JPH04271290A - Drive controller - Google Patents
Drive controllerInfo
- Publication number
- JPH04271290A JPH04271290A JP3029964A JP2996491A JPH04271290A JP H04271290 A JPH04271290 A JP H04271290A JP 3029964 A JP3029964 A JP 3029964A JP 2996491 A JP2996491 A JP 2996491A JP H04271290 A JPH04271290 A JP H04271290A
- Authority
- JP
- Japan
- Prior art keywords
- command
- adder
- value
- motor
- predetermined coefficient
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001514 detection method Methods 0.000 claims description 4
- 230000001133 acceleration Effects 0.000 abstract description 10
- 238000010586 diagram Methods 0.000 description 11
- 150000001875 compounds Chemical class 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000008261 resistance mechanism Effects 0.000 description 1
Landscapes
- Control Of Ac Motors In General (AREA)
- Control Of Position Or Direction (AREA)
- Control Of Electric Motors In General (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、モータにより駆動され
る機械負荷と、モータの回転位置を検出するエンコーダ
とを備え、エンコーダが検出するモータの検出位置と位
置指令とから速度指令値、トルク指令値を導き出してモ
ータの入力電流を制御することにより機械負荷の位置お
よび速度を制御する駆動制御装置に関する。[Industrial Application Field] The present invention comprises a mechanical load driven by a motor and an encoder that detects the rotational position of the motor, and calculates a speed command value and torque from the detected position of the motor detected by the encoder and the position command. The present invention relates to a drive control device that controls the position and speed of a mechanical load by deriving a command value and controlling the input current of a motor.
【0002】0002
【従来の技術】従来、モータにより駆動される機械負荷
と、モータの回転位置を検出するエンコーダとを備え、
エンコーダが検出するモータの検出位置と位置指令とか
ら速度指令値、トルク指令値を導き出してモータの入力
電流を制御することにより機械負荷の位置および速度を
制御する駆動制御装置が知られている。この駆動制御装
置は、図4に示すように、モータ10により駆動される
機械負荷12と、モータ10の回転位置を検出するエン
コーダ14と、エンコーダ14が検出する機械負荷12
の位置および速度を制御する駆動制御部16とから構成
されている。そして、駆動制御部16は、位置指令X*
からエンコーダ14が検出した検出位置Xを減算する
減算器18と、減算器18が算出した位置偏差Diff
に位置ループのゲイン係数Kpを乗ずる乗算器20と、
位置指令X* の時間に対する1次導関数(X* )′
を求める微分器22と、微分器22が求めた1次導関数
(X* )′と乗算器20が算出したVDiffとを加
算して速度指令V* を求める加算器24と、加算器2
4が算出した速度指令V* からエンコーダ14が検出
した検出位置Xを微分器26により微分した結果を引い
て速度偏差ΔVを求める減算器28と、減算器28によ
り算出した速度偏差ΔVを比例積分増幅するする比例積
分増幅器30と、微分器22が求めた1次導関数(X*
)′を更に微分すると共に所定係数Kjを乗じる微分器
32と、微分器32の出力Kj(X* )″と比例積分
増幅器30の出力とを加算してトルク指令T* を求め
る加算器34と、加算器34が算出したトルク指令T*
とエンコーダ14が検出した検出位置Xとに基づいて
3相電流指令i* を求める電流指令演算部36と、電
流指令演算部36が算出した3相電流指令i* に基づ
きモータ10へ供給する電流を制御するインバータ38
とから構成されている。[Prior Art] Conventionally, a machine is equipped with a mechanical load driven by a motor and an encoder that detects the rotational position of the motor.
A drive control device is known that controls the position and speed of a mechanical load by deriving a speed command value and a torque command value from a motor detection position detected by an encoder and a position command, and controlling the input current of the motor. As shown in FIG. 4, this drive control device includes a mechanical load 12 driven by a motor 10, an encoder 14 that detects the rotational position of the motor 10, and a mechanical load 12 that is detected by the encoder 14.
and a drive control section 16 that controls the position and speed of. Then, the drive control unit 16 outputs a position command X*
A subtracter 18 that subtracts the detected position X detected by the encoder 14 from
a multiplier 20 for multiplying by a gain coefficient Kp of the position loop;
First derivative of position command X* with respect to time (X*)'
a differentiator 22 for calculating the speed command V* by adding the first derivative (X*)' calculated by the differentiator 22 and VDiff calculated by the multiplier 20, and an adder 24 for calculating the speed command V*.
A subtracter 28 calculates a speed deviation ΔV by subtracting the result of differentiating the detected position The first derivative (X*
)′ and multiplies it by a predetermined coefficient Kj, and an adder 34 that adds the output Kj(X*)″ of the differentiator 32 and the output of the proportional-integral amplifier 30 to obtain the torque command T*. , the torque command T* calculated by the adder 34
and a current command calculation unit 36 that calculates a three-phase current command i* based on the detected position X detected by the encoder 14, and a current supplied to the motor 10 based on the three-phase current command i* calculated by the current command calculation unit Inverter 38 that controls
It is composed of.
【0003】次に動作について説明する。位置指令X*
は、モータ10の回転位置を検出するエンコーダ14
が検出した検出位置Xと共に減算器18に入力され、位
置偏差Diffが求められる。そして、位置偏差Dif
fは、乗算器20に入力され、位置ループのゲイン係数
Kpを乗ぜられてVDiffとなる。一方、微分器22
により位置指令X* の時間に対する1次導関数(X*
)′を求め、1次導関数(X* )′とVDiffと
は加算器24に入力されて加算され速度指令V* とな
る。更に、速度指令V* は減算器28によりエンコー
ダ14が検出した検出位置Xを微分器26により微分し
た結果を差し引いて速度偏差ΔVが求められる。また、
位置指令X* の時間に対する1次導関数(X* )′
は微分器32により加速度成分が求められると共に所定
係数Kjを乗じられてKj(X* )″となる。一方、
速度偏差ΔVは比例積分増幅器30により比例積分増幅
され、比例積分増幅器30の出力は加算器34により微
分器32の出力Kj(X* )″と加算されてトルク指
令T* となる。そして、トルク指令T* は電流指令
演算部36に入力され、電流指令演算部36は、トルク
指令T* とエンコーダ14が検出した検出位置Xとに
基づいて3相電流指令i* を求めてインバータ38へ
出力し、インバータ38からモータ10への電流を制御
する。以上のようにして、モータ10の位置Xと位置指
令X*は位置偏差Diffが「0」となるようにフィー
ドバック制御され、その結果モータ10に接続される機
械負荷の位置X′は位置指令X* に追従する。なお、
微分器32の所定係数Kjは、モータ10のイナーシャ
JMと機械負荷12のイナーシャJL の合計値JM
+JL が選ばれる。また、モータ10と機械負荷12
とが完全剛体である場合には、電流指示演算部36の入
力より、エンコーダ14の出力に至る伝達関数は(1/
JM +JL )(1/S2 )となり、微分器22,
32と直列接続した伝達関数は次式のようになり、
S・KjS・(1/JM +JL )(1/S2 )=
Kj/JM +JL =1…(1)外乱が無い場合、位
置偏差Diffは発生しない。Next, the operation will be explained. Position command X*
is an encoder 14 that detects the rotational position of the motor 10.
is input to the subtracter 18 together with the detected position X, and the positional deviation Diff is determined. And the positional deviation Dif
f is input to the multiplier 20 and multiplied by the position loop gain coefficient Kp to become VDiff. On the other hand, the differentiator 22
The first derivative of position command X* with respect to time (X*
)' is determined, and the first derivative (X*)' and VDiff are inputted to an adder 24 and added to form a speed command V*. Further, from the speed command V*, a speed deviation ΔV is obtained by subtracting the result of differentiating the detection position X detected by the encoder 14 using a differentiator 26 using a subtracter 28. Also,
First derivative of position command X* with respect to time (X*)'
The acceleration component is determined by the differentiator 32 and multiplied by a predetermined coefficient Kj to become Kj(X*)''.On the other hand,
The speed deviation ΔV is proportionally and integrally amplified by the proportional-integral amplifier 30, and the output of the proportional-integral amplifier 30 is added to the output Kj(X*)'' of the differentiator 32 by the adder 34 to obtain the torque command T*. The command T* is input to the current command calculation unit 36, and the current command calculation unit 36 calculates a three-phase current command i* based on the torque command T* and the detection position X detected by the encoder 14, and outputs it to the inverter 38. and controls the current flowing from the inverter 38 to the motor 10.As described above, the position X of the motor 10 and the position command X* are feedback-controlled so that the position deviation Diff becomes "0", and as a result, the The position X' of the mechanical load connected to follows the position command X*. In addition,
The predetermined coefficient Kj of the differentiator 32 is the total value JM of the inertia JM of the motor 10 and the inertia JL of the mechanical load 12.
+JL is selected. In addition, the motor 10 and the mechanical load 12
is a completely rigid body, the transfer function from the input of the current instruction calculation unit 36 to the output of the encoder 14 is (1/
JM + JL ) (1/S2 ), and the differentiator 22,
The transfer function connected in series with 32 is as follows, S・KjS・(1/JM +JL)(1/S2)=
Kj/JM +JL = 1... (1) When there is no disturbance, positional deviation Diff does not occur.
【0004】0004
【発明が解決しようとする課題】従来の駆動制御装置は
、以上のように構成されており、モータ10が駆動する
機械負荷12が図5に示すようにテーブル52の駆動系
であった場合、モータ10の位置Xとテーブル52の位
置XL は動的には一致しない。テーブル52を指示案
内する案内面は、リニアガイド等の低摺動抵抗の機構を
用いることにより、停止時におけるXとX′との偏差は
サブミクロンに押さえることができる。一方、加速時に
おいては、テーブル52の加速度は0.5G(重力加速
度)程度に達し、数100Kgfの力が各部に加わるこ
とになる。このため、ベッド54へのモータ10、ボー
ルねじ56の取り付け部、テーブル52のボールねじナ
ット取り付け部等において数10ミクロンのたわみが発
生する。この動的なたわみ量は、複数の軸間を同期させ
る場合に問題となり、特に複合旋盤において可動軸の主
軸台と刃物台を切削しながら平行移動させる場合に、切
削面に凸凹を発生させる。このたわみ量は、テーブル5
2にインダクトシン等の検出器を取り付けることにより
計測可能であるが、加減速中にフィードバックにより誤
差を減少させるには位置ループの応答周波数が不十分で
ある。ここで摺動抵抗は、無視できるものとし、ばね定
数をKとしてモデルを単純化すると、図5は図6により
近似できる。次に、これをブロック線図で表示すると図
7のようになり、図7を図2と合わせると、位置指令X
* からテーブル位置XL は図8のブロック線図によ
り得られる。次に、図8のブロック線図より位置指令X
* からテーブル位置XL への伝達関数F(S)を求
めると、第2式のようになる。The conventional drive control device is constructed as described above, and when the mechanical load 12 driven by the motor 10 is the drive system for the table 52 as shown in FIG. The position X of the motor 10 and the position XL of the table 52 do not dynamically match. By using a low sliding resistance mechanism such as a linear guide for the guide surface that directs and guides the table 52, the deviation between X and X' when the table 52 is stopped can be suppressed to a submicron level. On the other hand, during acceleration, the acceleration of the table 52 reaches about 0.5G (gravitational acceleration), and a force of several 100 Kgf is applied to each part. Therefore, a deflection of several tens of microns occurs at the attachment portion of the motor 10 and the ball screw 56 to the bed 54, the attachment portion of the ball screw nut of the table 52, and the like. This amount of dynamic deflection poses a problem when synchronizing multiple axes, and causes unevenness on the cutting surface, especially when the headstock and tool rest of the movable axes are moved in parallel while cutting in a compound lathe. This amount of deflection is shown in Table 5.
Although it is possible to measure by attaching a detector such as an inductosin to 2, the response frequency of the position loop is insufficient to reduce the error by feedback during acceleration and deceleration. If the sliding resistance is assumed to be negligible here and the spring constant is assumed to be K to simplify the model, then FIG. 5 can be approximated by FIG. 6. Next, when this is expressed as a block diagram, it becomes as shown in Fig. 7, and when Fig. 7 is combined with Fig. 2, the position command
*The table position XL can be obtained from the block diagram of FIG. Next, from the block diagram in FIG. 8, position command
The transfer function F(S) from * to the table position XL is calculated as shown in the second equation.
【0005】F(S)=A/B …(2
)ただし、A=KjS2 +(Kp+S)(Kvp+K
vi/S)
B=(JM +JL )S2 +(1+JL S2 /
K)(Kp+S)(Kvp+Kvi/S)+JM ・J
L S4 /Kここで、剛性が無限大であれば、すなわ
ちばね定数Kが無限大であれば、伝達関数は1となって
、[0005]F(S)=A/B...(2
) However, A=KjS2 +(Kp+S)(Kvp+K
vi/S) B=(JM +JL)S2 +(1+JL S2/
K) (Kp+S) (Kvp+Kvi/S)+JM ・J
L S4 /KHere, if the stiffness is infinite, that is, if the spring constant K is infinite, the transfer function is 1, and
【0006】[0006]
【式1】[Formula 1]
【0007】[0007]
【0008】ただし、Kj=(JM +JL )位置指
令X* とテーブル位置XL とは一致するが、剛性が
小さくなるほど、かつ負荷イナーシャJL が大きくな
るほど伝達関数は1よりずれて偏差が大きくなるという
課題があった。[0008] However, although Kj = (JM + JL) position command X* and table position XL match, the problem is that the smaller the rigidity and the larger the load inertia JL, the more the transfer function deviates from 1 and the deviation becomes larger. was there.
【0009】発明の目的
本発明の目的は、モータの加減速時において発生する機
械の先端部の位置XL と位置指令X* との偏差をな
くし、複数軸を同期して動作させた場合に、加減速時に
各軸間の同期誤差を発生しない駆動制御装置を提供する
ことにある。Purpose of the Invention The purpose of the present invention is to eliminate the deviation between the position XL of the tip of the machine and the position command X* that occurs when the motor accelerates and decelerates, and when multiple axes are operated synchronously An object of the present invention is to provide a drive control device that does not generate synchronization errors between axes during acceleration and deceleration.
【0010】0010
【課題を解決するための手段】この発明に係わる駆動制
御装置は、モータにより駆動される機械負荷と、位置指
令の時間に対する2次導関数の所定係数倍をトルク指令
値に対して加算する第1の加算手段と、トルク指令値に
対する加算値の所定係数倍を位置補正値として位置指令
に対して加算する第2の加算手段と、位置指令補正値の
時間に対する1次導関数の所定係数倍を速度補正値とし
て速度指令に加算する第3の加算手段と、位置指令補正
値の時間に対する2次導関数の所定係数倍をトルク補正
値としてトルク指令値に加算する第4の加算手段と、を
備えることを特徴とする。[Means for Solving the Problems] A drive control device according to the present invention includes a mechanical load driven by a motor and a torque command value that adds a predetermined coefficient times the second derivative of a position command with respect to time to a torque command value. a second addition means for adding a predetermined coefficient times the addition value to the torque command value to the position command as a position correction value, and a predetermined coefficient times the first derivative of the position command correction value with respect to time. a third addition means for adding the second derivative of the position command correction value with respect to time to the speed command as a speed correction value, and a fourth addition means for adding a predetermined coefficient times the second derivative of the position command correction value with respect to time to the torque command value as a torque correction value; It is characterized by having the following.
【0011】[0011]
【作用】この発明における駆動制御装置は、位置指令の
時間に対する2次導関数の所定係数倍を第1の加算手段
によりトルク指令値に対して加算し、トルク指令値に対
する加算値の所定係数倍を第2の加算手段により位置補
正値として位置指令に対して加算し、位置指令補正値の
時間に対する1次導関数の所定係数倍を第3の加算手段
により速度補正値として速度指令に加算し、位置指令補
正値の時間に対する2次導関数の所定係数倍を第4の加
算手段によりトルク補正値としてトルク指令値に加算し
、トルク指令値によりモータの入力電流を制御すること
により機械負荷の位置および速度を制御する。[Operation] The drive control device according to the present invention adds a predetermined coefficient times the second derivative of the position command with respect to time to the torque command value using the first addition means, and multiplies the added value to the torque command value by a predetermined coefficient. is added to the position command as a position correction value by the second addition means, and a predetermined coefficient times the first derivative of the position command correction value with respect to time is added to the speed command by the third addition means as a speed correction value. , the fourth addition means adds a predetermined coefficient of the second derivative of the position command correction value with respect to time to the torque command value as a torque correction value, and the input current of the motor is controlled by the torque command value, thereby reducing the mechanical load. Control position and speed.
【0012】0012
【実施例】以下、この発明の一実施例を図面に基づいて
説明する。なお、図4に示した部分と同じ部分には同一
符号を付して説明を省略する。駆動制御装置は、図1に
示すように、微分器32の出力Kj(X* )″すなわ
ちトルクTM * に所定係数Klを乗じてKlTM
* を出力する乗算器40と、乗算器40の出力KlT
M * を減算器18が算出した位置偏差Diffに加
算する第2の加算手段としての加算器42と、乗算器4
0の出力KlTM * を微分する微分器44と、微分
器44の出力(KlTM * )′を減算器28により
算出した速度偏差ΔVに加算する第3の加算手段として
の加算器46と、微分器44の出力(KlTM * )
′を更に微分して所定係数Ktを乗じる微分器48と、
微分器48の出力Kt(KlTM * )″を加算器3
4が算出したトルク指令T* に加算する第4の加算手
段としての加算器50と、を備えている。なお、前述し
た加算器34は第1の加算手段である。ここで、図7で
示したように、機械系のモデルを想定すると、図1は図
2のようになり、ブロックを図3のように整理し、位置
指令X* に対する機械位置XL の伝達関数F(S)
を求めると、第(4)式が得られる。DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. Note that the same parts as those shown in FIG. 4 are given the same reference numerals, and their explanation will be omitted. As shown in FIG. 1, the drive control device multiplies the output Kj(X*)'' of the differentiator 32, that is, the torque TM*, by a predetermined coefficient Kl to obtain KlTM.
A multiplier 40 that outputs * and an output KlT of the multiplier 40
An adder 42 as a second addition means for adding M* to the positional deviation Diff calculated by the subtracter 18, and a multiplier 4
a differentiator 44 that differentiates the output KlTM* of 0; an adder 46 as a third addition means that adds the output (KlTM*)' of the differentiator 44 to the speed deviation ΔV calculated by the subtracter 28; 44 outputs (KlTM*)
a differentiator 48 that further differentiates ' and multiplies it by a predetermined coefficient Kt;
The output Kt(KlTM*)'' of the differentiator 48 is sent to the adder 3
4 is provided with an adder 50 as a fourth addition means for adding to the torque command T* calculated by No. 4. Note that the above-mentioned adder 34 is the first addition means. Assuming a mechanical system model as shown in Fig. 7, Fig. 1 becomes as shown in Fig. 2, the blocks are arranged as shown in Fig. 3, and the transfer function of machine position XL to position command F(S)
, the equation (4) is obtained.
【0013】F(S)=C/D …(4
)ただし、C=KjS2 +(1+KjKlS2 )(
Kp+S)(Kvp+Kvi/S)+KjKlKtS4
D=(JM +JL )S2 +(1+JL S2
/K)(Kp+S)(Kvp+Kvi/S)+JM ・
JL S4 /Kここで、Kj=JM +JL ,Kj
Kl=JL /K,KjKlKt=JM ・JL /K
となるようにKj,Kl,Ktを(5),(6),(7
)式のように選べば、 Kj=JM
+JL
…(5) Kl=
JL /KKj=JL /K(JM +JL ) …
(6) Kt=JM ・JL /K
KjKl=JM ・JL /K(JM +JL )
・(JL /K(J
M +JL ))=JM …(7
)第(5)式、第(6)式および第(7)式を第(4)
式に代入すると、F(S)=1となり位置指令X* と
テーブル位置XL とを一致させることができる。[0013]F(S)=C/D...(4
) However, C=KjS2 +(1+KjKlS2)(
Kp+S) (Kvp+Kvi/S)+KjKlKtS4
D=(JM +JL)S2 +(1+JL S2
/K) (Kp+S) (Kvp+Kvi/S)+JM ・
JL S4 /K where Kj=JM +JL,Kj
Kl=JL/K, KjKlKt=JM ・JL/K
Kj, Kl, Kt are (5), (6), (7
), then Kj=JM
+JL
...(5) Kl=
JL/KKj=JL/K(JM+JL)...
(6) Kt=JM・JL/K
KjKl=JM ・JL /K (JM +JL)
・(JL /K(J
M + JL )) = JM … (7
) Expression (5), Expression (6) and Expression (7) as Expression (4)
When substituted into the equation, F(S)=1, and the position command X* and table position XL can be matched.
【0014】[0014]
【発明の効果】以上説明したように、本発明によれば、
位置指令の時間に対する2次導関数の所定係数倍を第1
の加算手段によりトルク指令値に対して加算し、トルク
指令値に対する加算値の所定係数倍を第2の加算手段に
より位置補正値として位置指令に対して加算し、位置指
令補正値の時間に対する1次導関数の所定係数倍を第3
の加算手段により速度補正値として速度指令に加算し、
位置指令補正値の時間に対する2次導関数の所定係数倍
を第4の加算手段によりトルク補正値としてトルク指令
値に加算し、トルク指令値によりモータの入力電流を制
御することにより機械負荷の位置および速度を制御する
ように構成したので、モータの加減速時において発生す
る機械駆動系のたわみ量を予測してフィードフォーワー
ド制御することが可能となり、複数軸を同期して動作さ
せた場合に、加減速時の各軸間の同期誤差を抑制するこ
とができる。[Effects of the Invention] As explained above, according to the present invention,
The second derivative of the position command with respect to time is multiplied by a predetermined factor as the first
A second adding means adds a predetermined coefficient times the added value to the torque command value to the position command as a position correction value. The third derivative is multiplied by a predetermined coefficient.
is added to the speed command as a speed correction value using the adding means,
The position of the mechanical load is determined by adding a predetermined coefficient times the second derivative of the position command correction value with respect to time to the torque command value as a torque correction value using the fourth addition means, and controlling the input current of the motor using the torque command value. Since the configuration is configured to control the rotation and speed, it is possible to predict the amount of deflection of the mechanical drive system that occurs when the motor accelerates or decelerates, and perform feedforward control. , it is possible to suppress synchronization errors between each axis during acceleration and deceleration.
【図1】本発明を適用した駆動制御装置の構成を示すブ
ロック図である。FIG. 1 is a block diagram showing the configuration of a drive control device to which the present invention is applied.
【図2】本発明を適用した駆動制御装置の機械系をモデ
ル化した構成を示すブロック図である。FIG. 2 is a block diagram showing a configuration in which a mechanical system of a drive control device to which the present invention is applied is modeled.
【図3】図2を変形したブロック図である。FIG. 3 is a block diagram that is a modification of FIG. 2;
【図4】従来の駆動制御装置の構成を示すブロック図で
ある。FIG. 4 is a block diagram showing the configuration of a conventional drive control device.
【図5】従来の駆動制御装置をテーブル駆動の機械系に
適用した構成を示す図である。FIG. 5 is a diagram showing a configuration in which a conventional drive control device is applied to a table-driving mechanical system.
【図6】図5の近似モデルを示す図である。FIG. 6 is a diagram showing an approximate model of FIG. 5;
【図7】図6の近似モデルの構成を示すブロック図であ
る。FIG. 7 is a block diagram showing the configuration of the approximate model in FIG. 6;
【図8】従来の駆動制御装置の機械系をモデル化した構
成を示すブロック図である。FIG. 8 is a block diagram showing a configuration in which a mechanical system of a conventional drive control device is modeled.
10 モータ 12 機械負荷 14 エンコーダ 34,42,46,50 加算器 10 Motor 12 Mechanical load 14 Encoder 34, 42, 46, 50 Adder
Claims (1)
タの回転位置を検出するエンコーダとを備え、エンコー
ダが検出するモータの検出位置と位置指令とから速度指
令値、トルク指令値を導き出してモータの入力電流を制
御することにより機械負荷の位置および速度を制御する
駆動制御装置において、位置指令の時間に対する2次導
関数の所定係数倍をトルク指令値に対して加算する第1
の加算手段と、トルク指令値に対する第1の加算手段の
加算値の所定係数倍を位置補正値として位置指令に対し
て加算する第2の加算手段と、位置指令補正値の時間に
対する1次導関数を速度補正値として速度指令に加算す
る第3の加算手段と、位置指令補正値の時間に対する2
次導関数の所定係数倍をトルク補正値としてトルク指令
に加算する第4の加算手段と、を備えることを特徴とす
る駆動制御装置。Claim 1: A mechanical load driven by a motor, and an encoder that detects the rotational position of the motor, and a speed command value and a torque command value are derived from the motor detection position detected by the encoder and the position command, and the motor is In a drive control device that controls the position and speed of a mechanical load by controlling the input current of
a second addition means for adding a predetermined coefficient times the addition value of the first addition means to the torque command value to the position command as a position correction value; a third addition means for adding the function to the speed command as a speed correction value;
A drive control device comprising: fourth addition means for adding a predetermined coefficient times the second derivative to a torque command as a torque correction value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3029964A JP2810246B2 (en) | 1991-02-25 | 1991-02-25 | Drive control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3029964A JP2810246B2 (en) | 1991-02-25 | 1991-02-25 | Drive control device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04271290A true JPH04271290A (en) | 1992-09-28 |
JP2810246B2 JP2810246B2 (en) | 1998-10-15 |
Family
ID=12290656
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3029964A Expired - Fee Related JP2810246B2 (en) | 1991-02-25 | 1991-02-25 | Drive control device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2810246B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000052543A1 (en) * | 1999-03-03 | 2000-09-08 | Kabushiki Kaisha Yaskawa Denki | Positioning control method |
JP2003058213A (en) * | 2001-08-22 | 2003-02-28 | Mitsubishi Electric Corp | Numerical controller |
US6677722B2 (en) | 2001-04-19 | 2004-01-13 | Toshiba Kikai Kabushiki Kaisha | Servo control method |
US7030585B2 (en) | 2003-01-07 | 2006-04-18 | Fanuc Ltd | Controller |
JP2007025961A (en) * | 2005-07-14 | 2007-02-01 | Okuma Corp | Position controller for numerically controlled machine |
KR100842978B1 (en) * | 2000-09-20 | 2008-07-01 | 가부시키가이샤 야스카와덴키 | Servo control method |
JP2011067016A (en) * | 2009-09-17 | 2011-03-31 | Fuji Electric Systems Co Ltd | Servo controller |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5112100B2 (en) * | 2008-01-09 | 2013-01-09 | 三菱重工業株式会社 | Servo control device |
-
1991
- 1991-02-25 JP JP3029964A patent/JP2810246B2/en not_active Expired - Fee Related
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000052543A1 (en) * | 1999-03-03 | 2000-09-08 | Kabushiki Kaisha Yaskawa Denki | Positioning control method |
US6975086B1 (en) | 1999-03-03 | 2005-12-13 | Kabushiki Kaisha Yaskawa Denki | Positioning control method |
KR100842978B1 (en) * | 2000-09-20 | 2008-07-01 | 가부시키가이샤 야스카와덴키 | Servo control method |
US6677722B2 (en) | 2001-04-19 | 2004-01-13 | Toshiba Kikai Kabushiki Kaisha | Servo control method |
KR100450455B1 (en) * | 2001-04-19 | 2004-10-01 | 도시바 기카이 가부시키가이샤 | Servo control method |
JP2003058213A (en) * | 2001-08-22 | 2003-02-28 | Mitsubishi Electric Corp | Numerical controller |
US7030585B2 (en) | 2003-01-07 | 2006-04-18 | Fanuc Ltd | Controller |
JP2007025961A (en) * | 2005-07-14 | 2007-02-01 | Okuma Corp | Position controller for numerically controlled machine |
JP4598617B2 (en) * | 2005-07-14 | 2010-12-15 | オークマ株式会社 | Position control device for numerical control machine |
JP2011067016A (en) * | 2009-09-17 | 2011-03-31 | Fuji Electric Systems Co Ltd | Servo controller |
Also Published As
Publication number | Publication date |
---|---|
JP2810246B2 (en) | 1998-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR940003005B1 (en) | Arrangement for speed regulation of electric motor | |
KR0154224B1 (en) | Tandem control method using digital servo | |
JP3739749B2 (en) | Control device | |
US6566835B1 (en) | Nc machine tool, and method of controlling nc machine tool | |
US20050137739A1 (en) | Method of controlling numerically controlled machine tool and numerically controlled machine tool | |
JP3755054B2 (en) | Synchronous control device | |
JP2581797B2 (en) | Synchronous control method and device | |
WO1998040801A1 (en) | Position controller | |
US10247301B2 (en) | Servo control system with position compensation function for driven member | |
JP4367058B2 (en) | Motor control device | |
JP4867105B2 (en) | Numerical controller | |
JP3388112B2 (en) | Positioning control device | |
WO1991008528A1 (en) | System for correcting a change in the machine position | |
JPH04271290A (en) | Drive controller | |
JP3370040B2 (en) | Speed control device | |
JP2000218577A (en) | Robot control device | |
JP4448219B2 (en) | Dynamic deflection correction method in motion controller and motion controller | |
JPH07110714A (en) | Method for controlling position, speed, and torque by plural motors | |
JP2003076425A (en) | Control device for feeding driving system | |
JPH086644A (en) | Numerical controller | |
KR101001051B1 (en) | Servo Moter Speed Loop Gain Control Unit of CNC | |
JPH1063339A (en) | Controller of numerical value control machine tool | |
JP3982308B2 (en) | Positioning control device | |
JP4632171B2 (en) | Motor control device and control method | |
JP2019075924A (en) | Controller |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080731 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090731 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090731 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100731 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |