JPH04271317A - Optical scanning mirror - Google Patents

Optical scanning mirror

Info

Publication number
JPH04271317A
JPH04271317A JP3032580A JP3258091A JPH04271317A JP H04271317 A JPH04271317 A JP H04271317A JP 3032580 A JP3032580 A JP 3032580A JP 3258091 A JP3258091 A JP 3258091A JP H04271317 A JPH04271317 A JP H04271317A
Authority
JP
Japan
Prior art keywords
mirror
optical scanning
giant magnetostrictive
materials
supermagnetostrictive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3032580A
Other languages
Japanese (ja)
Inventor
Kiyoshi Inoue
潔 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INR Kenkyusho KK
Original Assignee
INR Kenkyusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INR Kenkyusho KK filed Critical INR Kenkyusho KK
Priority to JP3032580A priority Critical patent/JPH04271317A/en
Publication of JPH04271317A publication Critical patent/JPH04271317A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To provide the optical scanning mirror which has a simple structure, can execute optical scanning at an extremely high speed and can make scanning in arbitrary directions vertical and horizontal to an X-Y plane. CONSTITUTION:This mirror has a reflection mirror 1, a means 2 which freely tiltably supports a mirror at a fulcrum set in nearly the central position of the reflection mirror, supermagnetostrictive materials 4, 5 fixed at one end to the mirror on the respective axes of the cruciform axes having the fulcra at the intersected point and coils 7, 8 for applying magnetic fields to the respective supermagnetostrictive materials 4, 5. The supermagnetostrictive materials 4, 5 are subjected to the reflected light of the reflection mirror 1 can be deflected and scanned at a high speed with high accuracy in arbitrary directions and positions. This mirror lends itself to various kinds of applications including lithography, optical scanners, plot typing, laser beam processing, laminating, and others.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は光走査ミラーに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical scanning mirror.

【0002】0002

【従来の技術】従来、図4に示すように、固定磁極12
の磁界中にコイル13を設け、コイル13にミラー14
を固定し、コイル13に電流を流すことにより磁界との
作用でミラー14を上下支持軸を中心に回動させる走査
ミラーが知られているが、この場合のミラー14の偏向
走査は上下の1軸を中心に回動させるのみであり、また
走査角制御の精度も低いという欠点がある。
[Prior Art] Conventionally, as shown in FIG.
A coil 13 is provided in the magnetic field, and a mirror 14 is attached to the coil 13.
A scanning mirror is known in which the mirror 14 is rotated around a vertical support shaft by the action of a magnetic field by applying a current to a coil 13, but in this case, the deflection scanning of the mirror 14 is It has the disadvantage that it only rotates around an axis, and the accuracy of scanning angle control is also low.

【0003】IC、LSIなどの集積回路用の高分子レ
ジスト材料の加工についてみると、今後集積回路が一層
微細化するにしたがってレジストの微細加工が益々要求
される。このレジスト加工にフォトリソグラフィー技術
が利用されるが、この光走査に反射ミラーを利用すると
き、その精度に問題がある。また、光走査により描画す
るときX−Y軸の縦横に走査しなければ任意に回路パタ
ーンを描くことができない。
Regarding the processing of polymeric resist materials for integrated circuits such as ICs and LSIs, as integrated circuits become further miniaturized in the future, finer processing of resists will be increasingly required. Photolithography technology is used for this resist processing, but when a reflecting mirror is used for this optical scanning, there is a problem with its accuracy. Furthermore, when drawing by optical scanning, a circuit pattern cannot be arbitrarily drawn unless it is scanned vertically and horizontally along the X-Y axes.

【0004】0004

【発明が解決しようとする課題】本発明はこのようなリ
ソグラフィーに利用でき、高精度な光走査ができ、しか
もX−Y平面に対して縦横の任意の方向に走査できる光
走査ミラーを提供することを目的とするものである。
[Problems to be Solved by the Invention] The present invention provides an optical scanning mirror that can be used in such lithography, can perform highly accurate optical scanning, and can scan in arbitrary directions vertically and horizontally with respect to the X-Y plane. The purpose is to

【0005】[0005]

【課題を解決するための手段】上記の目的は、反射ミラ
ーと、上記反射ミラーのほぼ中心位置に設定された支点
に於てミラーを傾動自在に支持する手段と、上記支点を
交点とする十字軸の各軸上で一端をミラーに固定した超
磁歪材と、上記各超磁歪材に磁界を加えるコイルを設け
たことを特徴とする光走査ミラーにて達成し得る。また
、上記の如く構成された光走査ミラー全体を、上記十字
軸と直交する軸方向に送る駆動装置を設けることが推奨
される。
[Means for Solving the Problems] The above object is to provide a reflecting mirror, a means for supporting the mirror in a tiltable manner at a fulcrum set approximately at the center of the reflecting mirror, and a cross whose intersection is the fulcrum. This can be achieved with an optical scanning mirror characterized by comprising giant magnetostrictive materials having one end fixed to a mirror on each axis, and a coil for applying a magnetic field to each of the giant magnetostrictive materials. Furthermore, it is recommended to provide a drive device that moves the entire optical scanning mirror configured as described above in an axial direction perpendicular to the cross axis.

【0006】[0006]

【作用】このように、本発明に係る光走査ミラーの反射
ミラーはそのほぼ中心位置に設定された支点を中心に任
意の方向に傾動自在に設けられ、その支点を交点とする
十字軸の各軸上に一端を固定した超磁歪材を設けて傾動
制御するようにしたから、ミラーによる反射光を任意の
方向、位置に偏向走査することができ、また超磁歪材を
コイル励磁により磁歪制御するようにしたから、磁歪変
化による伸縮ストロークを増大して光走査角度を極めて
大きく、即ち走査量を極めて大きくすることができ、高
精度の走査制御ができる。また超磁歪材の高応答によっ
て応答速度が高く、高感度の制御ができる。
[Operation] As described above, the reflecting mirror of the optical scanning mirror according to the present invention is provided so as to be tiltable in any direction around the fulcrum set at approximately the center position, and each of the cross axes with the fulcrum as the intersection Since we installed a giant magnetostrictive material with one end fixed on the axis and controlled its tilting, the light reflected by the mirror can be deflected and scanned in any direction and position, and the magnetostrictive material can be controlled magnetostrictively by coil excitation. This makes it possible to increase the expansion/contraction stroke due to magnetostrictive changes, thereby making it possible to make the optical scanning angle extremely large, that is, to make the scanning amount extremely large, and to perform highly accurate scanning control. Furthermore, the high response speed of the giant magnetostrictive material allows for high response speed and highly sensitive control.

【0007】[0007]

【実施例】以下図面を参照しつゝ本発明を具体的に説明
する。図1は本発明に係る光走査ミラーの一実施例の全
体斜視図、図2はそのミラーの裏面図であり、図中、1
は凹面をした反射ミラーで、中心の支点の周りに傾動自
在に設けられる。2はミラーの中心の支点を支持する支
持棒である。3はミラー1の外周を傾動自在に支持する
支持枠、4及び5は上記ミラー中心の支点を交点とする
十字軸のX軸及びY軸上の支持枠に一端を固定した超磁
歪材で、超磁歪材としてはTbDyFe系のものを主と
して利用する。例えばTb0.3 Dy0.7 Fe1
.9 の柱状晶材を棒状体に成形して用いる。この超磁
歪材4及び5の他端は、装置本体6に固定する。またミ
ラー1の中心の支点を支持する支持棒2の他端も装置本
体6に固定される。7及び8は超磁歪材の棒に巻回した
磁界発生用コイルで、この励磁制御によって磁歪制御す
る。9は装置本体6にミラー1の十字軸に直交する軸の
Z軸に送りを与える駆動モータである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to the drawings. FIG. 1 is an overall perspective view of an embodiment of an optical scanning mirror according to the present invention, and FIG. 2 is a back view of the mirror.
is a concave reflective mirror that can be tilted freely around a central fulcrum. 2 is a support rod that supports the central fulcrum of the mirror. 3 is a support frame that supports the outer periphery of the mirror 1 in a freely tiltable manner; 4 and 5 are giant magnetostrictive materials having one end fixed to the support frame on the X-axis and Y-axis of a cross whose intersection is the fulcrum at the center of the mirror; As the giant magnetostrictive material, a TbDyFe type material is mainly used. For example, Tb0.3 Dy0.7 Fe1
.. The columnar crystal material No. 9 is formed into a rod-shaped body and used. The other ends of the giant magnetostrictive materials 4 and 5 are fixed to the device main body 6. Further, the other end of the support rod 2 that supports the central fulcrum of the mirror 1 is also fixed to the main body 6 of the apparatus. 7 and 8 are magnetic field generating coils wound around a rod of giant magnetostrictive material, and magnetostriction is controlled by this excitation control. Reference numeral 9 denotes a drive motor that feeds the main body 6 of the apparatus along the Z-axis, which is perpendicular to the cross axis of the mirror 1.

【0008】コイル7の励磁によって超磁歪材4を磁歪
制御すると、支点を中心にミラー1を左右に傾斜制御す
ることができ、またコイル8を励磁して超磁歪材5を磁
歪制御するとミラー1を上下に傾斜制御することができ
る。
When the giant magnetostrictive material 4 is magnetostrictively controlled by exciting the coil 7, the mirror 1 can be tilted left and right about the fulcrum, and when the coil 8 is excited and the giant magnetostrictive material 5 is magnetostrictively controlled, the mirror 1 The tilt can be controlled up and down.

【0009】第3図のように、ミラー1を凹面鏡とし、
レーザ発振器からの平行光線10をこのミラー1で反射
し、焦点11に集光したときの焦点距離を例えば 50
0mmとし、ミラーの中心支点からX軸上5mmの位置
での超磁歪材4の変形量を0.01mmとすれば、集光
ビームの焦点11を照射平面のX軸方向に約1mm程度
走査でき、超磁歪材5を変形したときは焦点11をY軸
方向に約1mm程度走査できることになる。
As shown in FIG. 3, the mirror 1 is a concave mirror,
The focal length when the parallel light beam 10 from the laser oscillator is reflected by this mirror 1 and focused on the focal point 11 is, for example, 50
0 mm, and the amount of deformation of the giant magnetostrictive material 4 at a position 5 mm on the X-axis from the central fulcrum of the mirror is 0.01 mm, the focal point 11 of the focused beam can be scanned approximately 1 mm in the X-axis direction of the irradiation plane. When the giant magnetostrictive material 5 is deformed, the focal point 11 can be scanned by about 1 mm in the Y-axis direction.

【0010】超磁歪材Tb0.3 Dy0.7 Fe1
.9 の長さ30mmの棒体に1500エルステッドの
磁界を加えたときの磁歪変化は約0.22mm程度で、
従ってこれを用いて前記のミラー制御を行なった場合は
、焦点11の走査距離は最大22mm程度になり、リソ
グラフィー加工の描画走査に充分利用することができる
。また、超磁歪材Tb0.3 Dy0.7 Fe1.9
 の周波数応答は最大約10KHz 程度までは磁歪振
幅がほぼ一定の変化をし、信号に対する応答速度が高く
、高感度の制御ができる。
Giant magnetostrictive material Tb0.3 Dy0.7 Fe1
.. 9 When a magnetic field of 1500 oersted is applied to a rod with a length of 30 mm, the magnetostriction change is about 0.22 mm,
Therefore, when the above-mentioned mirror control is performed using this, the scanning distance of the focal point 11 is about 22 mm at maximum, which can be fully utilized for drawing scanning in lithography processing. In addition, giant magnetostrictive material Tb0.3 Dy0.7 Fe1.9
As for the frequency response, the magnetostriction amplitude changes almost constant up to a maximum of about 10 KHz, and the response speed to signals is high, allowing highly sensitive control.

【0011】また前記のようにX−Y軸の平面上の位置
制御ができるので、レーザ加工のような除去加工にも利
用することができる。光エネルギによって素材を除去す
る際には、強力な集束エネルギで素材を蒸散させる。素
材の板厚に対してレーザビームの焦点位置を制御するに
は、駆動モータ9を駆動制御してZ軸方向の送り制御に
よって制御でき、超磁歪材4及び5の制御によりX軸及
びY軸上の制御をすることによって加工パターンの走査
をして任意形状の切断加工をすることができる。
Furthermore, since the position on the X-Y axis plane can be controlled as described above, it can also be used for removal processing such as laser processing. When removing material with light energy, the material is evaporated with intense focused energy. To control the focal position of the laser beam with respect to the thickness of the material, the drive motor 9 can be driven and controlled by controlling the feed in the Z-axis direction, and the giant magnetostrictive materials 4 and 5 can be controlled to control the focus position in the By performing the above control, the processing pattern can be scanned and cutting into an arbitrary shape can be performed.

【0012】また、粉体の溶融による積層加工を行なう
ことも可能である。例えば基板の上に1層分の粉末をス
クレーパによって展開し、必要パターンをレーザ照射し
て溶融固化する。その上に更に粉末層を形成し、同様の
溶融固化操作を行なう。これを繰り返すことにより全体
形状を積層によって造形する。この場合のパターン制御
を超磁歪材4及び5のコイル7及び8の励磁制御により
ミラー1を傾動させて制御し、モータ9の駆動により1
層1層の焦点位置制御をすることによって精密な積層加
工をすることができる。勿論、積層材料は粉末に限らず
、液状の熱硬化性樹脂を用いることができ、また光硬化
性樹脂に光照射して照射部分を縮重合反応させて固化す
ることができる。
[0012] It is also possible to carry out lamination processing by melting powder. For example, one layer of powder is spread on a substrate using a scraper, and the required pattern is irradiated with a laser to melt and solidify. A powder layer is further formed thereon and the same melting and solidifying operation is performed. By repeating this, the entire shape is modeled by lamination. Pattern control in this case is controlled by tilting the mirror 1 by controlling the excitation of the coils 7 and 8 of the giant magnetostrictive materials 4 and 5, and by driving the motor 9.
Precise lamination processing can be performed by controlling the focal position of each layer. Of course, the laminated material is not limited to powder, and a liquid thermosetting resin can be used, and the photocurable resin can be irradiated with light to cause the irradiated portion to undergo a polycondensation reaction and solidify.

【0013】また、超磁歪材Tb0.3 Dy0.7 
Fe1.9 の応答速度は前記のように10KHz 程
度と高く、オプチカルスキャナ( optical−s
canner ) とかプロットタイプ( prot−
typing ) 等に利用することができる。この場
合は、レーザ発振器の光をレンズで絞り、振動する反射
ミラーに当てれば上下左右にスキャンさせることができ
る。レーザビームプリンタに利用する場合は、プリンタ
の中に組み込んだ円筒形の感光ドラムにレーザビームを
当てる際に本発明に係る光走査ミラーでビームを上下左
右に振りながらオンオフすると、ドラムの一部が印字す
べき文字の形に帯電するから、このときドラムにトナー
を吹き付けると帯電部にトナーが載り、紙をドラムに押
し付けると印字される。半導体レーザの光を焦点距離が
充分短いフレンネルレンズで絞り、それを反射ミラーに
当てるようにすれば、光学系を極めて小さくでき、且つ
超磁歪材の高速応答、高周波特性によってプリンタの小
型化、高性能化を図ることができる。
[0013] Furthermore, giant magnetostrictive material Tb0.3 Dy0.7
As mentioned above, the response speed of Fe1.9 is as high as about 10 KHz, making it suitable for optical scanners (optical-s).
canner) or plot type (prot-
typing), etc. In this case, the light from the laser oscillator is narrowed down by a lens, and by shining it on a vibrating reflective mirror, it can be scanned vertically and horizontally. When used in a laser beam printer, when applying a laser beam to a cylindrical photosensitive drum built into the printer, turn the beam on and off while swinging it up, down, left and right using the optical scanning mirror according to the present invention, and a part of the drum will be exposed. Since the paper is charged in the shape of the characters to be printed, when the drum is sprayed with toner, the toner is deposited on the charged portion, and when the paper is pressed against the drum, the paper is printed. By focusing the light from a semiconductor laser using a Fresnel lens with a sufficiently short focal length and directing it to a reflecting mirror, the optical system can be made extremely small, and the high-speed response and high-frequency properties of giant magnetostrictive materials can make printers more compact. High performance can be achieved.

【0014】[0014]

【発明の効果】以上のように、本発明に係る光走査ミラ
ーは、反射ミラーがそのほぼ中心位置に設定された支点
を中心に任意の方向に傾動自在に設けられ、その支点を
交点とする十字軸の各軸上に一端を固定した超磁歪材を
設けて傾動制御するようにしたから、ミラーによる反射
光を任意の方向、位置に偏向走査することができ、また
超磁歪材をコイル励磁により磁歪制御するようにしたか
ら、磁歪変化による伸縮ストロークを増大して光走査角
度を極めて大きく、即ち走査量を極めて大きくすること
ができ、精密、高精度の走査制御が可能となる。また超
磁歪材の高応答によって応答速度が高く、高感度の制御
ができる。
[Effects of the Invention] As described above, in the optical scanning mirror according to the present invention, the reflecting mirror is provided so as to be tiltable in any direction around a fulcrum set approximately at the center thereof, and the fulcrum is the intersection point. Since we installed a giant magnetostrictive material with one end fixed on each axis of the cross axis and controlled its tilting, the light reflected by the mirror can be deflected and scanned in any direction and position, and the giant magnetostrictive material can be excited by the coil. Since the magnetostrictive control is carried out, it is possible to increase the expansion and contraction stroke due to the magnetostrictive change, thereby making it possible to make the optical scanning angle extremely large, that is, to make the scanning amount extremely large, making it possible to perform precise and highly accurate scanning control. Furthermore, the high response speed of the giant magnetostrictive material allows for high response speed and highly sensitive control.

【0015】また、ミラーを前記十字軸と直交するZ軸
方向に送り制御する駆動装置を設けたことによって、X
、Y及びZ軸の立体的制御ができるようになり、従って
、その応用例としてリソグラフィー、オプチカルスキャ
ナ、プロットタイピング、レーザ加工、積層加工、その
他の多種の目的に利用することができ、簡単な構造で極
めて高速度、高精度な処理を行なうことができる。なお
、本発明は叙上の実施例に限定されるものでなく、本発
明の目的の範囲内において上記の説明から当業者が容易
に想到し得るすべての変更実施例を包摂するものである
Furthermore, by providing a drive device for controlling the movement of the mirror in the Z-axis direction perpendicular to the cross axis,
, Y and Z axes can be controlled three-dimensionally, and therefore it can be used for various purposes such as lithography, optical scanners, plot typing, laser processing, lamination processing, etc., and has a simple structure. It is possible to perform extremely high-speed and highly accurate processing. It should be noted that the present invention is not limited to the embodiments described above, but encompasses all modified embodiments that can be easily figured out by those skilled in the art from the above description within the scope of the purpose of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明に係る光走査ミラーの一実施例の全体斜
視図である。
FIG. 1 is an overall perspective view of an embodiment of an optical scanning mirror according to the present invention.

【図2】そのミラーの裏面図である。FIG. 2 is a back view of the mirror.

【図3】作動状態説明図である。FIG. 3 is an explanatory diagram of an operating state.

【図4】従来の装置の説明図である。FIG. 4 is an explanatory diagram of a conventional device.

【符号の説明】[Explanation of symbols]

1     ミラー 2     支持棒 3     支持枠 4,5   超磁歪材 6     装置本体 7,8   コイル 9     モータ 10    入力光 11    焦点 1 Mirror 2 Support rod 3 Support frame 4,5 Giant magnetostrictive material 6       Device body 7, 8 Coil 9 Motor 10 Input light 11 Focus

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  反射ミラー(1) と、上記反射ミラ
ーのほぼ中心位置に設定された支点に於てミラーを傾動
自在に支持する手段(2) と、上記支点を交点とする
十字軸の各軸上で一端をミラーに固定した超磁歪材(4
,5) と  、上記各超磁歪材に磁界を加えるコイル
(7,8) を設けたことを特徴とする光走査ミラー。
1. A reflecting mirror (1), means (2) for tiltably supporting the mirror at a fulcrum set approximately at the center of the reflecting mirror, and each of a cross axis whose intersection is the fulcrum. Giant magnetostrictive material (4
, 5) and a coil (7, 8) for applying a magnetic field to each of the giant magnetostrictive materials.
【請求項2】  反射ミラー(1) と、上記反射ミラ
ーのほぼ中心位置に設定された支点に於てミラーを傾動
自在に支持する手段(2) と、上記支点を交点とする
十字軸の各軸上で一端をミラーに固定した超磁歪材(4
,5) と  、上記各超磁歪材に磁界を加えるコイル
(7,8) を設けた光走査ミラーに於て、上記光走査
ミラー全体を上記十字軸と直交する軸方向に送る駆動装
置(9) を設けたことを特徴とする光走査ミラー。
2. A reflecting mirror (1), means (2) for tiltably supporting the mirror at a fulcrum set approximately at the center of the reflecting mirror, and each of a cross axis whose intersection is the fulcrum. Giant magnetostrictive material (4
, 5) and a coil (7, 8) that applies a magnetic field to each of the giant magnetostrictive materials. ) An optical scanning mirror characterized in that it is provided with:
JP3032580A 1991-02-27 1991-02-27 Optical scanning mirror Pending JPH04271317A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3032580A JPH04271317A (en) 1991-02-27 1991-02-27 Optical scanning mirror

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3032580A JPH04271317A (en) 1991-02-27 1991-02-27 Optical scanning mirror

Publications (1)

Publication Number Publication Date
JPH04271317A true JPH04271317A (en) 1992-09-28

Family

ID=12362816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3032580A Pending JPH04271317A (en) 1991-02-27 1991-02-27 Optical scanning mirror

Country Status (1)

Country Link
JP (1) JPH04271317A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006195137A (en) * 2005-01-13 2006-07-27 Sony Corp Lens drive device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006195137A (en) * 2005-01-13 2006-07-27 Sony Corp Lens drive device
JP4687953B2 (en) * 2005-01-13 2011-05-25 ソニー株式会社 LENS DRIVE DEVICE AND IMAGING DEVICE

Similar Documents

Publication Publication Date Title
RU2671740C1 (en) Stereolithographic device with improved optical unit
EP1773596B1 (en) Multilaser bi-directional printer with an oscillating scanning mirror
US6559926B2 (en) Pattern forming apparatus and pattern forming method
JPH076941A (en) Method and equipment for manufacturing integrated circuit by laser direct write
US6784975B2 (en) Method and apparatus for irradiating a microlithographic substrate
WO1992002331A1 (en) Yag laser working machine for precision working of thin film
JP2004531844A (en) Lithograph with moving lens and method for generating digital hologram on storage medium
JP2003136270A (en) Laser beam machining device
JPH02178022A (en) Forming device of cubic shape
JP4356161B2 (en) Drawing device
JPH04271317A (en) Optical scanning mirror
JP5534080B2 (en) Exposure apparatus and exposure method
US20050078345A1 (en) Scanning device with improved magnetic drive
JP2009188012A (en) Aligner
JPH0820072A (en) Minute area photosensitizing method, optical shaping method using the same and photosensitive substance-processing apparatus
JP2800551B2 (en) Light processing equipment
JPH07304208A (en) Optical beam deflector
JP5489050B2 (en) Exposure equipment
JP2009116237A (en) Exposure method and exposure apparatus
JP2009258468A (en) Rocking body apparatus, optical deflector and optical equipment using the same
JP2677711B2 (en) YAG laser processing machine for thin film precision processing
JP2970949B2 (en) Force microscope
US6618146B1 (en) Oscillation mechanism in exposure apparatus
JP2006100353A (en) Photo-plotter
JP2009188013A (en) Aligner