JP2006195137A - Lens drive device - Google Patents

Lens drive device Download PDF

Info

Publication number
JP2006195137A
JP2006195137A JP2005006148A JP2005006148A JP2006195137A JP 2006195137 A JP2006195137 A JP 2006195137A JP 2005006148 A JP2005006148 A JP 2005006148A JP 2005006148 A JP2005006148 A JP 2005006148A JP 2006195137 A JP2006195137 A JP 2006195137A
Authority
JP
Japan
Prior art keywords
lens
lens holder
magneto
driving device
drive shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005006148A
Other languages
Japanese (ja)
Other versions
JP4687953B2 (en
Inventor
Masayuki Sugasawa
昌之 菅澤
Yasuhiko Obikane
靖彦 帯金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2005006148A priority Critical patent/JP4687953B2/en
Publication of JP2006195137A publication Critical patent/JP2006195137A/en
Application granted granted Critical
Publication of JP4687953B2 publication Critical patent/JP4687953B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lens Barrels (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a configuration in which thrust necessary for driving a lens holder holding a movable lens is sufficiently secured and which is suitable for reducing a lens drive device in size in the application to the lens drive device. <P>SOLUTION: A magnetic-mechanical conversion element providing extremely large magnetostriction by Joule effect is used as a drive means 19 (or 21) by which a lens holder 18 (or 20) holding a movable lens 10 (or 14) is moved along a guide shaft 16 (or 17). Drive force caused by a contractive or expansive change in the element, according to a magnetic field change, is transmitted to the lens holder, thereby moving the lens holder. Thus, drive force necessary to move the movable lens is obtained by producing large force without requiring a conversion mechanism to convert a rotating motion to a rectilinear motion. In addition, the moving speed of the lens is high when compared with that of a conventional electrostrictive element or magnetostrictive element under the application of the same voltage. The produced force is also large when compared with that of such a conventional one under the same volume. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、レンズ駆動装置において、ジュール効果により巨大磁歪が得られる磁気−機械変換素子を使うことにより、可動レンズを保持したレンズホルダの高速な送り制御を可能にし、応答性能の向上や小型化を実現するための技術に関する。   The present invention enables high-speed feed control of a lens holder holding a movable lens by using a magneto-mechanical conversion element capable of obtaining a giant magnetostriction due to the Joule effect in a lens driving device, improving response performance and downsizing. It is related with the technology for realizing.

撮像装置のレンズ鏡胴には、フォーカス制御やズーミングのために可動レンズを駆動する機構及び駆動源を備えたものが知られている。   2. Description of the Related Art A lens barrel of an imaging apparatus is known that includes a mechanism and a drive source for driving a movable lens for focus control and zooming.

可動レンズを保持するレンズホルダをガイド軸に沿って移動させるための機構において、例えば、下記に示すようなリニア型のアクチュエータを用いた構成が挙げられる。   As a mechanism for moving the lens holder that holds the movable lens along the guide shaft, for example, a configuration using a linear actuator as shown below can be given.

(1)モータ及びその回転を直動に変える機構
(2)電歪素子や磁歪素子を用いたマイクロアクチュエータ。
(1) Motor and mechanism for changing its rotation to linear motion (2) A microactuator using an electrostrictive element or a magnetostrictive element.

上記(1)において、ステッピングモータ等を用いる形態では、ロータの回転運動を直線運動に変換してレンズホルダに駆動力が伝達される(例えば、特許文献1参照。)。   In (1) above, in the form using a stepping motor or the like, the rotational force of the rotor is converted into a linear motion, and the driving force is transmitted to the lens holder (see, for example, Patent Document 1).

また、上記(2)では、電界や磁界による変位効果を利用した素子を用いてレンズホルダに駆動力を直接伝達することができる。   Further, in the above (2), the driving force can be directly transmitted to the lens holder using an element utilizing a displacement effect by an electric field or a magnetic field.

特開2002―112520号公報JP 2002-112520 A

しかしながら、従来の駆動機構にあっては、レンズ駆動装置への適用において下記のような問題がある。   However, the conventional driving mechanism has the following problems when applied to a lens driving device.

先ず、上記(1)の形態では、回転運動から直線運動への変換機構を必要とするため、構造が複雑化し、小型化やコンパクト化に支障を来たす原因となる。また、モータの回転角についてはステータのコイル配置に係るピッチ単位で制御することになるため、高精度の位置決めが困難である。   First, in the form of (1), since a conversion mechanism from rotational motion to linear motion is required, the structure becomes complicated, causing a problem in miniaturization and compactness. Further, since the rotation angle of the motor is controlled in units of pitches related to the coil arrangement of the stator, high-precision positioning is difficult.

また、上記(2)において、例えば、逆圧電効果素子を用いたインパクト駆動型リニアアクチュエータの場合、レンズ駆動に必要な駆動力を充分に得ることができなかったり、あるいは、逆圧電効果素子を利用した超音波モータの場合には発熱量が多く、長時間の連続使用に耐えられないといった問題がある。   In the above (2), for example, in the case of an impact drive type linear actuator using an inverse piezoelectric effect element, a driving force necessary for driving the lens cannot be obtained sufficiently, or an inverse piezoelectric effect element is used. In the case of the ultrasonic motor, there is a problem that it generates a large amount of heat and cannot withstand continuous use for a long time.

そして、従来の電歪素子や磁歪素子を用いたアクチュエータには、一般に高電圧が必要であるため、トランス等を用いた昇圧回路が必要な場合が多く、その分、構成が複雑化し、コンパクト化が困難である。また、発生力が小さいことが問題とされ、小型で推力の大きなアクチュエータを作成することが難しい。   Conventional actuators using electrostrictive elements or magnetostrictive elements generally require a high voltage, so a booster circuit using a transformer or the like is often required, making the configuration complicated and compact. Is difficult. Further, it is considered that the generated force is small, and it is difficult to produce a small actuator having a large thrust.

そこで、本発明は、レンズ駆動装置への適用において、可動レンズを保持するレンズホルダの駆動に必要な推力を充分に確保するとともに、小型化やコンパクト化に適した構成の提供を課題とする。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a configuration suitable for miniaturization and miniaturization while sufficiently securing a thrust necessary for driving a lens holder that holds a movable lens in application to a lens driving device.

本発明は、上記した課題を解決するために、可動レンズを保持するレンズホルダを、ガイド軸に沿って移動させるための駆動手段に、ジュール効果により巨大磁歪が得られる磁気−機械変換素子(あるいは磁気−変位変換素子)を用いて、磁界変化に応じた該素子の伸縮変化に伴う駆動力をレンズホルダに伝達して該レンズホルダを移動させるように構成したものである。   In order to solve the above-described problems, the present invention provides a magneto-mechanical transducer (or a magneto-mechanical transducer) that can provide a giant magnetostriction due to the Joule effect in a driving means for moving a lens holder that holds a movable lens along a guide axis. A magnetic-displacement conversion element) is used to transmit the driving force accompanying the expansion / contraction change of the element according to the change of the magnetic field to the lens holder to move the lens holder.

従って、本発明では、ジュール効果により巨大磁歪が得られる磁気−機械変換素子(所謂「超磁歪素子」)を用いることにより、回転運動から直線運動への変換機構を必要とせずに大きな力を発生させて可動レンズの移動に必要な駆動力を得ることができる。また、従来の電歪素子や磁歪素子に比べた場合に、同じ印加電圧下においてレンズの移動速度が大きく、また、同一体積で比較した場合に、超磁歪素子の発生力は桁違い(例えば、約250倍)に大きい(換言すれば、駆動力を一定とした場合に従来の構成よりも、小型化が可能である。)。   Therefore, in the present invention, by using a magneto-mechanical conversion element (so-called “super magnetostrictive element”) capable of obtaining a giant magnetostriction by the Joule effect, a large force is generated without requiring a conversion mechanism from a rotational motion to a linear motion. Thus, a driving force necessary for moving the movable lens can be obtained. Further, when compared with conventional electrostrictive elements and magnetostrictive elements, the moving speed of the lens is large under the same applied voltage, and when compared with the same volume, the generated force of the giant magnetostrictive element is orders of magnitude (for example, (In other words, when the driving force is constant, the size can be reduced as compared with the conventional configuration).

本発明によれば、小型化やコンパクト化に好適であって、より推力の大きなレンズ駆動装置を実現できる。また、レンズ駆動制御において、高速性、応答性等の性能向上や高精度な位置決めに有効であり、高電圧の印加が不要であることや消費電力が少ない等の効果が得られる。   According to the present invention, it is possible to realize a lens driving device that is suitable for downsizing and downsizing and has a larger thrust. Further, in lens drive control, it is effective for improving performance such as high speed and responsiveness and highly accurate positioning, and it is possible to obtain effects such as unnecessary application of high voltage and low power consumption.

そして、磁気−機械変換素子を形成する超磁歪材料に比して表面粗度又は摩擦係数の小さい材料を用いて駆動軸を形成するとともに、該駆動軸を磁気−機械変換素子に固定し、該駆動軸とレンズホルダとが摩擦力をもって接触された構成によれば、超磁歪材料で駆動軸を形成する構成形態に比して、レンズ駆動時の消費電力を低減することができる。   Then, the drive shaft is formed using a material having a small surface roughness or friction coefficient as compared with the giant magnetostrictive material forming the magneto-mechanical transducer, and the drive shaft is fixed to the magneto-mechanical transducer, According to the configuration in which the drive shaft and the lens holder are brought into contact with each other with a frictional force, the power consumption at the time of driving the lens can be reduced as compared with a configuration in which the drive shaft is formed of a giant magnetostrictive material.

また、磁気−機械変換素子に係る伸び量の速度と縮み量の速度とが異なるように伸縮状態を変化させるための制御回路を備えた構成では、磁気−機械変換素子又は該素子に固定された駆動軸に対してレンズホルダが滑らずに移動する過程と、磁気−機械変換素子又は該素子に固定された駆動軸に対してレンズホルダに滑りが生じる過程とが繰り返されてレンズホルダが一定方向に移動する。即ち、駆動軸とレンズホルダとの摩擦及びレンズホルダがその場に止まろうとする慣性を巧みに利用して高速な応答特性を得ることが可能である。   Further, in the configuration including the control circuit for changing the expansion / contraction state so that the speed of the extension amount and the speed of the contraction amount of the magneto-mechanical conversion element are different, the magneto-mechanical conversion element or the element is fixed to the element. The process in which the lens holder moves without slipping with respect to the drive shaft and the process in which the lens holder slips with respect to the magneto-mechanical conversion element or the drive shaft fixed to the element are repeated to move the lens holder in a certain direction. Move to. That is, it is possible to obtain high-speed response characteristics by skillfully utilizing the friction between the drive shaft and the lens holder and the inertia of the lens holder trying to stop in place.

レンズ駆動機構への適用において、駆動手段が、磁気−機械変換素子の振動方向に延びる軸を中心軸としてその回りに巻回された振動励起用コイルと、磁気−機械変換素子の周囲に設けられたヨークと、磁気−機械変換素子の一端部を固定するために比重の大きい材料で形成された固定部材を備えた構成の採用は、簡素化や小型化等に有利である。   In application to a lens driving mechanism, a driving means is provided around a vibration excitation coil wound around an axis extending in the vibration direction of the magneto-mechanical conversion element and a magneto-mechanical conversion element. Adoption of a configuration including a yoke and a fixing member made of a material having a large specific gravity for fixing one end of the magneto-mechanical transducer is advantageous for simplification and miniaturization.

本発明は、超磁歪素子を用いて高速駆動が可能なレンズ駆動装置を提供するものであり、従来の磁歪素子や電歪素子を利用した駆動装置に比して、より発生力の大きい駆動装置を実現することができる。本発明は、例えば、小型カメラや携帯型電子機器のカメラ等に幅広く適用することができる。   The present invention provides a lens driving device capable of high-speed driving using a giant magnetostrictive element, and a driving device having a larger generating force than a conventional driving device using a magnetostrictive element or an electrostrictive element. Can be realized. The present invention can be widely applied to, for example, small cameras and cameras for portable electronic devices.

図1は、超磁歪素子を用いて移動体を直線的に動かす場合の原理的な説明図である。   FIG. 1 is a diagram illustrating the principle when a moving body is moved linearly using a giant magnetostrictive element.

(A)図に示すように、アクチュエータ1は、移動体2を所定の方向に沿って移動させるために、磁気−機械変換素子3として棒状の超磁歪素子を備えており、その一端が固定部4に固定されている。   (A) As shown in the figure, the actuator 1 includes a rod-like giant magnetostrictive element as the magneto-mechanical conversion element 3 in order to move the moving body 2 along a predetermined direction, one end of which is a fixed portion. 4 is fixed.

超磁歪素子は、ジュール効果により巨大磁歪が得られる磁気−機械変換素子であり、超磁歪材料を用いて形成されている。超磁歪材料は、常温下でも従来の磁歪材料と比べて2桁も大きい巨大磁歪(Giant-magnetostriction)が得られる材料であり、近年急速にその実用化が進められている。例えば、磁気モーメントの大きいランタノイド元素(「R」と記す。)と鉄属元素「T」(T=Fe、Ni、Co等)で構成され、ラーベス型の立方晶素材(RT:RとTの原子比1:2の組成を持っており、例えば、鉄の場合に、TbFe、DyFe、SmFe、HoFe、ErFe等)が挙げられる。従来の磁歪材料の磁歪が40〜80ppm(磁歪:ppm=ΔL/L×106)であるのに対して、超磁歪材料の場合は、2,000ppm前後の磁歪が得られる。そして、他の変位素材に比べ、磁界の強さに応じて生じる寸法変化量(ジュール効果)が大きく、変位と磁界の強さの積である発生応力が大きい。他方、外部応力によって生じる磁化率の変化量(ビラリ効果)が40%程度と大きく、これらの変化の変換速度はマイクロ秒に相当する周波数に追随可能である。 The giant magnetostrictive element is a magneto-mechanical conversion element that can obtain giant magnetostriction by the Joule effect, and is formed using a giant magnetostrictive material. A giant magnetostrictive material is a material that can obtain a giant magnetostriction that is two orders of magnitude larger than that of a conventional magnetostrictive material even at room temperature, and its practical application has been rapidly promoted in recent years. For example, it is composed of a lanthanoid element (referred to as “R”) having a large magnetic moment and an iron group element “T” (T = Fe, Ni, Co, etc.), and a Laves type cubic material (RT 2 : R and T For example, in the case of iron, TbFe 2 , DyFe 2 , SmFe 2 , HoFe 2 , ErFe 2, etc.) may be mentioned. The magnetostriction of a conventional magnetostrictive material is 40 to 80 ppm (magnetostriction: ppm = ΔL / L × 10 6 ), whereas in the case of a supermagnetostrictive material, a magnetostriction of about 2,000 ppm is obtained. Compared to other displacement materials, the amount of dimensional change (joule effect) generated according to the strength of the magnetic field is large, and the generated stress, which is the product of the displacement and the strength of the magnetic field, is large. On the other hand, the amount of change in magnetic susceptibility (bilari effect) caused by external stress is as large as about 40%, and the conversion speed of these changes can follow a frequency corresponding to microseconds.

尚、外部磁界や外部応力によって素子内部の磁化方向が変わり、例えば、ジュール効果の場合、磁気エネルギーと弾性エネルギーの均衡点が変化することから、素子に寸法変化が生じる。線形領域での相互関係は、下式のようになる
・歪み:ΔI=s・T+dH
・駆動力:F=Y・(ΔI/I)
但し、各記号は「s:弾性係数」、「T:応力」、「Y:ヤング率」、「H:外部磁界の強さ、dH:外部磁界の強さの変化量」、「(ΔI/I):磁歪値」を示す。
Note that the magnetization direction inside the element changes due to an external magnetic field or an external stress. For example, in the case of the Joule effect, the balance point between magnetic energy and elastic energy changes. The correlation in the linear region is as follows: Strain: ΔI = s · T + dH
Driving force: F = Y · (ΔI / I)
However, each symbol is “s: elastic modulus”, “T: stress”, “Y: Young's modulus”, “H: strength of external magnetic field, dH: amount of change in strength of external magnetic field”, “(ΔI / I): magnetostriction value ".

超磁歪材料が他の素材に比べ優れている点は、磁歪量と応力が大きいこと、また、応力Tによる透磁率の変化、すなわちインダクタンスの変化幅が大きいことである。この原因はランタノイド元素の大きな磁気モーメントに起因する。他方、このことは磁気異方性エネルギーを大きくし、外部磁界応力と素子内部で起こる磁化変化、寸法変化の間に残留磁化によるヒステリシスが存在することを意味する(その原因となる磁気異方性についてはは、構成元素比で調整することができる。)。   The super magnetostrictive material is superior to other materials in that the amount of magnetostriction and stress are large, and the change in permeability due to the stress T, that is, the variation range of inductance is large. This is due to the large magnetic moment of the lanthanoid elements. On the other hand, this increases the magnetic anisotropy energy, which means that there is hysteresis due to remanent magnetization between the external magnetic field stress and the magnetization change and dimensional change that occur inside the element (the magnetic anisotropy that causes it). Can be adjusted by the ratio of constituent elements.)

図1の(B1)図に示すように、超磁歪素子の端部のうち、固定部4とは反対側の端部には、金属や炭素繊維(炭化繊維)強化樹脂等を用いて形成された部材(摩擦部材)5が固定されており、移動体2が該部材5に対して移動可能な状態で摩擦結合により保持されている。つまり、移動体2と部材5が摩擦力をもって接触した構成とされている。尚、図には移動体2と部材5との接触部6(摩擦部分)に斜線を付して示している。   As shown in FIG. 1 (B1), among the ends of the giant magnetostrictive element, the end opposite to the fixed portion 4 is formed using metal, carbon fiber (carbonized fiber) reinforced resin, or the like. A member (friction member) 5 is fixed, and the movable body 2 is held by frictional coupling while being movable with respect to the member 5. That is, the movable body 2 and the member 5 are configured to contact with each other with a frictional force. In the figure, the contact portion 6 (friction portion) between the moving body 2 and the member 5 is indicated by hatching.

超磁歪素子に対する外部磁界を変化させることで、(B2)図に示すように、超磁歪素子が矢印Aの向きにゆっくりと伸びる(図には、伸び量を誇張して示している。)。   By changing the external magnetic field with respect to the giant magnetostrictive element, the giant magnetostrictive element slowly extends in the direction of arrow A as shown in FIG. (B2) (the amount of extension is exaggerated in the figure).

超磁歪素子の伸びに従って部材5が矢印Aに示す向きに変位するが、移動体2と部材5との摩擦により両者の間に滑りを伴うことなく移動する。   The member 5 is displaced in the direction indicated by the arrow A according to the elongation of the giant magnetostrictive element. However, the member 5 moves without sliding between the two due to the friction between the moving body 2 and the member 5.

その後、(B3)図に示すように、超磁歪素子を矢印Bの向きに縮めると(図には、縮み量を誇張して示している。)、移動体2はその慣性により、部材5との間に滑りが生じ、現位置に留まろうとする。   Thereafter, as shown in FIG. (B3), when the giant magnetostrictive element is contracted in the direction of arrow B (the contraction amount is exaggerated in the figure), the moving body 2 is connected to the member 5 due to its inertia. A slip occurs between them and tries to stay in the current position.

図2は、変位量及び速度の時間的変化を例示したものである。尚、上図は、横軸に時間をとり、縦軸に変位量をとって両者の関係を概略的に例示しており、破線で示すグラフ曲線g2が移動体2の変位量を表し、実線で示す三角波状のグラフ曲線g3が、超磁歪素子の伸縮変化を表している。また、下図では、横軸に時間をとり、縦軸に速度をとっており、破線で示すグラフ曲線G2が移動体2の速度を表し、実線で示す波状のグラフ曲線G3が、超磁歪素子の伸縮速度を表している。   FIG. 2 exemplifies temporal changes in the displacement amount and speed. In the above figure, the horizontal axis represents time and the vertical axis represents the amount of displacement, and the relationship between the two is schematically illustrated. A graph curve g2 indicated by a broken line represents the amount of displacement of the moving body 2, and a solid line. A triangular wave-like graph curve g3 indicated by indicates the expansion / contraction change of the giant magnetostrictive element. In the figure below, time is taken on the horizontal axis, and speed is taken on the vertical axis. A graph curve G2 indicated by a broken line represents the speed of the moving body 2, and a wavy graph curve G3 indicated by a solid line represents the giant magnetostrictive element. Expresses expansion and contraction speed.

グラフ曲線g3において、緩やかな傾斜をもって右上がりに上昇している期間(「Δt1」参照)において、超磁歪素子が図1(B2)に示す伸張状態とされ、ある時点(速度ゼロの時点)から右下がりに急下降している期間(「Δt2」参照)において、超磁歪素子が図1(B3)に示す縮小状態とされる。このように、超磁歪素子の伸縮が繰り返えされることで移動体2の変位量が所定方向に増加していく。即ち、伸び量の速度と縮み量の速度とが異なるように伸縮状態を変化させる制御により、移動体2を所望の方向に移動させることができる。   In the graph curve g3, during a period in which the curve rises to the right with a gentle slope (see “Δt1”), the giant magnetostrictive element is in the extended state shown in FIG. 1 (B2), and from a certain point in time (at the time of zero speed). During a period of rapid downward descent (see “Δt2”), the giant magnetostrictive element is in the contracted state shown in FIG. 1 (B3). As described above, the displacement of the moving body 2 increases in a predetermined direction by repeatedly expanding and contracting the giant magnetostrictive element. That is, the moving body 2 can be moved in a desired direction by controlling the expansion / contraction state so that the speed of the extension amount and the speed of the contraction amount are different.

上記したアクチュエータ1について構成上の要点をまとめると下記のようになる。   The following is a summary of the structural points of the actuator 1 described above.

・磁気−機械変換素子3と該素子に結合して一緒に変位する部材5を備え、該部材に対して移動体が摩擦結合した構成を有すること。   The magnetic-mechanical transducer element 3 and the member 5 coupled to the element and displaced together are provided, and the moving body is frictionally coupled to the member.

・磁気−機械変換素子3の伸びと縮みの速度を異ならせることにより、移動体2が部材5との摩擦結合により該部材と共に実質的に移動する状態と、移動体2が部材5に対して実質的に移動しない状態(慣性)をとり得ること。   The state in which the moving body 2 moves substantially together with the member by frictional coupling with the member 5 by making the expansion and contraction speeds of the magneto-mechanical transducer 3 different, and the moving body 2 with respect to the member 5 It can take a state that does not move substantially (inertia).

・移動体2は、磁気−機械変換素子3の変位方向(伸縮方向)に移動すること及びその移動の向きについては、磁気−機械変換素子3に係る伸びと縮みの速さ(速度の絶対値)のうち、速さが緩やかな変位方向(相対的に変位がゆっくり変化する方向)に移動すること。   The moving body 2 moves in the displacement direction (stretching direction) of the magneto-mechanical transducer 3 and the direction of the movement is the speed of expansion and contraction of the magneto-mechanical transducer 3 (absolute value of velocity). ) In a displacement direction with a slow speed (a direction in which the displacement changes relatively slowly).

・速度は1バルス当たりの送り量及び駆動周波数に比例し、また、推力については、素子の発生力及び該発生力に応じた摩擦力に拠ること。   The speed is proportional to the feed amount per 1 pulse and the driving frequency, and the thrust depends on the generated force of the element and the frictional force corresponding to the generated force.

以上の構成により、高速応答が可能となり、小型で推力の大きなインパクト駆動型のアクチュエータや駆動ユニットを実現することができる。   With the above configuration, a high-speed response is possible, and a small impact driving actuator or driving unit with a large thrust can be realized.

例えば、従来の磁歪素子や電歪素子を用いた場合に、駆動電圧3Vにて20〜30nm(ナノメートル)の微小な伸びに過ぎないのに対して、超磁歪素子の場合には、磁気回路にも依るが、駆動電圧3Vにて1〜3μm(ミクロン)の伸びを示す。即ち、超磁歪素子の方が、同じ電圧において、移動体2を高速に移動させることができる。あるいは、従来の磁歪素子や電歪素子を用いて、超磁歪素子の場合と同じ伸びを得ようとすると、数十乃至数百Vの電圧が必要となる(ドランス等を用いた昇圧回路が必要になる。)。   For example, when a conventional magnetostrictive element or electrostrictive element is used, it is only a minute extension of 20 to 30 nm (nanometer) at a driving voltage of 3 V, whereas in the case of a super magnetostrictive element, a magnetic circuit is used. However, it shows an elongation of 1 to 3 μm (microns) at a driving voltage of 3V. That is, the giant magnetostrictive element can move the moving body 2 at a higher speed at the same voltage. Alternatively, if a conventional magnetostrictive element or electrostrictive element is used to obtain the same elongation as that of a giant magnetostrictive element, a voltage of several tens to several hundreds V is required (a booster circuit using a drain or the like is necessary). become.).

また、従来の磁歪素子や電歪素子を用いる場合と、超磁歪素子を用いる場合とで、同一体積での発生力を比較すると、後者では前者の200倍程度の力が得られる。例えば、同回路(駆動電圧3V程度)にて、前者では、径φ1×長さ5mmにおいて発生力が4〜5gf(グラム・フォース)であるが、超磁歪素子では、径φ1×長さ3mm程度で発生力が約900gf(≒8.82N)である。   Further, when the generated force in the same volume is compared between the case where a conventional magnetostrictive element or electrostrictive element is used and the case where a giant magnetostrictive element is used, the latter can obtain a force about 200 times that of the former. For example, in the same circuit (with a driving voltage of about 3 V), the former has a generated force of 4 to 5 gf (gram force) at a diameter of φ1 × length of 5 mm, but a giant magnetostrictive element has a diameter of φ1 × length of about 3 mm. The generated force is about 900 gf (≈8.82 N).

このように、従来の磁歪素子や電歪素子との比較において、超磁歪素子を用いた構成は、より重い移動体を高速に移動させる用途に好適であること示している。   Thus, in comparison with conventional magnetostrictive elements and electrostrictive elements, it is shown that the configuration using the giant magnetostrictive element is suitable for use in moving a heavier moving body at high speed.

上記のアクチュエータを用いたリニア駆動(直線駆動)機構は、超磁歪素子と部材5とが同期して動き、移動体が素子の伸縮速度に応じた駆動速度をもって素子の伸縮方向に沿って移動し、次いで移動体が現位置を保持するという制御が繰り返されて、摩擦及び移動体の慣性を巧みに利用して高速な応答特性を得ることが可能である。例えば、その用途として、カメラ装置におけるズームレンズやフォーカスレンズの移動機構において、超磁歪素子を利用した駆動手段を用いることで、被駆動部(レンズホルダ)の如何を問わずに小型で推力の大きいアクチュエ−タの実現が可能となる(つまり、可動レンズの相違等に応じた異なる構成のアクチュエータを用いることなく、超磁歪素子を用いた同一構成のアクチュエータを適用することができる。)。   In the linear drive (linear drive) mechanism using the actuator described above, the giant magnetostrictive element and the member 5 move synchronously, and the moving body moves along the expansion / contraction direction of the element with a driving speed corresponding to the expansion / contraction speed of the element. Then, the control that the moving body holds the current position is repeated, and it is possible to obtain a high-speed response characteristic by skillfully utilizing the friction and the inertia of the moving body. For example, as a use of the zoom lens or the focus lens moving mechanism in the camera device, a driving unit using a giant magnetostrictive element is used, so that the driving unit (lens holder) is small and has a large thrust. An actuator can be realized (that is, an actuator having the same configuration using a giant magnetostrictive element can be applied without using an actuator having a different configuration corresponding to a difference in movable lens, etc.).

図3は、本発明に係るレンズ駆動装置を適用した撮像装置7の構成例について、ビデオカメラレコーダ等に用いられるレンズ鏡胴及びその制御系の要部を併せて示したものである。   FIG. 3 shows a lens barrel used in a video camera recorder or the like and a main part of its control system in a configuration example of the imaging device 7 to which the lens driving device according to the present invention is applied.

レンズ駆動装置8を含むレンズ鏡胴において、被写体側から、対物レンズ9、変倍レンズ10、レンズ11、アイリス装置12、フィルタ13、フォーカスレンズ14、固体撮像素子15が配置されている。   In the lens barrel including the lens driving device 8, an objective lens 9, a variable magnification lens 10, a lens 11, an iris device 12, a filter 13, a focus lens 14, and a solid-state image sensor 15 are arranged from the subject side.

本例では、変倍レンズ10、フォーカスレンズ14が可動レンズであり、図中の「OL」で示す光軸方向に沿って移動可能な状態でレンズホルダに保持されている。   In this example, the variable power lens 10 and the focus lens 14 are movable lenses, and are held by the lens holder so as to be movable along the optical axis direction indicated by “OL” in the drawing.

ガイド軸16や17は、レンズ鏡胴において光軸OLに対して平行に配置及び固定されており、後述のレンズホルダを案内する役目を有する。   The guide shafts 16 and 17 are arranged and fixed in parallel to the optical axis OL in the lens barrel, and have a role of guiding a lens holder described later.

変倍レンズ10のレンズホルダ18は、その一端部にガイド軸16が挿通された状態で支持され、他端部が駆動手段19の駆動軸19aに摩擦結合により移動可能な状態で支持されている。つまり、ズーム調整機構において、レンズホルダ18が前記移動体2に相当し、駆動軸19aが前記部材5に相当しており、駆動手段19によってレンズホルダ18の光軸方向における位置決めが行われる。   The lens holder 18 of the variable magnification lens 10 is supported in a state where the guide shaft 16 is inserted into one end portion thereof, and the other end portion is supported in a state in which the lens holder 18 is movable to the driving shaft 19a of the driving means 19 by frictional coupling. . That is, in the zoom adjustment mechanism, the lens holder 18 corresponds to the moving body 2, the drive shaft 19 a corresponds to the member 5, and the lens holder 18 is positioned in the optical axis direction by the drive means 19.

また、フォーカスレンズ14のレンズホルダ20は、その一端部にガイド軸17が挿通された状態で支持され、他端部が駆動手段21の駆動軸21aに摩擦結合により移動可能な状態で支持されている。つまり、フォーカス調整機構において、レンズホルダ20が前記移動体2に相当し、駆動軸21aが前記部材5に相当しており、駆動手段21によってレンズホルダ20の光軸方向における位置決めが行われる。   Further, the lens holder 20 of the focus lens 14 is supported in a state where the guide shaft 17 is inserted into one end thereof, and the other end is supported in a state in which the lens holder 20 is movable to the drive shaft 21a of the drive means 21 by frictional coupling. Yes. That is, in the focus adjustment mechanism, the lens holder 20 corresponds to the movable body 2, the drive shaft 21 a corresponds to the member 5, and the lens holder 20 is positioned in the optical axis direction by the drive means 21.

これらの駆動手段19、21は同じ構成とされ、ジュール効果により巨大磁歪が得られる超磁歪素子が用いられている。つまり、超磁歪素子に各駆動軸の一端が固定されるとともに、該駆動軸の他端が鏡胴に形成された支持孔8a、8aにそれぞれ受け入れた状態で保持されている(超磁歪素子を用いたアクチュエータの構成については後で詳述する。)。   These driving means 19 and 21 have the same configuration, and use giant magnetostrictive elements that can obtain giant magnetostriction by the Joule effect. That is, one end of each drive shaft is fixed to the giant magnetostrictive element, and the other end of the drive shaft is held in a state of being received in the support holes 8a and 8a formed in the lens barrel (the giant magnetostrictive element is The configuration of the actuator used will be described in detail later.)

アイリス装置12は、例えば、対をなす羽根を有しており、それらを駆動することにより、入射光量の調整機能及びシャッター機能を兼用している。   The iris device 12 has, for example, a pair of blades, and by driving them, it also functions as an incident light amount adjustment function and a shutter function.

固体撮像素子15によって得られる画像出力は、画像処理部22に送出されて所定の処理を受ける。画像処理部22は、制御等に必要な情報を演算処理部23に送出し、また撮影画像をビユーファインダやモニター等に送って表示させ、あるいはユーザの操作指示に従って画像情報等を記録媒体に記録させる。尚、マイクロコンピュータ等を用いた演算処理部23は、制御部24に制御指令を送出し、アイリス装置12、駆動手段19、21の制御が行われる。   The image output obtained by the solid-state imaging device 15 is sent to the image processing unit 22 and subjected to predetermined processing. The image processing unit 22 sends information necessary for control or the like to the arithmetic processing unit 23, sends the captured image to a viewfinder, a monitor, or the like, or displays the image information or the like on a recording medium in accordance with a user operation instruction. Let The arithmetic processing unit 23 using a microcomputer or the like sends a control command to the control unit 24 to control the iris device 12 and the driving means 19 and 21.

制御部24には、アイリス制御回路24aと、ズーム制御のための制御回路24b、フォーカス制御のための制御回路24cが含まれる。   The control unit 24 includes an iris control circuit 24a, a control circuit 24b for zoom control, and a control circuit 24c for focus control.

アイリス制御回路24aからアイリス装置12に送られる信号により光量調節のための絞り制御やシャッター動作制御が行われる。   Aperture control and shutter operation control for light amount adjustment are performed by a signal sent from the iris control circuit 24a to the iris device 12.

また、制御回路24b、24cは、前記したように磁気−機械変換素子(超磁歪素子)に係る伸び量の速度と縮み量の速度とが異なるように伸縮状態を変化させるための制御を行う。即ち、駆動軸19a(又は21a)に対してレンズホルダ18(又は20)が滑らずに移動する過程と、該駆動軸に対してレンズホルダに滑りが生じる過程とが繰り返されて(例えば、駆動周波数100キロヘルツ程度)、該レンズホルダが一定方向に移動する。   Further, as described above, the control circuits 24b and 24c perform control for changing the expansion / contraction state so that the speed of the expansion amount and the speed of the contraction amount of the magneto-mechanical transducer (super magnetostrictive element) are different. That is, a process in which the lens holder 18 (or 20) moves without slipping with respect to the drive shaft 19a (or 21a) and a process in which the lens holder slips with respect to the drive shaft are repeated (for example, driving) The lens holder moves in a certain direction.

図4は、超磁歪素子を用いたアクチュエータの構造例25を示したものであり、部分的に切り欠いて断面構成を示している。   FIG. 4 shows a structural example 25 of the actuator using the giant magnetostrictive element, and shows a cross-sectional configuration with a part cut away.

本例では、超磁歪素子26に駆動軸27が固定され、それらを中心軸として周囲に配置される振動励起用コイル28、ヨーク29を備えている。   In this example, a drive shaft 27 is fixed to the giant magnetostrictive element 26, and a vibration excitation coil 28 and a yoke 29 are arranged around the drive shaft 27 as a central axis.

超磁歪素子26は円柱状に形成されていて、その一端部が固定部材30に固定されている。尚、図中の矢印「α」は、前記超磁歪材料を用いて軸(振動軸)として形成される素子の振動方向を示している。また、固定部材30については、共振防止等を考慮して、比重の大きい材料(例えば、タングステン)を用いて形成される。   The giant magnetostrictive element 26 is formed in a columnar shape, and one end thereof is fixed to the fixing member 30. The arrow “α” in the figure indicates the vibration direction of an element formed as an axis (vibration axis) using the giant magnetostrictive material. The fixing member 30 is formed using a material having a large specific gravity (for example, tungsten) in consideration of resonance prevention and the like.

駆動軸27は、その一端部が超磁歪素子26に固定されている。駆動軸27の材質については、表面粗度又は摩擦係数が小さいことや、超磁歪素子26の振動波形(図2の三角波形を参照。)を伝達し易いこと、そして、剛性が大きいことが望ましい。例えば、ガイド軸と同様の金属(ステンレス材料や鉄等)若しくはこれにカーボンコーティング等を施したもの又は炭素繊維強化プラスチック等を用いて形成される。   One end of the drive shaft 27 is fixed to the giant magnetostrictive element 26. As for the material of the drive shaft 27, it is desirable that the surface roughness or the friction coefficient is small, the vibration waveform of the giant magnetostrictive element 26 (see the triangular waveform in FIG. 2) is easily transmitted, and the rigidity is large. . For example, it is formed using the same metal (stainless steel, iron, etc.) as that of the guide shaft, carbon coating or the like, or carbon fiber reinforced plastic.

ヨーク29は、超磁歪素子26の周囲に設けられ、例えば、中心孔を有する円板部29a、29aを、円筒部29bで連結した如き形状を有し、鉄等の磁性材料を用いて形成されている。尚、ヨーク29は、その一方の円板部29aが固定部材30に固定されている。   The yoke 29 is provided around the giant magnetostrictive element 26. For example, the yoke 29 has a shape such that disk portions 29a and 29a having a center hole are connected by a cylindrical portion 29b, and is formed using a magnetic material such as iron. ing. The yoke 29 has one disk portion 29 a fixed to the fixing member 30.

振動励起用コイル28は、超磁歪素子26の振動方向に延びる軸を中心軸としてその回りに巻回されている。本例では、ヨーク29の円筒部29bの外周面に巻きつけられており、矢印「θ」で示す方向に電流に流れると、右ネジの法則に従って超磁歪素子26の振動方向に沿うようにして磁界が発生する(コイル電流の向きに応じて磁界の向きが変わる。)。この磁界変化に応じて超磁歪素子26が伸縮し、該変化に伴う駆動力が駆動軸27からレンズホルダに伝達される。   The vibration exciting coil 28 is wound around an axis extending in the vibration direction of the giant magnetostrictive element 26 as a central axis. In this example, it is wound around the outer peripheral surface of the cylindrical portion 29b of the yoke 29. When current flows in the direction indicated by the arrow “θ”, it follows the vibration direction of the giant magnetostrictive element 26 in accordance with the right-handed screw law. A magnetic field is generated (the direction of the magnetic field changes depending on the direction of the coil current). In response to this magnetic field change, the giant magnetostrictive element 26 expands and contracts, and the driving force associated with the change is transmitted from the drive shaft 27 to the lens holder.

上記した可動レンズ(10、14)の位置制御において、超磁歪素子の部分、つまり、超磁歪材料で形成された軸(振動軸)と、レンズホルダの駆動軸とを兼用する構成形態も挙げられるが、それよりも、両軸の機能を区別し、駆動軸を金属や炭素繊維強化材料で形成してこれを超磁歪素子に固定する構成形態が好ましい。例えば、超磁歪材料を用いて駆動軸も形成した場合に、その表面粗度が大きいことが問題とされる(摩擦により駆動時の消費電力が大きくなってしまう。)。   In the above-described position control of the movable lenses (10, 14), there is a configuration in which the portion of the giant magnetostrictive element, that is, the shaft (vibration shaft) formed of the giant magnetostrictive material and the drive shaft of the lens holder are combined. However, a configuration in which the functions of both shafts are distinguished, the drive shaft is formed of a metal or carbon fiber reinforced material, and is fixed to the giant magnetostrictive element is preferable. For example, when a drive shaft is also formed using a giant magnetostrictive material, the problem is that the surface roughness is large (power consumption during driving increases due to friction).

そこで、超磁歪材料に比して表面粗度又は摩擦係数の小さい材料を用いて駆動軸を形成することにより、このような問題を解消することができ、該駆動軸を超磁歪素子に固定して、該駆動軸とレンズホルダが適度な摩擦力をもって接触される構成が好ましい。   Therefore, such a problem can be solved by forming the drive shaft using a material having a surface roughness or a friction coefficient smaller than that of the giant magnetostrictive material, and the drive shaft is fixed to the giant magnetostrictive element. Thus, it is preferable that the drive shaft and the lens holder are brought into contact with each other with an appropriate frictional force.

図5は、そのような構成例の要部を概略的に示したものである。   FIG. 5 schematically shows the main part of such a configuration example.

例えば、(A)図のように、駆動軸27の一端を接着等により、超磁歪材料で形成された振動軸31に固定した構成と、(B)図のように、振動軸31の一端部に有底穴32を形成して、この穴に駆動軸27の端部を圧入し又は接着等により固定した形態が挙げられる。尚、接着強度や機械的強度等を考慮した場合には、後者の形態が好ましい。   For example, as shown in (A), one end of the drive shaft 27 is fixed to the vibration shaft 31 formed of a giant magnetostrictive material by bonding or the like, and as shown in (B), one end of the vibration shaft 31 is fixed. The bottomed hole 32 is formed in the end, and the end of the drive shaft 27 is press-fitted into the hole or fixed by bonding or the like. In addition, when the adhesive strength, mechanical strength, etc. are considered, the latter form is preferable.

以上に説明した構成によれば、例えば、下記に示す利点が得られる。   According to the configuration described above, for example, the following advantages can be obtained.

・カメラのズーム機構やオートフォーカス機構への適用において、ズーミングやオートフォーカスの応答性能を高められること
・カメラのズーム機構やオートフォーカス機構の小型化に有効であること(例えば、PM式の回転モータを用いた構成に比べた場合に、回転運動から直線運動への変換機構が要らず、駆動部の省スペース化が可能である。)
・ステッピングモータ等の電動機を用いた機構により、カメラ装置のズーミングやフォーカス調整のための駆動装置を構成する場合には、複数種類のモータを使用する必要があるが、超磁歪素子を用いた構成形態では、同一構成の駆動ユニットやデバイスを使用できること
・静音化、低振動化が可能なこと(マイクロホンによる集音等への影響がなく、また、レンズ駆動制御中にレンズホルダが駆動軸に対して滑るのみであり、ステッピングモータのような振動を伴わない。)
・従来の磁歪素子や電歪素子に比べ、同じ体積で200乃至250倍程度の推力が得られること
・従来の磁歪素子や電歪素子に比べ、同じ体積での伸び量が大きいため、リニア駆動の速度が大きいこと。
-To improve zooming and autofocus response performance when applied to camera zoom and autofocus mechanisms-Effective for miniaturization of camera zoom and autofocus mechanisms (for example, PM-type rotary motors) Compared to the configuration using, the conversion mechanism from rotational motion to linear motion is not required, and the drive unit can be saved in space.)
・ When constructing a camera device zooming and focus adjustment drive mechanism using a mechanism using an electric motor such as a stepping motor, it is necessary to use multiple types of motors, but a configuration using giant magnetostrictive elements In the configuration, drive units and devices with the same configuration can be used. ・ Silent noise and low vibration are possible (no influence on sound collection by the microphone, etc., and the lens holder is controlled against the drive shaft during lens drive control). (They only slip and are not accompanied by vibration like a stepping motor.)
・ A thrust of about 200 to 250 times can be obtained with the same volume compared to conventional magnetostrictive elements and electrostrictive elements. ・ Linear drive because the amount of elongation in the same volume is larger than conventional magnetostrictive elements and electrostrictive elements. The speed of the.

・従来の磁歪素子や電歪素子に比べ、同じ移動量に対する駆動パルス数(総数)が少なくて済み、消費電力が低いこと。   -Compared to conventional magnetostrictive elements and electrostrictive elements, the number of drive pulses (total number) for the same movement amount is small, and power consumption is low.

・超磁歪素子の使用は、レンズ駆動に限らず、そのインダクタンスを測定することによって検出素子としても役に立つこと(インダクタンスの変化量から素子に加えられる圧縮応力の大きさを検出できるので、例えば、レンズユニット破壊を防ぐためのセンサとしても利用できる。)
・従来の電歪素子の応答性がミリ秒オーダーであるに対して、超磁歪素子を用いることによって応答性がマイクロ秒オーダーとなり、変位応答が速くなること
・積層型の電歪素子と比べた場合に、より低い電圧(例えば、10V以下)での駆動が可能であること
・従来の磁歪素子と比べた場合に、磁気ヒステリシス損が少ないこと。
・ The use of giant magnetostrictive elements is not limited to lens driving, but can also be used as a sensing element by measuring its inductance (the amount of compressive stress applied to the element can be detected from the amount of change in inductance. (It can also be used as a sensor to prevent unit destruction.)
・ Responsiveness of conventional electrostrictive element is on the order of millisecond, but using super magnetostrictive element, the response is on the order of microsecond and the displacement response is faster. ・ Compared with multilayer electrostrictive element. In that case, it is possible to drive at a lower voltage (for example, 10 V or less). ・ The magnetic hysteresis loss is small as compared with a conventional magnetostrictive element.

超磁歪素子を用いた直線移動機構の原理説明図である。It is principle explanatory drawing of the linear movement mechanism using a giant magnetostrictive element. 移動体、超磁歪素子の変位量及び速度の時間的変化を例示した図である。It is the figure which illustrated the temporal change of the displacement and speed of a moving body and a giant magnetostrictive element. 図4とともに本発明を適用した構成例を示すものであり、本図は撮像装置の断面構成例を示す図である。FIG. 4 shows a configuration example to which the present invention is applied together with FIG. 4, and this diagram is a diagram showing a cross-sectional configuration example of the imaging apparatus. 超磁歪素子を用いたアクチュエータの構成例を示した図である。It is the figure which showed the structural example of the actuator using a giant magnetostrictive element. 駆動軸の固定形態を例示した説明図である。It is explanatory drawing which illustrated the fixed form of the drive shaft.

符号の説明Explanation of symbols

3…磁気−機械変換素子、8…レンズ駆動装置、10、14…可動レンズ、18、20…レンズホルダ、16、17…ガイド軸、19、21…駆動手段、19a、21a…駆動軸、24b、24c…制御回路、27…駆動軸、28…振動励起用コイル、29…ヨーク、30…固定部材
DESCRIPTION OF SYMBOLS 3 ... Magneto-mechanical conversion element, 8 ... Lens drive device, 10, 14 ... Movable lens, 18, 20 ... Lens holder, 16, 17 ... Guide shaft, 19, 21 ... Drive means, 19a, 21a ... Drive shaft, 24b 24c ... control circuit, 27 ... drive shaft, 28 ... vibration excitation coil, 29 ... yoke, 30 ... fixing member

Claims (4)

光軸方向に沿って移動可能な状態で支持された可動レンズと、該可動レンズを保持するレンズホルダと、該レンズホルダを案内するガイド軸と、該レンズホルダを該ガイド軸に沿って移動させるための駆動手段を備えたレンズ駆動装置において、
ジュール効果により巨大磁歪が得られる磁気−機械変換素子を上記駆動手段に用いて、磁界変化に応じた該素子の伸縮変化に伴う駆動力を上記レンズホルダに伝達して該レンズホルダを移動させる
ことを特徴とするレンズ駆動装置。
A movable lens supported in a movable state along the optical axis direction, a lens holder that holds the movable lens, a guide shaft that guides the lens holder, and the lens holder that moves along the guide axis In a lens driving device provided with a driving means for
Using a magneto-mechanical conversion element capable of obtaining giant magnetostriction by the Joule effect for the driving means, and transmitting the driving force accompanying the expansion / contraction change of the element in accordance with a change in the magnetic field to the lens holder to move the lens holder. A lens driving device.
請求項1に記載したレンズ駆動装置において、
上記磁気−機械変換素子を形成する超磁歪材料に比して表面粗度又は摩擦係数の小さい材料を用いて駆動軸を形成するとともに該駆動軸を上記磁気−機械変換素子に固定し、該駆動軸と上記レンズホルダとが摩擦力をもって接触された構成にした
ことを特徴とするレンズ駆動装置。
The lens driving device according to claim 1,
A drive shaft is formed using a material having a smaller surface roughness or friction coefficient than the giant magnetostrictive material forming the magneto-mechanical transducer, and the drive shaft is fixed to the magneto-mechanical transducer, and the drive A lens driving device characterized in that the shaft and the lens holder are in contact with each other with frictional force.
請求項1に記載したレンズ駆動装置において、
上記磁気−機械変換素子に係る伸び量の速度と縮み量の速度とが異なるように伸縮状態を変化させるための制御回路を設け、
上記磁気−機械変換素子又は該素子に固定された駆動軸に対して上記レンズホルダが滑らずに移動する過程と、該素子又は該素子に固定された駆動軸に対して上記レンズホルダに滑りが生じる過程とが繰り返されて上記レンズホルダが一定方向に移動する
ことを特徴とするレンズ駆動装置。
The lens driving device according to claim 1,
A control circuit is provided for changing the expansion / contraction state so that the speed of the extension amount and the speed of the contraction amount of the magneto-mechanical transducer are different from each other.
The lens holder moves without slipping with respect to the magneto-mechanical transducer or the drive shaft fixed to the element, and the lens holder slips with respect to the element or the drive shaft fixed to the element. The lens driving device is characterized in that the above-mentioned process is repeated and the lens holder moves in a certain direction.
請求項1に記載したレンズ駆動装置において、
上記駆動手段が、上記磁気−機械変換素子の振動方向に延びる軸を中心軸としてその回りに巻回された振動励起用コイルと、上記磁気−機械変換素子の周囲に設けられたヨークと、上記磁気−機械変換素子の一端部を固定するために比重の大きい材料で形成された固定部材を備えている
ことを特徴とするレンズ駆動装置。
The lens driving device according to claim 1,
The drive means includes a vibration excitation coil wound around an axis extending in the vibration direction of the magneto-mechanical conversion element as a central axis, a yoke provided around the magneto-mechanical conversion element, A lens driving device comprising: a fixing member made of a material having a large specific gravity in order to fix one end of the magneto-mechanical conversion element.
JP2005006148A 2005-01-13 2005-01-13 LENS DRIVE DEVICE AND IMAGING DEVICE Expired - Fee Related JP4687953B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005006148A JP4687953B2 (en) 2005-01-13 2005-01-13 LENS DRIVE DEVICE AND IMAGING DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005006148A JP4687953B2 (en) 2005-01-13 2005-01-13 LENS DRIVE DEVICE AND IMAGING DEVICE

Publications (2)

Publication Number Publication Date
JP2006195137A true JP2006195137A (en) 2006-07-27
JP4687953B2 JP4687953B2 (en) 2011-05-25

Family

ID=36801275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005006148A Expired - Fee Related JP4687953B2 (en) 2005-01-13 2005-01-13 LENS DRIVE DEVICE AND IMAGING DEVICE

Country Status (1)

Country Link
JP (1) JP4687953B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009189077A (en) * 2008-02-01 2009-08-20 Sony Corp Drive device, and method of controlling the same

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04271317A (en) * 1991-02-27 1992-09-28 I N R Kenkyusho:Kk Optical scanning mirror
JPH06230298A (en) * 1993-02-02 1994-08-19 Olympus Optical Co Ltd Diffractive optical element
JPH07261101A (en) * 1994-03-17 1995-10-13 Kawasaki Heavy Ind Ltd Fiber branching light guide switching device for high-power laser
JPH09133887A (en) * 1995-11-08 1997-05-20 Toppan Printing Co Ltd Light beam deflecting optical device
JPH10307261A (en) * 1997-05-08 1998-11-17 Kanetetsuku Kk Stage for article
JPH11136966A (en) * 1997-10-30 1999-05-21 Kanetec Co Ltd Stage for article
JPH11167077A (en) * 1997-12-05 1999-06-22 Moritex Corp Orthogonal two-frequency light generating device for optical heterodyne detection
JPH11265212A (en) * 1998-03-17 1999-09-28 Minolta Co Ltd Driving device
JPH11283268A (en) * 1998-03-27 1999-10-15 Matsushita Electric Ind Co Ltd Method and device to adjust optical head system
JPH11356071A (en) * 1998-06-09 1999-12-24 Minolta Co Ltd Drive unit using electromechanical transducing element and driving circuit therefor
JP2002095274A (en) * 2000-09-14 2002-03-29 Minolta Co Ltd Driver using electromechanical converter
JP2002156546A (en) * 2000-11-21 2002-05-31 Moritex Corp Optical spectrum slicer
JP2003088986A (en) * 2001-09-12 2003-03-25 Hitachi Via Mechanics Ltd Method and device for laser beam machining and device for moving mirror
JP2003329942A (en) * 2002-05-10 2003-11-19 Tdk Corp Optical control device
JP2004069896A (en) * 2002-08-05 2004-03-04 Nissan Motor Co Ltd Optical scanner
JP2004276239A (en) * 2003-03-12 2004-10-07 Toshiba Tec Corp Actuator and impact dot printer head

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04271317A (en) * 1991-02-27 1992-09-28 I N R Kenkyusho:Kk Optical scanning mirror
JPH06230298A (en) * 1993-02-02 1994-08-19 Olympus Optical Co Ltd Diffractive optical element
JPH07261101A (en) * 1994-03-17 1995-10-13 Kawasaki Heavy Ind Ltd Fiber branching light guide switching device for high-power laser
JPH09133887A (en) * 1995-11-08 1997-05-20 Toppan Printing Co Ltd Light beam deflecting optical device
JPH10307261A (en) * 1997-05-08 1998-11-17 Kanetetsuku Kk Stage for article
JPH11136966A (en) * 1997-10-30 1999-05-21 Kanetec Co Ltd Stage for article
JPH11167077A (en) * 1997-12-05 1999-06-22 Moritex Corp Orthogonal two-frequency light generating device for optical heterodyne detection
JPH11265212A (en) * 1998-03-17 1999-09-28 Minolta Co Ltd Driving device
JPH11283268A (en) * 1998-03-27 1999-10-15 Matsushita Electric Ind Co Ltd Method and device to adjust optical head system
JPH11356071A (en) * 1998-06-09 1999-12-24 Minolta Co Ltd Drive unit using electromechanical transducing element and driving circuit therefor
JP2002095274A (en) * 2000-09-14 2002-03-29 Minolta Co Ltd Driver using electromechanical converter
JP2002156546A (en) * 2000-11-21 2002-05-31 Moritex Corp Optical spectrum slicer
JP2003088986A (en) * 2001-09-12 2003-03-25 Hitachi Via Mechanics Ltd Method and device for laser beam machining and device for moving mirror
JP2003329942A (en) * 2002-05-10 2003-11-19 Tdk Corp Optical control device
JP2004069896A (en) * 2002-08-05 2004-03-04 Nissan Motor Co Ltd Optical scanner
JP2004276239A (en) * 2003-03-12 2004-10-07 Toshiba Tec Corp Actuator and impact dot printer head

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009189077A (en) * 2008-02-01 2009-08-20 Sony Corp Drive device, and method of controlling the same

Also Published As

Publication number Publication date
JP4687953B2 (en) 2011-05-25

Similar Documents

Publication Publication Date Title
Dong Review on piezoelectric, ultrasonic, and magnetoelectric actuators
US7339306B2 (en) Mechanism comprised of ultrasonic lead screw motor
US8792051B2 (en) Driving device, lens barrel, and optical apparatus including the lens barrel
Uchino Ceramic actuators: principles and applications
EP1897156B1 (en) Mechanism comprised of ultrasonic lead screw motor
JP5338133B2 (en) Piezoelectric actuator, piezoelectric actuator device, lens barrel and optical device
Oh et al. Ultra-compact, zero-power magnetic latching piezoelectric inchworm motor with integrated position sensor
JP5387811B2 (en) Driving method of driving device
JP6639243B2 (en) Vibration type actuator and electronic equipment
TW201009488A (en) Method of driving a driving apparatus capable of smoothly moving a moving member
JP2008289347A (en) Drive device
JP2022130520A (en) Actuator for optical apparatuses and lens barrel equipped therewith
JP4896020B2 (en) Mechanism including ultrasonic lead screw motor
JP2017127127A5 (en)
US8606095B2 (en) Camera module having auto-focus apparatus
JP4687953B2 (en) LENS DRIVE DEVICE AND IMAGING DEVICE
JP7162188B2 (en) Actuator for optical equipment and lens barrel provided with the same
JP2006262580A (en) Drive device for optical control member and image pickup device
JP2007049880A (en) Actuator
Bansevicius et al. Multi-degree-of-freedom ultrasonic motors for mass-consumer devices
JP2007274788A (en) Drive unit
KR100752698B1 (en) Piezoelectric actuator and lens driving apparatus therewith
KR101067220B1 (en) Camera module with auto focus
JP2007274816A (en) Drive unit
JP6753756B2 (en) Drive unit and camera module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees