JPH04270133A - Production unit of porous optical fiber matrix - Google Patents

Production unit of porous optical fiber matrix

Info

Publication number
JPH04270133A
JPH04270133A JP4918891A JP4918891A JPH04270133A JP H04270133 A JPH04270133 A JP H04270133A JP 4918891 A JP4918891 A JP 4918891A JP 4918891 A JP4918891 A JP 4918891A JP H04270133 A JPH04270133 A JP H04270133A
Authority
JP
Japan
Prior art keywords
gas flow
reaction chamber
gas
optical fiber
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4918891A
Other languages
Japanese (ja)
Inventor
Keiichi Tokunaga
徳永 敬一
Toshikatsu Sasagawa
笹川 俊勝
Koyo Nakayama
中山 幸洋
Koichi Harada
光一 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP4918891A priority Critical patent/JPH04270133A/en
Publication of JPH04270133A publication Critical patent/JPH04270133A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/0144Means for after-treatment or catching of worked reactant gases
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/46Comprising performance enhancing means, e.g. electrostatic charge or built-in heater

Abstract

PURPOSE:To obtain the title high-quality matrix by installing filters having mutually identical flow coefficient on the upstream and downstream parts of a reaction chamber to bring gas stream in a perfect laminar flow state. CONSTITUTION:Using a feed fan 8 equipped on the upstream side and an exhaust fan 9 onthe downstream side, air feeding and exhaustion are made at a constant gas flow. The upstream and downstream parts of a reaction chamber 7 having invariant sectional area and circular shape are respectively equipped with filters 5A and 5B with mutually identical flow coefficient, to accomplish dust removal and bringing gas stream to a laminar flow state by its speed set at 0.05-1.5m/s. The inside of the reaction chamber 7 is equipped with (A) a starting material 3 supported so as to be free in advance and retreat thereof across the gas flow route and also free in rotation thereof and (B) a burner 2, facing to said material 3, for allowing glass soot to be deposited thereon, thereby providing ensuring stable and fluctuation-free burning flame for glass material to be ensured the continuation, thus obtaining the objective high-quality matrix 1 with desired refractive index distribution.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は多孔質光ファイバ母材
の製造装置、特に所望の屈折率分布が正確に得られる多
孔質光ファイバ母材の製造装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for manufacturing a porous optical fiber preform, and more particularly to an apparatus for manufacturing a porous optical fiber preform that can accurately obtain a desired refractive index distribution.

【0002】0002

【従来の技術】多孔質光ファイバ母材の製造法は、内付
け、外付け、プラズマなど各種のCVD法やわが国で開
発されたVAD法など広く知られているが、これらの方
法は周知のように光ファイバ母材の主材料であるケイ素
(Si)や屈折率や変化を与えるためのドープ材である
ゲルマニウム(Ge)等を気相にして酸水素炎バーナに
よって出発材に燃焼炎として吹き付け、この上に前記材
料のスートの状態で付着堆積させる方法である。この場
合、多孔質光ファイバ母材の所望の屈折率分布は前記の
各種材料の混合比を制御することによって得られるもの
であって、このためバーナから吹き出す火炎が揺らいだ
り、その方向が変動したりしないじ、一様で安定な火炎
が継続することが良質の光ファイバ母材を製造できる重
要な条件となる。
[Prior Art] There are widely known methods for manufacturing porous optical fiber preforms, including various CVD methods such as internal attachment, external attachment, and plasma, and the VAD method developed in Japan. In this way, silicon (Si), which is the main material of the optical fiber base material, and germanium (Ge), which is a dope material for changing the refractive index, are made into a gas phase and sprayed as a combustion flame onto the starting material using an oxyhydrogen flame burner. This is a method in which the material is deposited thereon in the form of soot. In this case, the desired refractive index distribution of the porous optical fiber base material is obtained by controlling the mixing ratio of the various materials mentioned above, and as a result, the flame blown out from the burner fluctuates or its direction changes. The continuation of a uniform and stable flame is an important condition for producing high-quality optical fiber preforms.

【0003】上述の製造条件を確保する意図を明示した
従来の技術としては、特開昭62−171939号公報
記載のものが注目すべきである。これは要約すれば、図
3に示すようにガス流の入口側にフィルタ102を備え
、出口側がダクト103に向かう反応室101の内部に
空気または窒素などのガス流を「整流状態」で矢印のよ
うに流し、その中で回転する出発材3の下端にバーナ2
を当ててガラススートを付着させ多孔質光ファイバ母材
1を製造する技術である。この公報技術の要点はもちろ
ん反応室101内部に流れるガス流が「整流状態」にあ
ることであり、同公報の記載はこれによってバーナ2か
ら出る火炎に揺らぎが生じないと強調している。
[0003] As a conventional technique clearly intended to ensure the above-mentioned manufacturing conditions, the one described in Japanese Patent Application Laid-Open No. 171939/1983 should be noted. In summary, as shown in FIG. 3, a filter 102 is provided on the inlet side of the gas flow, and a gas flow such as air or nitrogen is fed into the reaction chamber 101 with the outlet side facing the duct 103 in a "rectified state" as indicated by the arrow. The burner 2 is attached to the lower end of the starting material 3 rotating in the flow.
This is a technique for producing a porous optical fiber preform 1 by applying a glass soot to the porous optical fiber. The key point of the technology disclosed in this publication is, of course, that the gas flow flowing inside the reaction chamber 101 is in a "rectified state," and the publication emphasizes that this does not cause fluctuations in the flame emitted from the burner 2.

【0004】しかしながら「整流」という術語は流体力
学にはなく、上掲公報にも具体的に定義が与えられてい
ないからその詳細は不明であるが、実施例を説明する同
公報の第1図(図3がそうである)から判断する限り、
発明者の意図は実現されていないと認められる。なぜな
らばこの技術では、ガス流の入口側にだけフィルタ10
2が設けられ出口側は断面積が狭まったダクト103に
通じているため、出口側に向かう程ガス流の流速が増大
してバーナ2から吹き出す火炎周辺に乱流状態が出現し
ないとは必ずしも保証されないと考えられるからである
However, the term "rectification" does not exist in fluid mechanics, and the above publication does not give a specific definition, so its details are unclear, but Figure 1 of the same publication, which explains an example, As far as we can judge from (as shown in Figure 3),
It is recognized that the inventor's intention was not realized. This is because in this technology, the filter 10 is only placed on the inlet side of the gas flow.
2 is provided, and the outlet side is connected to the duct 103 with a narrower cross-sectional area, so the flow velocity of the gas flow increases toward the outlet side, and it is not always guaranteed that turbulence will not appear around the flame blown out from the burner 2. This is because it is thought that it will not be done.

【0005】[0005]

【発明が解決しようとする課題】この発明は上述のこと
から自明なように、出発材上にガラススートを生成する
反応室内のガス流の完全な層流状態を実現して、一様で
安定したガラス材料の燃焼炎を継続させることのできる
多孔質光ファイバ母材の製造装置を提供することである
[Problems to be Solved by the Invention] As is obvious from the above, it is an object of the present invention to realize a completely laminar flow state of the gas flow in the reaction chamber that produces glass soot on the starting material, so that it is uniform and stable. An object of the present invention is to provide an apparatus for manufacturing a porous optical fiber preform that can continue a combustion flame of a glass material.

【0006】[0006]

【課題を解決するための手段】この発明は上述の課題を
解決するためになされたものであって、上流側に設けら
れ所定のガス給気量を給気するように設定される給気フ
ァンと、下流側に設けられ前記ガス給気量と等量のガス
排気量を排気するよう設定される排気ファンとの間のガ
ス流路において、給気側フィルタとこれと同一の流量係
数を持つ排気側フィルタとによってガスの流れの方向に
断面積が変化しないように区画形成される反応室と、前
記反応室内において前記のガス流路を横切る方向に進退
自在にかつ回転自在に支持される出発材と、前記出発材
に対向して設けられ、この上にガラススートを付着堆積
させるバーナとを有する多孔質光ファイバ母材の製造装
置である。
[Means for Solving the Problems] This invention has been made to solve the above-mentioned problems, and includes an air supply fan that is provided on the upstream side and is set to supply a predetermined amount of gas supply air. and an exhaust fan provided on the downstream side and set to exhaust a gas volume equal to the gas supply volume, which has the same flow coefficient as the supply air filter. a reaction chamber partitioned by an exhaust side filter so that its cross-sectional area does not change in the direction of gas flow; and a starter that is rotatably supported in the reaction chamber so that it can move forward and backward in a direction across the gas flow path. The present invention is an apparatus for manufacturing a porous optical fiber preform, which has a burner that is provided to face the starting material and deposits glass soot thereon.

【0007】またこの発明はこのような多孔質光ファイ
バ母材の製造装置において、前記バーナが、その軸線を
前記ガス流路のガス流の方向と平行にするように配設さ
れることを特徴とする多孔質光ファイバ母材の製造装置
である。
[0007] Furthermore, the present invention is characterized in that in the apparatus for manufacturing a porous optical fiber preform, the burner is disposed so that its axis is parallel to the direction of gas flow in the gas flow path. This is a manufacturing device for porous optical fiber preform.

【0008】[0008]

【作用】給気側と排気側との両側をそれぞれフィルタに
よって区画された断面積不変の反応室は、所定の給気量
と排気量とが等しくなるよう調整されるガス流の流量制
御とあいまって、その内部のガス流の完全な層流状態を
実現し、この結果ガラス材料炎の揺らぎのない安定した
継続を保証する。
[Operation] The reaction chamber, which has an unchanged cross-sectional area and is partitioned by filters on both sides of the air supply and exhaust sides, is combined with flow rate control of the gas flow, which is adjusted so that the predetermined air supply and exhaust volumes are equal. This achieves a completely laminar state of gas flow inside the glass material, thereby ensuring stable continuation of the glass material flame without fluctuations.

【0009】[0009]

【実施例】図1についてこの発明の一実施例を説明する
。空気または窒素のようなガスを供給する給気ファン8
に対し、下流側にはこの給気ファン8の給気量と等量の
排気量に設定される排気ファン9が設けられ、給気ファ
ン8と排気ファン9との間にひとつのガス流路が形成さ
れる。このガス流路の中程には、適宜の間隔をおいて、
ガス中に混在する有害な塵埃を除去できる給気側フィル
タ5Aと排気側フィルタ5Bとが配置され、この2枚の
フィルタ5A,5B間に反応室7を区画形成する。 ガス流路の内、給気ファン8から給気側フィルタ5Aま
での空間を給気室6A、同じく排気側フィルタ5Bから
排気ファン9に至るまでの空間を排気室6Bと呼ぶこと
にする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIG. Air supply fan 8 supplying gas such as air or nitrogen
On the other hand, on the downstream side, an exhaust fan 9 is provided which is set to have an exhaust amount equal to the air supply amount of the air supply fan 8, and one gas flow path is provided between the air supply fan 8 and the exhaust fan 9. is formed. At an appropriate interval in the middle of this gas flow path,
A supply side filter 5A and an exhaust side filter 5B capable of removing harmful dust mixed in the gas are arranged, and a reaction chamber 7 is defined between these two filters 5A and 5B. In the gas flow path, the space from the air supply fan 8 to the air supply side filter 5A will be called an air supply chamber 6A, and the space from the exhaust side filter 5B to the exhaust fan 9 will be called an exhaust chamber 6B.

【0010】給気ファン8の給気量は反応室7内にガス
の層流を実現できる程度の大きさとする。もちろんこれ
は反応室7の断面積の大きさによっても変動するが、反
応室7内のガス流速v0の目安はほぼ、0.05〜1.
5m/sである。
The amount of air supplied by the air supply fan 8 is set to be large enough to realize a laminar flow of gas within the reaction chamber 7. Of course, this varies depending on the size of the cross-sectional area of the reaction chamber 7, but the approximate gas flow velocity v0 in the reaction chamber 7 is approximately 0.05 to 1.
It is 5m/s.

【0011】反応室7はガスの流れの方向に断面積が変
化しないものであることを要する。しかして形状として
はガスの流れの方向を軸線とする中空円柱状、つまりそ
の断面形状が円形をなすのが好ましい。なぜならばこの
ことは、給気室6Aと排気室6Bとが反応室7に向かっ
て径小の截頭円錐状をなすものであることとあいまって
、反応室7内のガス流のレイノルズ数を上げることで、
つまりガス流の流速v0が増大しても反応室7内の層流
状態の確保に役立つからである。
The reaction chamber 7 is required to have a cross-sectional area that does not change in the direction of gas flow. However, it is preferable that the shape is a hollow cylinder whose axis is in the direction of gas flow, that is, its cross-sectional shape is circular. This is because, together with the fact that the air supply chamber 6A and the exhaust chamber 6B form a truncated cone shape with a small diameter toward the reaction chamber 7, this makes it possible to increase the Reynolds number of the gas flow in the reaction chamber 7. By raising
In other words, this is because even if the flow velocity v0 of the gas flow increases, it helps to ensure a laminar flow state within the reaction chamber 7.

【0012】反応室7内にはもちろん出発材3がガス流
を横切る方向に進退自在に、かつ回転自在に配置される
とともに、ガラス材料を気相で供給する酸水素炎バーナ
2が設けられる。このバーナ2は破線で示すように従来
技術と同様にガス流の方向に対して傾斜して配置しても
よいが、ガス流と平行に配置するのもそのバーナ2周辺
の層流状態を乱さないために有効である。
In the reaction chamber 7, of course, a starting material 3 is disposed so as to be able to move forward and backward in a direction transverse to the gas flow and to be rotatable, and an oxyhydrogen flame burner 2 that supplies a glass material in a vapor phase is also provided. This burner 2 may be arranged at an angle with respect to the direction of the gas flow as in the prior art, as shown by the broken line, but it is also possible to arrange it parallel to the gas flow because it disturbs the laminar flow state around the burner 2. It is effective because it is not.

【0013】この発明のガス流の流路は、解り易く図式
的に示せば、図2に示すモデルと同等である。つまり、
給気側および排気側フィルタ5A,5Bにおいては流路
は当然狭くなり、反応室7内では広くなる。したがって
この発明の本来の計画通り反応室7内に完全な層流が実
現するとすれば、流体の流れにおける連続の法則(流れ
の各断面における流量、つまり断面積と流速の積は一定
である)が成立し、給気側および排気側フィルタ5A,
5Bの部分における流速v0は反応室7内の流速v0よ
り大となる。念のため蛇足を加えれば、両フィルタ5A
,5Bのところではガスの流れがそのろ過抵抗のため遅
くなるのではないかと疑念を抱かれる向きには、各フィ
ルタ5A,5B内部の無数の狭い通路内のガスの流速を
考えるのであって、これならばその断面積の微小な流路
内ではガス流速は当然速くなっていることは理解される
であろう。
The gas flow path of the present invention is equivalent to the model shown in FIG. 2 if it is shown diagrammatically for easy understanding. In other words,
Naturally, the flow path becomes narrower in the air supply side and exhaust side filters 5A, 5B, and becomes wider in the reaction chamber 7. Therefore, if a completely laminar flow is realized in the reaction chamber 7 as originally planned in this invention, the law of continuity in fluid flow (the flow rate at each cross section of the flow, that is, the product of the cross-sectional area and the flow velocity is constant) is established, and the air supply side and exhaust side filters 5A,
The flow velocity v0 in the portion 5B is higher than the flow velocity v0 in the reaction chamber 7. Just in case, if you add an extra, both filters 5A
, 5B, the flow rate of gas in the numerous narrow passages inside each filter 5A, 5B should be considered. If this is the case, it will be understood that the gas flow rate is naturally faster in the flow path with the smaller cross-sectional area.

【0014】[0014]

【発明の効果】この発明によれば、給気側と排気側との
両側をそれぞれフィルタによって区画された断面積不変
の反応室内においてガラススート生成の加水分解反応を
行わせるものであって、所定の給気量と排気量とが等し
くなるよう調整され、かつ塵埃の除去された清浄なガス
流の流量制御とあいまって、その反応室内部のガス流の
完全な層流状態が実現でき、この結果ガラス材料の燃焼
炎の揺らぎのない安定した継続が保証され、良質の多孔
質光ファイバぞざいを製造できる効果がある。
[Effects of the Invention] According to the present invention, the hydrolysis reaction for producing glass soot is carried out in a reaction chamber with an unchanged cross-sectional area, which is partitioned by filters on both sides of the air supply side and the exhaust side, respectively. By adjusting the supply air volume and exhaust volume of the reaction chamber to be equal, and by controlling the flow rate of a clean gas flow from which dust has been removed, it is possible to achieve a completely laminar state of gas flow inside the reaction chamber. As a result, stable continuation of the combustion flame of the glass material without fluctuation is ensured, which has the effect of producing high-quality porous optical fibers.

【0015】またバーナをガス流の流れの方向と平行に
配置した実施例においては、反応室内部のガス流の層流
状態がさらに確実に実現できる利点がある。
Further, in an embodiment in which the burner is arranged parallel to the direction of the gas flow, there is an advantage that a laminar flow state of the gas flow inside the reaction chamber can be realized more reliably.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明の一実施例を示す側断面図。FIG. 1 is a side sectional view showing one embodiment of the invention.

【図2】この発明のガス流路のを図式的に示した簡略断
面図。
FIG. 2 is a simplified cross-sectional view schematically showing a gas flow path of the present invention.

【図3】代表的な従来技術を示す側断面図。FIG. 3 is a side sectional view showing a typical prior art.

【符号の説明】[Explanation of symbols]

1  多孔質光ファイバ母材 2  バーナ 3  出発材 4  回転チャック 5A,5B  給気側および排気側フィルタ8  給気
ファン 9  排気ファン
1 Porous optical fiber base material 2 Burner 3 Starting material 4 Rotary chucks 5A, 5B Air supply side and exhaust side filters 8 Air supply fan 9 Exhaust fan

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  上流側に設けられ所定のガス給気量を
給気するように設定される給気ファン(8)と、下流側
に設けられ前記ガス給気量と等量のガス排気量を排気す
るよう設定される排気ファン(9)との間のガス流路に
おいて、給気側フィルタ(5A)とこれと同一の流量係
数を持つ排気側フィルタ(5B)とによってガスの流れ
の方向に断面積が変化しないように区画形成される反応
室(7)と、前記反応室(7)内において前記のガス流
路を横切る方向に進退自在にかつ回転自在に支持される
出発材(3)と、前記出発材(3)に対向して設けられ
、この上にガラススートを付着堆積させるバーナ(2)
とを有する多孔質光ファイバ母材の製造装置。
1. An air supply fan (8) provided on the upstream side and set to supply a predetermined amount of gas supply air, and an air supply fan (8) provided on the downstream side with an amount of gas exhaust equal to the gas supply amount. In the gas flow path between the exhaust fan (9), which is set to exhaust air, the direction of gas flow is controlled by the supply side filter (5A) and the exhaust side filter (5B), which has the same flow coefficient. a reaction chamber (7) which is partitioned so that its cross-sectional area does not change; and a starting material (3) which is rotatably supported in the reaction chamber (7) so as to be able to move forward and backward in a direction across the gas flow path. ), and a burner (2) provided opposite the starting material (3) and depositing glass soot thereon.
An apparatus for manufacturing a porous optical fiber preform, comprising:
【請求項2】  前記バーナ(2)が、その軸線を前記
ガス流路のガス流の方向と平行にするように配設される
ことを特徴とする請求項1記載の多孔質光ファイバ母材
の製造装置。
2. The porous optical fiber preform according to claim 1, wherein the burner (2) is arranged so that its axis is parallel to the direction of gas flow in the gas flow path. manufacturing equipment.
JP4918891A 1991-02-21 1991-02-21 Production unit of porous optical fiber matrix Pending JPH04270133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4918891A JPH04270133A (en) 1991-02-21 1991-02-21 Production unit of porous optical fiber matrix

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4918891A JPH04270133A (en) 1991-02-21 1991-02-21 Production unit of porous optical fiber matrix

Publications (1)

Publication Number Publication Date
JPH04270133A true JPH04270133A (en) 1992-09-25

Family

ID=12824053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4918891A Pending JPH04270133A (en) 1991-02-21 1991-02-21 Production unit of porous optical fiber matrix

Country Status (1)

Country Link
JP (1) JPH04270133A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1046617A2 (en) * 1999-04-21 2000-10-25 Shin-Etsu Chemical Co., Ltd. Synthetic quartz glass manufacturing process
KR20030012749A (en) * 2001-08-04 2003-02-12 화이콤(주) The manufacturing system & method for optical fiber soot
US6672112B2 (en) * 1999-07-02 2004-01-06 Shin-Etsu Chemical Co. OVD apparatus including air-regulating structure
CN110818246A (en) * 2019-12-20 2020-02-21 杭州永通智造科技有限公司 Flow field stabilizing device of clean reaction chamber for preform cladding deposition

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1046617A2 (en) * 1999-04-21 2000-10-25 Shin-Etsu Chemical Co., Ltd. Synthetic quartz glass manufacturing process
EP1046617A3 (en) * 1999-04-21 2001-03-21 Shin-Etsu Chemical Co., Ltd. Synthetic quartz glass manufacturing process
US6339940B1 (en) 1999-04-21 2002-01-22 Shin-Etsu Chemical Co., Ltd. Synthetic quartz glass manufacturing process
US6672112B2 (en) * 1999-07-02 2004-01-06 Shin-Etsu Chemical Co. OVD apparatus including air-regulating structure
US7055345B2 (en) 1999-07-02 2006-06-06 Yuuji Tobisaka Glass base material manufacturing apparatus and glass base material manufacturing method
KR20030012749A (en) * 2001-08-04 2003-02-12 화이콤(주) The manufacturing system & method for optical fiber soot
CN110818246A (en) * 2019-12-20 2020-02-21 杭州永通智造科技有限公司 Flow field stabilizing device of clean reaction chamber for preform cladding deposition
CN110818246B (en) * 2019-12-20 2023-12-26 杭州永通智造科技有限公司 Stable flow field device of clean reaction chamber for preform cladding deposition

Similar Documents

Publication Publication Date Title
JP2809905B2 (en) Method and apparatus for producing porous glass preform
US5211732A (en) Method for forming a porous glass preform
JPH039047B2 (en)
US9032761B2 (en) Porous glass matrix producing burner and porous glass matrix producing method
KR20010033239A (en) Burner and method for producing metal oxide soot
JPH04228444A (en) Manufacture of glass and optical fiber
JP3705169B2 (en) Method for producing porous glass body
US4740226A (en) Apparatus for the production of porous preform of optical fiber
JPH04270133A (en) Production unit of porous optical fiber matrix
CA2064110C (en) Methods of and apparatus for heating elongated glass substrate
JP4220809B2 (en) Burner for synthesizing glass fine particles and method for producing porous preform for optical fiber
KR20040001769A (en) Outside vapor deposition apparatus used for making optical fiber
US6751987B1 (en) Burners for producing boules of fused silica glass
WO2000017115A1 (en) Burners for producing boules of fused silica glass
JP5655418B2 (en) Method and apparatus for producing porous glass base material
KR20060094002A (en) Optical vapor deposition apparatus for optical preform
JP2003212555A (en) Burner for manufacturing porous preform of optical fiber and method of manufacturing porous preform of optical fiber using the same
JP7467638B2 (en) Optical fiber preform manufacturing apparatus and method for manufacturing optical fiber preform
JPS6044258B2 (en) synthesis torch
JP2021147296A (en) Hood for burner, burner device, method of manufacturing base material for optical fiber, and method of manufacturing optical fiber
KR20090092685A (en) Burner for producing porous glass preform
JP4185304B2 (en) Method for producing porous preform for optical fiber
JPH09227148A (en) Production of preform for optical fiber and burner for producing optical fiber preform
JP3619637B2 (en) Porous optical fiber preform manufacturing equipment
JPH06122528A (en) Production of porous preform for optical fiber