すると、廃液中の各イオンと水
酸化カルシウムが反応し、硫酸カルシウム、フッ化カル
シウム、水酸化アルミニウム、水酸化鉄を生成、析出し
つつ上方へ流動する。
[0014] Next, a method for treating sulfate ion-containing waste liquid using the reaction tank of the above example will be explained. For convenience, sulfate ion 15000mg/l, fluorine ion 1900mg/l
A simulated waste liquid with a pH of 1 (adjusted by adding hydrochloric acid) was prepared with a component ratio of 680 mg/l of calcium ions, 460 mg/l of aluminum ions, 460 mg/l of iron ions, and 3000 mg/l of sodium ions, and this was pumped (
At the same time, calcium hydroxide slurry is supplied into the reaction chamber (1) from the supply port (5) through the supply pipe (3) by driving the pump (8) through the supply pipe (4). ) into the reaction chamber (1), and when the stirring shaft (12) is rotated by starting the motor (11) to stir the inside of the reaction chamber, each ion in the waste liquid reacts with calcium hydroxide, and sulfuric acid It flows upward while producing and precipitating calcium, calcium fluoride, aluminum hydroxide, and iron hydroxide.

【0015】ここで、供給口(5)、(6)から廃液及
び水酸化カルシウムスラリーを所定流量で供給すること
により、上記反応槽の中間ゾーン(P)における上昇線
流速を、一例として種晶効果を十分に発揮しうる設定粒
子濃度5%の石膏沈殿速度0.5m/h(図4参照)と
等しくする。それに伴い反応室(1)内の上昇線流速が
石膏沈殿速度0.5m/hより遅く、加速室(2)内の
上昇線流速がそれより速くなり、それによって上記反応
室(1)内に石膏粒子が5%相当の濃度分だけ沈殿し、
5%をこえる余剰石膏粒子は、沈殿速度の遅いフッ化カ
ルシウム、水酸化カルシウム及び水酸化鉄の凝集物と共
に上昇流にのって反応室(1)内から加速室(2)内を
上昇し、排出口(9)から排出される。すなわち供給さ
れる廃液と水酸化カルシウムとの反応で生成され続ける
石膏粒子で上記中間ゾーン(P)における石膏粒子濃度
が上がるが、それに伴い沈殿速度が0.5m/hより遅
くなるため5%をこえる余剰の石膏粒子は速い上昇流に
より上記中間ゾーン(P)から上方へ送られ、排出口(
9)から排出され、その結果反応室(1)内に純度が高
く活性があり種晶効果を十分発揮しうる粒子濃度の石膏
を存続させ、それにより反応室(1)内で種晶効果を発
揮し、石膏スケールの発生を防止する。
[0015] By supplying the waste liquid and calcium hydroxide slurry at a predetermined flow rate from the supply ports (5) and (6), the ascending linear flow velocity in the intermediate zone (P) of the reaction tank can be adjusted to, for example, the seed crystal. The gypsum sedimentation rate is set to be equal to 0.5 m/h (see FIG. 4) at a set particle concentration of 5%, which can fully exhibit the effect. As a result, the upward linear flow velocity in the reaction chamber (1) is slower than the gypsum precipitation rate of 0.5 m/h, and the upward linear flow velocity in the acceleration chamber (2) becomes faster than that, and as a result, the upward linear flow velocity in the reaction chamber (1) becomes faster than that. Gypsum particles precipitate at a concentration equivalent to 5%,
Excess gypsum particles exceeding 5% rise from the reaction chamber (1) to the acceleration chamber (2) along with the aggregates of calcium fluoride, calcium hydroxide, and iron hydroxide, which have a slow settling rate. , is discharged from the discharge port (9). In other words, the concentration of gypsum particles in the intermediate zone (P) increases due to the gypsum particles that continue to be generated by the reaction between the supplied waste liquid and calcium hydroxide, but the sedimentation speed becomes slower than 0.5 m/h, so the 5% The excess gypsum particles are sent upward from the intermediate zone (P) by a fast upward flow, and are sent to the discharge port (
9), and as a result, gypsum with high purity and activity remains in the reaction chamber (1) at a particle concentration that can sufficiently exert the seed crystal effect. and prevents the formation of gypsum scale.

【0016】なお、種晶効果を有効に発揮しうる石膏の
設定粒子濃度としては、図3にみられるように約2〜7
%程度が適当である。
As shown in FIG. 3, the particle concentration of gypsum that can effectively exhibit the seed crystal effect is about 2 to
% is appropriate.

【0017】ちなみに、定常状態における排出口(9)
からの排出液に含まれる固形物を極く短時間で濾過し、
その濾過液のカルシウムイオン濃度を測定したところ、
580mg/lの値を示し、石膏の過飽和状態が十分に
回避されたことが認められた。又この濾過液を3日間放
置したが結晶の析出は認められなかった。
By the way, the discharge port (9) in steady state
Filters the solids contained in the discharged liquid in an extremely short time,
When the calcium ion concentration of the filtrate was measured,
The value was 580 mg/l, indicating that the supersaturation of gypsum was sufficiently avoided. Further, this filtrate was allowed to stand for 3 days, but no crystal precipitation was observed.

【0018】さらに、反応室(1)内のスラリーをとり
、その石膏粒子濃度を測定すると、5.5%であり、図
4において沈殿速度0.5m/hにおける粒子濃度5.
0%にほぼ一致しており、種晶効果を発揮するに十分な
石膏粒子濃度が形成されていることが認められた。
Furthermore, when the slurry in the reaction chamber (1) was taken and the gypsum particle concentration was measured, it was 5.5%, and in FIG. 4, the particle concentration at a sedimentation rate of 0.5 m/h was 5.5%.
It was found that a sufficient concentration of gypsum particles was formed to exhibit a seed crystal effect.

【0019】上記反応槽による処理を5日間連続実施し
た後、反応槽内面、撹拌軸(12)及び羽根(13)…
の表面を観察したが、石膏スケールの析出はほとんど認
められなかった。
After carrying out the treatment in the reaction tank for 5 consecutive days, the inner surface of the reaction tank, the stirring shaft (12) and the blade (13)...
When the surface of the specimen was observed, almost no gypsum scale precipitation was observed.

【0020】図2は反応反応槽の他の実施例で、加速室
(2a)が反応室(1a)より小径の円筒状に形成され
ると共に、反応室(1a)との弧状傾斜連結部分に中間
ゾーン(Pa)が形成され、他の構造は図1と実質的に
同一の例である。
FIG. 2 shows another embodiment of the reaction tank, in which the acceleration chamber (2a) is formed in a cylindrical shape with a smaller diameter than the reaction chamber (1a), and an arcuate inclined connection part with the reaction chamber (1a) is formed. An intermediate zone (Pa) is formed, and the other structures are substantially the same as in FIG.

【0021】[0021]

【発明の効果】本願第1発明の硫酸イオン含有廃液の処
理方法によれば、反応室内に種晶効果を有効に発揮しう
る設定粒子濃度の石膏粒子を沈殿保持させると共に、該
設定粒子濃度をこえる余剰の石膏粒子は排出し、それに
より反応室内、中間ゾーン及び加速室内に石膏スケール
の発生を十分に防止することができるのであり、しかも
従来の沈殿物循環方法や外部からの石膏粒子添加方法と
比較して、設備を大幅に簡略化でき、設備コストを著し
く節減することができるのである。
Effects of the Invention According to the method for treating sulfate ion-containing waste liquid of the first invention of the present application, gypsum particles with a predetermined particle concentration that can effectively exert a seed crystal effect are precipitated and retained in the reaction chamber, and the predetermined particle concentration can be maintained. Excess gypsum particles can be discharged, thereby sufficiently preventing the formation of gypsum scale in the reaction chamber, intermediate zone, and acceleration chamber, and without using the conventional sediment circulation method or external gypsum particle addition method. In comparison, the equipment can be significantly simplified and equipment costs can be significantly reduced.

【0022】本願第2発明の硫酸イオン含有廃液の処理
における改良反応槽によれば、上記第1発明の硫酸イオ
ン含有廃液の処理方法を有効に実施することができ、そ
して第1発明と同様に従来処理装置と比較して、設備を
大幅に簡略化でき、設備コストの著しい節減を実現でき
るのである。
According to the improved reaction tank for treating sulfate ion-containing waste liquid of the second invention of the present application, the method for treating sulfate ion-containing waste liquid of the first invention can be effectively carried out, and as in the first invention, Compared to conventional processing equipment, the equipment can be significantly simplified and a significant reduction in equipment costs can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】硫酸イオン含有廃液の反応槽の縦断正面図であ
る。
FIG. 1 is a longitudinal sectional front view of a reaction tank for waste liquid containing sulfate ions.

【図2】反応槽の他の実施例の同上正面図である。FIG. 2 is a front view of another embodiment of the reaction tank.

【図3】種晶効果による硫酸カルシウム過飽和度の抑制
状況を示すグラフである。
FIG. 3 is a graph showing how calcium sulfate supersaturation is suppressed by the seed crystal effect.

【図4】生成結晶粒子の濃度と沈殿速度との関係を示す
グラフである。
FIG. 4 is a graph showing the relationship between the concentration of produced crystal particles and the precipitation rate.

【符号の説明】[Explanation of symbols]

1  反応室 P  中間ゾーン 2  加速室 7、8  ポンプ 9  溢流排出口 1 Reaction chamber P Intermediate zone 2 Acceleration room 7, 8 Pump 9 Overflow outlet

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  硫酸イオン含有廃液にカルシウム化合
物を反応させた際に生じる石膏粒子を含む反応混合液を
、反応室内を上方へ、ついで上記反応室上端と連続する
中間ゾーンを上記反応室内の上昇流速より速い流速で上
方へ、ついで上記中間ゾーンと連続する加速室内を上記
中間ゾーンの流速より速い流速で排出方向へ流動させ、
予め求めた析出石膏粒子濃度とその濃度における石膏粒
子の沈殿速度との関係と、石膏析出反応における種晶効
果を有効に発揮しうる予め設定された石膏粒子濃度とに
基づいて、上記設定粒子濃度における石膏粒子の沈殿速
度を選定し、上記中間ゾーンの流速を上記石膏粒子の選
定沈殿速度とほぼ等しくして、上記反応室内にほぼ上記
設定粒子濃度分の石膏粒子を沈殿保持させると共に、上
記加速室内で上記設定粒子濃度をこえる余剰石膏粒子を
排出する、硫酸イオン含有廃液の処理方法。
Claim 1: A reaction mixture containing gypsum particles produced when a calcium compound is reacted with a waste liquid containing sulfate ions is moved upwardly within the reaction chamber, and then an intermediate zone continuous with the upper end of the reaction chamber is moved upwardly within the reaction chamber. Flowing upward at a flow rate higher than the flow rate, and then flowing in the discharge direction at a flow rate higher than the flow rate of the intermediate zone in an acceleration chamber continuous with the intermediate zone,
Based on the relationship between the precipitated gypsum particle concentration determined in advance and the sedimentation rate of the gypsum particles at that concentration, and the preset gypsum particle concentration that can effectively exert the seed crystal effect in the gypsum precipitation reaction, the above-mentioned set particle concentration is determined. Select the sedimentation rate of the gypsum particles in the intermediate zone, make the flow rate in the intermediate zone approximately equal to the selected sedimentation rate of the gypsum particles, and maintain the gypsum particles at approximately the predetermined particle concentration in the reaction chamber, and at the same time A method for treating wastewater containing sulfate ions, which indoors discharges excess gypsum particles that exceed the set particle concentration above.
【請求項2】  反応室の上端に中間ゾーンを、該中間
ゾーンの上に加速室を三者連通状態でそれぞれ連設し、
硫酸イオン含有廃液にカルシウム化合物を反応させた際
に生じる石膏粒子を含む反応混合液を上記反応室内、中
間ゾーンついで加速室内に上方へ連続的に流動させる流
動付勢手段を備え、上記中間ゾーンの上昇流速を反応室
のそれより速くすべく該中間ゾーンの横断面積を反応室
のそれより小さくし、上記加速室の上端部に排出口を設
けると共に該加速室の上昇流速を中間ゾーンのそれより
速くすべく該加速室の横断面積を中間ゾーンのそれより
小さくした、硫酸イオン含有廃液の処理における改良反
応槽。
2. An intermediate zone is provided at the upper end of the reaction chamber, and an acceleration chamber is provided above the intermediate zone in a three-way communication state,
A flow urging means is provided for causing a reaction mixture containing gypsum particles produced when a calcium compound is reacted with a sulfate ion-containing waste liquid to flow continuously upward into the reaction chamber, the intermediate zone, and then into the acceleration chamber. In order to make the upward flow rate faster than that of the reaction chamber, the cross-sectional area of the intermediate zone is made smaller than that of the reaction chamber, and a discharge port is provided at the upper end of the acceleration chamber, and the upward flow rate of the acceleration chamber is made faster than that of the intermediate zone. An improved reaction tank for the treatment of sulfate ion-containing waste liquid, in which the cross-sectional area of the acceleration chamber is smaller than that of the intermediate zone in order to speed up the treatment.
JP3053751A 1991-02-27 1991-02-27 Method for treating sulfate-containing waste liquid and improved reaction tank Expired - Fee Related JP2863820B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3053751A JP2863820B2 (en) 1991-02-27 1991-02-27 Method for treating sulfate-containing waste liquid and improved reaction tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3053751A JP2863820B2 (en) 1991-02-27 1991-02-27 Method for treating sulfate-containing waste liquid and improved reaction tank

Publications (2)

Publication Number Publication Date
JPH04271893A true JPH04271893A (en) 1992-09-28
JP2863820B2 JP2863820B2 (en) 1999-03-03

Family

ID=12951517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3053751A Expired - Fee Related JP2863820B2 (en) 1991-02-27 1991-02-27 Method for treating sulfate-containing waste liquid and improved reaction tank

Country Status (1)

Country Link
JP (1) JP2863820B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011200788A (en) * 2010-03-25 2011-10-13 Kobelco Eco-Solutions Co Ltd Water treating method and water treatment apparatus
JP2012210629A (en) * 2008-01-31 2012-11-01 Japan Organo Co Ltd Crystallization reactor apparatus and crystallization reaction method
WO2015001889A1 (en) * 2013-07-05 2015-01-08 三菱重工業株式会社 Water treatment method, and water treatment system
JP2019063694A (en) * 2017-09-28 2019-04-25 住友金属鉱山株式会社 Liquid supply pipe and chemical reaction device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012210629A (en) * 2008-01-31 2012-11-01 Japan Organo Co Ltd Crystallization reactor apparatus and crystallization reaction method
JP2011200788A (en) * 2010-03-25 2011-10-13 Kobelco Eco-Solutions Co Ltd Water treating method and water treatment apparatus
WO2015001889A1 (en) * 2013-07-05 2015-01-08 三菱重工業株式会社 Water treatment method, and water treatment system
WO2015001888A1 (en) * 2013-07-05 2015-01-08 三菱重工業株式会社 Water treatment method, and water treatment system
JP6005284B2 (en) * 2013-07-05 2016-10-12 三菱重工業株式会社 Water treatment method and water treatment system
US9914652B2 (en) 2013-07-05 2018-03-13 Mitsubishi Heavy Industries, Ltd. Water treatment process and water treatment system
US9914653B2 (en) 2013-07-05 2018-03-13 Mitsubishi Heavy Industries, Ltd. Water treatment process and water treatment system
US9950936B2 (en) 2013-07-05 2018-04-24 Mitsubishi Heavy Industries, Ltd. Water treatment process and water treatment system
US9969629B2 (en) 2013-07-05 2018-05-15 Mitsubishi Heavy Industries, Inc. Water treatment process and water treatment system
US10029929B2 (en) 2013-07-05 2018-07-24 Mitsubishi Heavy Industries, Ltd. Water treatment process and water treatment system
US10160671B2 (en) 2013-07-05 2018-12-25 Mitsubishi Heavy Industries Engineering, Ltd. Water treatment process and water treatment system
JP2019063694A (en) * 2017-09-28 2019-04-25 住友金属鉱山株式会社 Liquid supply pipe and chemical reaction device

Also Published As

Publication number Publication date
JP2863820B2 (en) 1999-03-03

Similar Documents

Publication Publication Date Title
EP1330414B1 (en) Method for treatment of water and wastewater
CN109661261B (en) Coagulation sedimentation device
AU2002220093A1 (en) Method and apparatus for treatment of water and wastewater
JP3196640B2 (en) Fluorine removal equipment
CN102126764A (en) Etching waste water processing method of silicon wafer and processing device
JPH04271893A (en) Treatment of sulfuric acid ion-containing waste liquid and improved reaction chamber
JP4508600B2 (en) Method and apparatus for treating fluorine-containing wastewater
US5158688A (en) Process for removing inorganic gels and incompressible solids from acidic media
JP2927255B2 (en) Treatment method for wastewater containing fluorine
EA005306B1 (en) A method for the removal of metals from an aqueous solution using lime precipitation
JP4522534B2 (en) Water purification method
JP4041977B2 (en) Method and apparatus for processing solution containing selenium
JP3559789B2 (en) Calcium fluoride recovery method
JPH11276807A (en) Flocculant and flocculation sedimentation equipment using the same
SU1386584A1 (en) Method of purifying waste water of heavy metal compounds
CN216785887U (en) Combined treatment device for fluorine-containing wastewater
JPS6329599B2 (en)
RU2214367C2 (en) Method of industrial sewage water treatment and device for method embodiment
CN221206936U (en) Clarifier
SU1330077A1 (en) Method of defluorination of natural water
CN220364441U (en) Oxidation precipitation device for removing thallium from sintering and pellet desulfurization wastewater
JP4524796B2 (en) Method and apparatus for treating fluorine-containing wastewater
SU1204568A1 (en) Method of clarifying titanium-containing sulfate solutions
CN1453220A (en) Circular utilization of Y-type molecular sieve exchange washing water
JP3237524B2 (en) Cleaning method for water treatment equipment

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081218

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081218

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091218

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees