JPH0426955B2 - - Google Patents

Info

Publication number
JPH0426955B2
JPH0426955B2 JP6857487A JP6857487A JPH0426955B2 JP H0426955 B2 JPH0426955 B2 JP H0426955B2 JP 6857487 A JP6857487 A JP 6857487A JP 6857487 A JP6857487 A JP 6857487A JP H0426955 B2 JPH0426955 B2 JP H0426955B2
Authority
JP
Japan
Prior art keywords
welding
zinc
ferrophosphor
joint
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6857487A
Other languages
Japanese (ja)
Other versions
JPS63235079A (en
Inventor
Koichi Yasuda
Shozaburo Nakano
Noboru Nishama
Tadao Komatsu
Tadashi Nakajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP6857487A priority Critical patent/JPS63235079A/en
Priority to CA000549606A priority patent/CA1326808C/en
Priority to EP87309303A priority patent/EP0265241B1/en
Priority to DE8787309303T priority patent/DE3766795D1/en
Priority to US07/111,870 priority patent/US4904842A/en
Priority to AU80090/87A priority patent/AU587729B2/en
Priority to KR1019870011811A priority patent/KR910001002B1/en
Publication of JPS63235079A publication Critical patent/JPS63235079A/en
Publication of JPH0426955B2 publication Critical patent/JPH0426955B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) この発明は亜鉛びき鉄板のアーク溶接方法に関
し、このような溶接の旋行上、重大な欠陥として
禁忌されるブローホールやピツトの発生を防止す
るための有効な手法を提案しようとするものであ
る。 亜鉛めつき鋼板を典型例として一般に金属基材
表面に亜鉛やその合金ないしはそれらを含む組成
物(以下亜鉛などという)がめつき皮膜、塗装皮
膜などとして被成された表面処理素材を亜鉛びき
鉄板と呼ぶこととして、その表面処理が重ね面と
なる接合部に継手溶接を行うとき、亜鉛などが溶
接熱によつて気化し接合面内に生じる、主として
亜鉛の高い上記圧のため、溶接ビード内にブロー
ホールやピツトが多発する。この点が従来より、
重大な問題となつていたばかりではなく、そのこ
とが原因で強度部材など、厳しい溶接継手品質が
要求される個所への亜鉛びき鉄板のアーク溶接継
手は適用されかねているのが現状である。 (従来の技術) 溶接に先立つて、ガスバーナーや先行溶接トー
チなどによつて継手溶接部付近の亜鉛などを、予
め蒸発、気化させて取り除くか又ははく離剤を用
いて亜鉛などを化学的に除去しておきその後に溶
接を行うことも企てられたが、いずれも工数が増
大するのはもとより、ときには溶接部以外の亜鉛
などが不必要に除去されたりまた損傷をきたして
母材部の防錆能力や外観を損う不利がある。 なお剥離材については有機溶剤ないしは酸アル
カリなどを多量に含むため作業環境、安全性を損
う欠点もある。 (発明が解決しようとする問題点) 亜鉛びき鉄板のアーク溶接の際におけるブロー
オールや、ピツト発生に関する問題点を、上記し
た従来の技術での欠点を伴うことなく解決するこ
と、すなわち重ね継手溶接部位に亜鉛などが存在
する場合でも、ブローホールやピツトの発生を有
効に抑制することができ、高い溶接作業能率を下
で施工し得る、亜鉛びき鉄板のアーク溶接方法を
提供することがこの発明の目的である。 なおこの明細書における“溶接継手”には、第
5図にいくつかの具体例を示す如く、すみ肉溶
接、T又は十字継手はもちろん、フレア継手やへ
り溶接、さらにはスポツト又はシーム溶接なども
含むものとする。 (問題点を解決するための手段) この発明は溶接をすべき接合面の少なくとも片
面が亜鉛又はその合金ないしはそれらを含む組成
物による表面処理面によつて構成された鉄板の接
合部に継手溶接を施すに当つて、 溶接ビード形成部位に沿つて隣接する少なくと
も1mm幅の領域に、予め、接合面の少なくとも一
方へ、単位面積1m2当り10〜1000gの割合でフエ
ロホスホルの塗布を行うことを特徴とする亜鉛び
き鉄板のアーク溶接方法である。 ここにフエロホスホルがP含有量15〜55wt%
残り実質的にFe及び不可避的混入不純物の組成
になるものを用いるのが好ましい。 この発明の特徴は、溶接する前に予め、形成さ
れる溶接ビードに隣接する母材の接合面、すなわ
ち溶接ビードが形成された場合にその溶接熱によ
つて亜鉛が気化し高圧蒸気として溶接ビードを圧
迫する可能性のあるような空隙を形成する面の少
なくとも片面に、形成しようとする溶接ビードの
位置に隣接した領域へフエロホスホルを付着せし
めた後にアーク溶接するところにある。 (作用) 亜鉛びき鉄板のアーク溶接に際し被溶接材表層
の亜鉛は、その融点が約419.5℃、融点が約906℃
であり、炭素鋼のそれらに比べてはるかに低いた
め、溶接熱によつて亜鉛融点以上に加熱された領
域のの亜鉛は溶融しついには気化して蒸気にな
る。 ところが継手溶接などの接合面内の空隙におい
てはこの亜鉛蒸気が容易に外部へ逸出できないの
でその蒸気圧の増大に伴い溶接によつて形成され
た溶融池を通り外部へ放出される間に、この亜鉛
蒸気の放出と溶融池の凝固とのタイミングの如何
によつて亜鉛気泡の一部が溶接金属内又はその表
面近傍に捕捉されて残留し、ブローホールやピツ
トを生じる。このようなブローホールやピツトの
発生機構を鑑み鋭意検討した結果、上記した如き
高圧亜鉛蒸気が形成される空隙内の亜鉛蒸気発生
源となる領域に、予め溶接の施行に先立つてフエ
ロホスホルを付着させておけば、その後の溶接の
際にブローホールおよびピツトは防止されること
が見出された。 すなわちこのフエロホスホルに、溶接熱の下に
亜鉛及び溶融鉄と反応してりん−亜鉛−鉄の化合
物を形成し、亜鉛に比べるとより高い融点・沸点
をもつ3元化合物となるため、亜鉛が気化するこ
とに起因したピツトやブローホールの発生が防止
できるのである。 ここにフエロホスホルのP含有量としては、
15wt%未満では3元化合物の形成力が低く、ブ
ローホールやピツトを防止する効果が弱く、また
55wt%を越えるものはフエロホスホルとして合
成するのが難しいためフエロホスホルはP含有量
15〜55wt%残り実質的にFe及び不可避的混入不
純物の組成になるものを用いる。 さて厚さ2.6mmの両面溶融亜鉛めつき鋼板(亜
鉛の目付量:45/m2/面)を被溶接材として、代
表組成がP20〜28%、残部鉄である市販のフエロ
ホスホルを用い、第1図に示す要領にて継手溶接
を実施して、フエロホスホルの適正な塗布位置が
解明された。 すなわち第2図および第3図に示す如く、接合
面の少なくとも片面の溶接継手を形成する重ね端
部から少なくとも0.5〜1.5mmの範囲にフエロホス
ホルが塗布されていることによつてブローホール
発生率が急減することがわかる。この溶接ビード
形成後の溶接継手断面観察の結果、溶接ビードは
接合面を重ね端部より0.5mm溶融して形成されて
いることがわかつた。 すなわちフエロホスホルの有効塗布位置は接合
面の少なくとも片面の、溶接ビードに隣接する幅
1.0mm以上の領域であり、この塗布領域の制限を
満たさないときには、ブローホール発生率が急に
増えてこの発明の目的は充足され得ない。なおこ
の場合の塗布量は塗布面の単位面積1m2当り60g
であつた。 次にフエロホスホルの有効かつ適切な塗布量を
調べた。 すなわち接合面の片側にける上記有効塗布範囲
を含む領域に塗布濃度を変化させてフエロホスホ
ルを塗布しブローホールの発生率を調査した結
果、1m2当り10g以下ではブローホールが発生し
効果薄であり、また1000g以上ではブローホール
率の低減には効果あるもののビードがハンピング
気味になつてビード外観を損うために好ましくな
い。 よつてフエロホスホルの有効塗布量を1m2当り
10〜1000gと限定した。 なお、亜鉛の目付量が多くなければなるほど上
記範囲内でフエロホスホルの塗布量を多くする方
が好ましいことが実験の結果確認されている。 以上の作用を期待したフエロホスホルの供給手
段としては、溶接に先立つて粉末のままで散布し
たり、あるいは懸濁物としてスプレーなどで噴霧
又はブラツシなどで塗布して付着させればよく、
とくに付着のための手段の如何によつて格別な問
題は生じない。 さらには亜鉛による表面処理鋼板の製造段階に
たとえば亜鉛の表面に予めフエロホスホルを付着
させたりあるいは亜鉛などの表面処理皮膜の内部
に化学的又は物理的に含有させておく方法も考え
られる。 上に述べたフエロホスホルによるブローホール
の低減作用は、それに類する物質として、その他
のりん化合物やりん自体などでも生起させ得るの
で、経済性、毒性等を考慮して適用すればよい。 (実施例) 実施例 1 板厚2.6mmの両面溶接亜鉛めつき鋼板(亜鉛目
付量:45g/m2/面)につき、下記に示す組成の
フエロホスホルの懸濁物を用いて第1図に示す如
き重ね溶接を実施した。 フエロホスホル(りん濃度20wt%)粉末(平均
粒度3μm以下) 53% 1,1,1−トリクロロエタン 46% チタネート系バインダー 1% この懸濁物の塗布に際しては、フロン系エアゾ
ールスプレーとして下板鋼板上に、100g/m2
濃度にて塗布し、また溶接は市販の1.2mm径の
MAG溶接用ワイヤ(JIS−YGW16)を用い
220A、23v、120cm/minの溶接条件で、Ar+20
%CO2の被包ガスを用いたパルス−マグ溶接を行
つた。 ブローホール、ピツトの発生状況は溶接部をX
線透過試験し調査した。 その結果を表1に示し同表の塗布位置の指定は
第4図における数直線上の座標p1〜p2であらわし
た。
(Industrial Application Field) The present invention relates to a method for arc welding galvanized iron plates, and provides an effective method for preventing the occurrence of blowholes and pits, which are prohibited as serious defects during welding. This is what I am trying to propose. Galvanized steel sheets are a typical example, and generally, galvanized steel sheets are surface-treated materials in which zinc, its alloys, or compositions containing them (hereinafter referred to as zinc, etc.) are applied to the surface of a metal substrate as a plating film, paint film, etc. When joint welding is performed on a joint where the surface treatment is an overlapped surface, zinc and other substances are vaporized by the welding heat and generated within the joint surface. Mainly due to the high pressure of zinc, the weld bead is welded. Blowholes and pits occur frequently. This point has traditionally been
Not only has this been a serious problem, but due to this problem, arc welded joints of galvanized iron plates cannot be applied to areas where strict welded joint quality is required, such as for strength members. (Prior art) Prior to welding, zinc, etc. near the joint welding area is removed by evaporation or vaporization using a gas burner or a pre-welding torch, or zinc, etc. is chemically removed using a stripping agent. Attempts have also been made to weld the welding process after the welding process has been carried out, but not only does this increase the number of man-hours, but in some cases zinc, etc. other than the welded area may be removed unnecessarily, or damage may occur, making it difficult to protect the base metal. It has the disadvantage of damaging its rust ability and appearance. Furthermore, the release material has the disadvantage that it impairs the working environment and safety because it contains a large amount of organic solvent or acid-alkali. (Problems to be Solved by the Invention) To solve the problems related to blow-all and pitting during arc welding of galvanized iron plates without the drawbacks of the above-mentioned conventional techniques, that is, by lap joint welding. An object of the present invention is to provide an arc welding method for galvanized iron plates, which can effectively suppress the occurrence of blowholes and pits even when zinc etc. are present in the area, and can perform welding with high welding efficiency. This is the purpose of In this specification, "welded joints" include not only fillet welds, T or cross joints, but also flare joints, edge welds, and spot or seam welds, as shown in some specific examples in Figure 5. shall be included. (Means for Solving the Problems) This invention provides joint welding to a joint of iron plates in which at least one of the joint surfaces to be welded is surface-treated with zinc, an alloy thereof, or a composition containing zinc. In performing this process, ferrophosphor is applied in advance to at least one of the joint surfaces in an area of at least 1 mm width adjacent to the weld bead formation site at a rate of 10 to 1000 g per 1 m2 of area. This is an arc welding method for galvanized iron plates. Here, ferrophosphor has a P content of 15 to 55 wt%.
It is preferable to use a material whose composition consists essentially of Fe and unavoidable impurities. The feature of this invention is that before welding, zinc is vaporized by the welding heat when the welding bead is formed on the joint surface of the base material adjacent to the welding bead, and the welding bead is formed as high-pressure steam. The process involves arc welding after ferrophosphor is deposited on at least one side of the surface that forms a void that may compress the weld bead in the area adjacent to the position of the weld bead to be formed. (Function) During arc welding of galvanized iron plates, the melting point of the zinc on the surface of the welded material is approximately 419.5℃, and the melting point is approximately 906℃.
This is much lower than that of carbon steel, so the zinc in the area heated above the zinc melting point by welding heat melts and eventually vaporizes into steam. However, this zinc vapor cannot easily escape to the outside in the gaps in the joint surfaces such as joint welding, so as the vapor pressure increases, it passes through the molten pool formed by welding and is released to the outside. Depending on the timing between the release of zinc vapor and the solidification of the molten pool, some of the zinc bubbles may become trapped and remain in the weld metal or near its surface, causing blowholes and pits. As a result of intensive studies in consideration of the mechanism by which such blowholes and pits occur, we found that ferrophosphor was deposited in advance on the zinc vapor generation source region within the void where high-pressure zinc vapor is formed, prior to welding. It has been found that blowholes and pits are prevented during subsequent welding. In other words, this ferrophosphor reacts with zinc and molten iron under welding heat to form a phosphorus-zinc-iron compound, becoming a ternary compound with a higher melting point and boiling point than zinc, so zinc vaporizes. It is possible to prevent the occurrence of pits and blowholes caused by this. Here, the P content of ferrophosphor is:
If it is less than 15wt%, the ability to form ternary compounds is low, the effect of preventing blowholes and pits is weak, and
Ferrophosphor has a P content of more than 55wt% because it is difficult to synthesize it as ferrophosphor.
The remaining 15 to 55 wt% is substantially composed of Fe and unavoidable impurities. Now, using a 2.6 mm thick double-sided galvanized steel plate (zinc weight: 45/m 2 /surface) as the material to be welded, a commercially available ferrophosphor with a typical composition of P20 to 28% and the balance iron was used. Joint welding was carried out as shown in Figure 1, and the appropriate position for applying ferrophosphor was clarified. That is, as shown in FIGS. 2 and 3, by applying ferrophosphor to a range of at least 0.5 to 1.5 mm from the overlapped end forming the welded joint on at least one side of the joint surface, the blowhole occurrence rate can be reduced. It can be seen that it decreases rapidly. As a result of observing the cross section of the weld joint after the weld bead was formed, it was found that the weld bead was formed by melting 0.5 mm from the overlapped end of the joint surface. In other words, the effective application position of ferrophosphor is the width adjacent to the weld bead on at least one side of the joint surface.
The area is 1.0 mm or more, and if this coating area limit is not met, the blowhole occurrence rate will suddenly increase and the object of the present invention cannot be achieved. In this case, the amount of coating is 60g per unit area of the coating surface of 1m2 .
It was hot. Next, we investigated the effective and appropriate application amount of Ferrophosphor. That is, as a result of applying ferrophosphor to an area including the above-mentioned effective application range on one side of the bonding surface at varying coating concentrations and investigating the incidence of blowholes, it was found that blowholes occur and the effect is weak when the coating is less than 10g/ m2 . Moreover, if the weight exceeds 1000 g, although it is effective in reducing the blowhole rate, the bead tends to hump, which impairs the appearance of the bead, which is not preferable. Therefore, the effective application amount of ferrophosphor per 1 m 2
Limited to 10-1000g. It has been confirmed as a result of experiments that as the basis weight of zinc increases, it is preferable to increase the amount of ferrophosphor applied within the above range. As a means of supplying ferrophosphor that is expected to have the above effects, it is possible to apply it as a powder prior to welding, or to apply it as a suspension by spraying or brushing.
No particular problem arises depending on the means used for attachment. Furthermore, it is also possible to consider a method in which ferrophosphor is preliminarily attached to the surface of zinc or chemically or physically contained inside a surface treatment film made of zinc or the like during the manufacturing stage of a steel sheet treated with zinc. The blowhole reducing effect of ferrophosphor described above can also be caused by other phosphorus compounds or phosphorus itself as similar substances, so it may be applied in consideration of economic efficiency, toxicity, etc. (Example) Example 1 A 2.6 mm thick double-sided welded galvanized steel plate (zinc coating weight: 45 g/m 2 /side) was prepared using a suspension of ferrophosphor having the composition shown below as shown in Figure 1. We carried out lap welding like this. Ferrophosphor (phosphorus concentration 20wt%) powder (average particle size 3μm or less) 53% 1,1,1-trichloroethane 46% Titanate binder 1% When applying this suspension, apply it as a fluorocarbon aerosol spray onto the lower steel plate. It was applied at a concentration of 100g/ m2 , and welding was done using a commercially available 1.2mm diameter
Using MAG welding wire (JIS-YGW16)
Ar+20 under welding conditions of 220A, 23v, 120cm/min
Pulse-Mag welding was performed using a encapsulating gas of % CO2 . The occurrence of blowholes and pits is indicated by X on the welded part.
We conducted a radio transmission test and investigated. The results are shown in Table 1, and the application positions in the table are indicated by coordinates p 1 to p 2 on the number line in FIG.

【表】 れた。
実施例 2 板厚2.2mmの両面溶融合金化亜鉛めつき鋼板
(亜鉛の目付量:75g/m2/面につき下記に示す
組成のフエロホスホルの懸濁物を用いて第1図に
示す如き重ね溶接を実施した。 フエロホスホル(りん濃度28wt%)粉末(平均
粒度2μm以下) 42% イソプロピルアルコール 56% エチルシリケート系バインダー 2% この懸濁物の塗布に際しては、実施例1と同様
フロン系エアゾールスプレーとして上板鋼板上の
接合面のみに重ね端部から幅10mmの範囲にわたつ
て種々な濃度で塗布し、また溶接は市販の1.2mm
径を炭酸ガス溶接用ワイヤ(JIS−YGW12)を
用い、200A、22v、100cm/minの溶接条件で、
パルス炭酸ガス被包アーク溶接を行つた。 その結果を表2に示す。
[Table] It was.
Example 2 Double-sided melt-alloyed galvanized steel plate with a thickness of 2.2 mm (area weight of zinc: 75 g/m 2 /side) Lap welding as shown in Figure 1 using a suspension of ferrophosphor having the composition shown below. Ferrophosphor (phosphorus concentration 28 wt%) powder (average particle size 2 μm or less) 42% Isopropyl alcohol 56% Ethyl silicate binder 2% When applying this suspension, as in Example 1, a fluorocarbon-based aerosol spray was applied. The coating was applied at various concentrations over a 10 mm width range from the stacked edge only to the joining surface of the steel plate, and a commercially available 1.2 mm coating was applied for welding.
Using carbon dioxide gas welding wire (JIS-YGW12), weld the diameter at 200A, 22V, 100cm/min,
Pulsed carbon dioxide gas encapsulated arc welding was performed. The results are shown in Table 2.

【表】 〓 やや悪(不斉ビードによ
[Table] 〓 Slightly bad (due to asymmetric beads)

【表】 (発明の効果) 以上の如く、この発明はフエロホスホルを有効
成分とする組成物を亜鉛びき鉄板の重ね継手溶接
前に、所定個所(第5図参照)で適切量塗布して
おくことによつて、溶接継手の重大な欠陥となる
ブローホールやピツトを完全に防止することがで
き、亜鉛メツキ鋼板又あジンクリツチプライマー
を使用した鋼材などのアーク溶接を取り扱うあら
ゆる産業において多大なる有用性を発揮すること
はもちろん、溶接金属のブローホール等を懸念す
るがために、亜鉛による表面処理鋼材の適用を断
念していた産業分野においてもその適用を可能な
らしめるものでありその波及効果は大きい。
[Table] (Effects of the Invention) As described above, the present invention involves applying an appropriate amount of a composition containing ferrophosphor as an active ingredient to predetermined locations (see Figure 5) before welding a lap joint of galvanized iron plates. By this method, blowholes and pits, which are serious defects in welded joints, can be completely prevented, making it extremely useful in all industries that handle arc welding, such as galvanized steel sheets or steel materials using a zinc-critch primer. Not only does this work, but it also makes it possible to apply zinc surface-treated steel in industrial fields, where the application of surface-treated steel materials had been abandoned due to concerns about blowholes in weld metal, and the ripple effect is large. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は重ね継手アーク溶接要領説明図、第2
図、第3図はフエロホスホルの塗布範囲とブロー
ホール発生率との関係グラフ、第4図は塗布位置
の定義図であり、第5図はこの発明が効果を発揮
する溶接継手の例を示す説明図である。 1……亜鉛めつき鋼板、2……溶接ワイヤ、3
……溶接トーチ、4……加圧盤、5……加圧力。
Figure 1 is an explanatory diagram of lap joint arc welding procedures, Figure 2
Figure 3 is a graph of the relationship between the application range of ferrophosphor and the blowhole occurrence rate, Figure 4 is a definition diagram of the application position, and Figure 5 is an explanation showing an example of a welded joint to which the present invention is effective. It is a diagram. 1... Galvanized steel plate, 2... Welding wire, 3
... Welding torch, 4 ... Pressure plate, 5 ... Pressure force.

Claims (1)

【特許請求の範囲】 1 溶接をすべき接合面の少なくとも片面が亜鉛
又はその合金ないしはそれらを含む組成物による
表面処理面によつて構成された鉄板の接合部に継
手溶接を施すに当つて、 溶接ビード形成部位に沿つて隣接する少なくと
も1mm幅の領域に、予め、接合面の少なくとも一
方へ、単位面積1m2当り10〜1000gの割合でフエ
ロホスホルの塗布を行うことを特徴とする亜鉛び
き鉄板のアーク溶接方法。 2 フエロホスホルがP含有量15〜55wt%残り
実質的にFeおよび不可避的混入不純物の組成に
なるものである特許請求の範囲第1項に記載の方
法。
[Claims of Claims] 1. When joint welding is performed on a joint of iron plates in which at least one of the joint surfaces to be welded is surface-treated with zinc, an alloy thereof, or a composition containing them, A galvanized iron plate characterized in that ferrophosphor is applied in advance to at least one of the joint surfaces in an area of at least 1 mm width adjacent to the weld bead formation site at a rate of 10 to 1000 g per 1 m 2 of area. Arc welding method. 2. The method according to claim 1, wherein the ferrophosphor has a P content of 15 to 55 wt% and the remainder substantially consists of Fe and unavoidable impurities.
JP6857487A 1986-10-24 1987-03-23 Arc welding method for zinc plated iron plate Granted JPS63235079A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP6857487A JPS63235079A (en) 1987-03-23 1987-03-23 Arc welding method for zinc plated iron plate
CA000549606A CA1326808C (en) 1986-10-24 1987-10-19 Blowhole_pit preventing agent and arc-welding method using the same
EP87309303A EP0265241B1 (en) 1986-10-24 1987-10-21 Blowhole pit preventing agent and arc-welding method using the same
DE8787309303T DE3766795D1 (en) 1986-10-24 1987-10-21 WELDING ADDITIVE TO REDUCE GAS BUBBLES OR PITCH FORMATION AND WELDING METHOD THEREFOR.
US07/111,870 US4904842A (en) 1986-10-24 1987-10-21 Blowhole·pit preventing agent and arc-welding method using the same
AU80090/87A AU587729B2 (en) 1986-10-24 1987-10-23 Blowhole-pit preventing agent and arc-welding method using the same
KR1019870011811A KR910001002B1 (en) 1986-10-24 1987-10-23 Blowhole-pit preventing agent and arc-welding method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6857487A JPS63235079A (en) 1987-03-23 1987-03-23 Arc welding method for zinc plated iron plate

Publications (2)

Publication Number Publication Date
JPS63235079A JPS63235079A (en) 1988-09-30
JPH0426955B2 true JPH0426955B2 (en) 1992-05-08

Family

ID=13377678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6857487A Granted JPS63235079A (en) 1986-10-24 1987-03-23 Arc welding method for zinc plated iron plate

Country Status (1)

Country Link
JP (1) JPS63235079A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4774222B2 (en) * 2005-03-04 2011-09-14 石田鉄工株式会社 Groove cover

Also Published As

Publication number Publication date
JPS63235079A (en) 1988-09-30

Similar Documents

Publication Publication Date Title
WO2016159169A1 (en) Method for spot welding of plated steel sheet
US20090001141A1 (en) Method for Arc or Beam Brazing/Welding of Workspieces of Identical or Different Metals or Metal Alloys with Additional Materials of Sn Base Alloys; Sn Base Alloy Wire
Akhter et al. Welding Zinc‐Coated Steel with a Laser and the Properties of the Weldment
EP1101559B1 (en) MIG/MAG soldering method with the use of protective active gas
JP2007289965A (en) Flux-cored wire for gas shielded arc welding and welding method
US6664508B1 (en) Penetration flux
WO2018155492A1 (en) Laser brazing method and production method for lap joint member
JP2001259888A (en) Flux cored wire for welding galvanized steel sheet having excellent pit resistance and blowhole resistance
JP2006035294A (en) Method for joining zinc-based alloy plated steel plate having excellent corrosion resistance of joined portion
KR910001002B1 (en) Blowhole-pit preventing agent and arc-welding method using the same
JPH0426955B2 (en)
US20060065639A1 (en) Method of welding galvanized steel components
JPS62248594A (en) Gas shielded arc welding wire
TWI231239B (en) Welding flux for use in arc-welding of stainless steels
JP2693654B2 (en) Welding method for surface treated metal
JP3124439B2 (en) High speed horizontal fillet gas shielded arc welding method
Narayanan et al. Solutions for welding zinc-coated steels
JP2002361461A (en) Method for lap welding with laser beam of zinc-based plated steel plates giving excellent corrosion resistance
JPH0671222A (en) Prepainted thick steel plate for ballast tank
JP2002361458A (en) Method for lap welding with laser beam of zinc-based plated steel plates giving excellent corrosion resistance
KR102305743B1 (en) Welded structural member having excellent crack resistance and manufacturing method of the same
JP2001079668A (en) Method for welding aluminum or aluminum alloy material
US6495790B2 (en) Plasma arc keyhole welding stability and quality through titanium nitride additions
JPS58196177A (en) Welding of coated steel plate
JP3735195B2 (en) Metal cored filler wire for hot laser welding of steel

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees