JPH04269488A - Electromagnetic inductive heating cooker - Google Patents

Electromagnetic inductive heating cooker

Info

Publication number
JPH04269488A
JPH04269488A JP3054791A JP3054791A JPH04269488A JP H04269488 A JPH04269488 A JP H04269488A JP 3054791 A JP3054791 A JP 3054791A JP 3054791 A JP3054791 A JP 3054791A JP H04269488 A JPH04269488 A JP H04269488A
Authority
JP
Japan
Prior art keywords
frequency
current
heating coil
metal container
phase angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3054791A
Other languages
Japanese (ja)
Other versions
JP2745247B2 (en
Inventor
Yasuhiro Ikenobou
池防 泰裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP3030547A priority Critical patent/JP2745247B2/en
Publication of JPH04269488A publication Critical patent/JPH04269488A/en
Application granted granted Critical
Publication of JP2745247B2 publication Critical patent/JP2745247B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To precisely judge the presence, material and position of a metal vessel by comparing three data of the current value, phase angle and driving frequency of a heating coil. CONSTITUTION:The current sent to a heating coil 2 is detected by a current transfer 8, the voltage applied to the coil 2 from a high frequency inverter driving circuit 4 is detected, and their phase angle is detected by a phase detecting circuit 9. The driving frequency of an high frequency inverter circuit 3 is swept by a main control part 11 so that the phase angle is a fixed value, and the driving frequency at the time of reaching the target phase angle is detected by a frequency detecting circuit 10. The current value sent to the coil 2 at this time is also detected by a coil current detecting circuit 13. The detected driving frequency and current value are judged by matrix, whereby the shape difference and position to put of a metal vessel can precisely be judged.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、電磁誘導加熱調理器に
おいて、それに使用される金属容器の有無、位置の判別
および金属容器の材質判別に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electromagnetic induction heating cooker, and relates to determining the presence or absence of a metal container used therein, the position thereof, and the material of the metal container.

【0002】0002

【従来の技術】図6は、従来の電磁誘導加熱調理器にお
いて、金属容器の有無および材質判別の検出手段を示す
ブロック図である。同図において、商用電源6からの交
流電流は、図示されていないが平滑回路により整流され
平滑化されて、直流電圧をたとえばシングル・エンド・
プッシュ・プル方式の高周波インバータ回路3に供給す
る。途中に入力可変回路5が設けられているが、これは
後で説明される。この高周波インバータ回路3は、1対
のトランジスタ14aおよび14bと、フライホイール
・ダイオード15aおよび15bとを含む。前記インバ
ータ回路3は、インバータ駆動回路4により駆動され、
加熱コイル2に高周波電流を流し高周波交番磁界を発生
させる。この結果、加熱コイル2上に載せられた金属容
器1に渦電流が発生し、この渦電流により金属容器1が
加熱される。コンデンサ7は、加熱コイル2とともに直
列共振回路を構成する。主制御部11は入力可変回路5
、インバータ駆動回路4に接続されている。また、イン
バータ駆動回路4は周波数検出回路10およびこれと並
列の位相検出回路9を介して主制御部11に接続されて
いる。加熱コイル2への回路の一部に設けたカレントト
ランス8の出力は、位相検出回路9に供給される。
2. Description of the Related Art FIG. 6 is a block diagram showing detection means for determining the presence or absence of a metal container and the material of the container in a conventional electromagnetic induction cooking device. In the figure, an alternating current from a commercial power supply 6 is rectified and smoothed by a smoothing circuit (not shown), and converts the direct current into a single-ended voltage, for example.
It is supplied to a push-pull type high frequency inverter circuit 3. An input variable circuit 5 is provided in the middle, which will be explained later. This high frequency inverter circuit 3 includes a pair of transistors 14a and 14b and flywheel diodes 15a and 15b. The inverter circuit 3 is driven by an inverter drive circuit 4,
A high frequency current is passed through the heating coil 2 to generate a high frequency alternating magnetic field. As a result, an eddy current is generated in the metal container 1 placed on the heating coil 2, and the metal container 1 is heated by this eddy current. The capacitor 7 constitutes a series resonant circuit together with the heating coil 2. The main control unit 11 is the input variable circuit 5
, are connected to the inverter drive circuit 4. Further, the inverter drive circuit 4 is connected to the main control section 11 via a frequency detection circuit 10 and a phase detection circuit 9 parallel thereto. The output of a current transformer 8 provided in a part of the circuit to the heating coil 2 is supplied to a phase detection circuit 9.

【0003】前記の従来の構成では、次のようにして金
属容器1の有無、材質等の判別を行なっていた。まず、
位相検出回路9において、カレントトランス8などによ
り加熱コイル2に流れる電流を検出し、さらに高周波イ
ンバータ回路3の出力電圧つまりインバータ駆動回路4
の駆動信号を検出することにより、加熱コイル2に印加
される電圧と電流の位相角を検出する。主制御部11で
、高周波インバータ回路3の駆動周波数を、前記の位相
角が0になるまで高い周波数から低い周波数へとスイー
プさせ、位相角が0になったときの周波数つまり共振周
波数に達した時点でスイープを停止させる。このときの
周波数を周波数検出回路10で測定する。
[0003] In the conventional configuration described above, the presence or absence of the metal container 1, the material, etc. are determined in the following manner. first,
In the phase detection circuit 9, the current flowing through the heating coil 2 is detected by a current transformer 8, etc., and the output voltage of the high frequency inverter circuit 3, that is, the inverter drive circuit 4 is detected.
By detecting the drive signal, the phase angle of the voltage and current applied to the heating coil 2 is detected. The main control unit 11 sweeps the drive frequency of the high frequency inverter circuit 3 from a high frequency to a low frequency until the phase angle becomes 0, and reaches the frequency when the phase angle becomes 0, that is, the resonance frequency. Stop the sweep at a point. The frequency at this time is measured by the frequency detection circuit 10.

【0004】図7に示されるように、金属容器1の有無
や、材質の違いにより共振周波数が異なっているため、
この共振周波数を測定することによって、金属容器の有
無、材質等を判別していた。図7において、縦軸は加熱
コイル電流を示し横軸は周波数を示す。f0 は無負荷
のときの共振周波数、f1 は鉄などの磁性体に対する
共振周波数、f2 はアルミなどの非磁性体に対する共
振周波数を示す。
As shown in FIG. 7, the resonance frequency varies depending on the presence or absence of the metal container 1 and the material.
By measuring this resonance frequency, the presence or absence of a metal container, the material, etc. were determined. In FIG. 7, the vertical axis represents the heating coil current, and the horizontal axis represents the frequency. f0 is the resonant frequency when no load is applied, f1 is the resonant frequency for magnetic materials such as iron, and f2 is the resonant frequency for non-magnetic materials such as aluminum.

【0005】図9aは、高周波電源で駆動される加熱コ
イル2と金属容器1との等価回路である。同図において
R1 は加熱コイル2の抵抗、L1は加熱コイル2のイ
ンダクタンス、R2 は金属容器1の表皮抵抗、L2 
は金属容器1のインダクタンス、Mは加熱コイル2と金
属容器1との間の相互インダクタンス、Eは高周波電源
を示している。
FIG. 9a shows an equivalent circuit of the heating coil 2 and the metal container 1 driven by a high frequency power source. In the figure, R1 is the resistance of the heating coil 2, L1 is the inductance of the heating coil 2, R2 is the skin resistance of the metal container 1, and L2 is the resistance of the heating coil 2.
is the inductance of the metal container 1, M is the mutual inductance between the heating coil 2 and the metal container 1, and E is the high frequency power source.

【0006】図9aを図9bのように変換すると、加熱
コイル2と金属容器1との結合回路の等価インダクタン
スL3 は、
When FIG. 9a is converted to FIG. 9b, the equivalent inductance L3 of the coupling circuit between the heating coil 2 and the metal container 1 is:

【0007】[0007]

【数1】[Math 1]

【0008】となる。ここでL3 は金属容器1の時定
数τの関数になっており、このL3 と共振コンデンサ
C1 で構成される直列共振回路の共振周波数f0 は
[0008] Here, L3 is a function of the time constant τ of the metal container 1, and the resonant frequency f0 of the series resonant circuit composed of this L3 and the resonant capacitor C1 is:

【0009】[0009]

【数2】[Math 2]

【0010】となる。たとえば、金属容器1が加熱コイ
ル2の上に載っていない無負荷状態のときは、L3 =
L1 なとり、L3 が大きくなるため、共振周波数f
0 は低くなる。また、金属容器1が鉄などの磁性体か
、アルミなどの非磁性体かによってもL3 の値は変わ
るため、共振周波数f0 は変化する。このため、従来
はこのように共振周波数の差異を利用して、金属容器1
の有無および材質の判別を行なっていた。
[0010] For example, when the metal container 1 is in an unloaded state where it is not placed on the heating coil 2, L3 =
Since L1 and L3 become larger, the resonant frequency f
0 is low. Furthermore, the value of L3 changes depending on whether the metal container 1 is made of a magnetic material such as iron or a non-magnetic material such as aluminum, so the resonance frequency f0 changes. For this reason, in the past, the difference in resonance frequency was used to
The presence or absence of the material and the material were determined.

【0011】[0011]

【発明が解決しようとする課題】上記のような従来の金
属容器1の有無および材質の判別方法では、共振周波数
の違いにより判別しているため、以下のような問題があ
った。
The conventional method for determining the presence or absence of the metal container 1 and its material as described above involves the following problems because the determination is based on the difference in resonance frequency.

【0012】まず、図6の加熱コイル2と共振用のコン
デンサ7が直列に接続された直列共振回路を構成してい
るため、共振点でインピーダンスが最小となり、このた
め加熱コイル2に大電流が流れ問題であった。これを解
決する手段として、加熱コイル2に印加する電圧を下げ
なければならず、チョッパ型インバータやサイリスタな
どの入力可変回路5が必要であった。
First, since the heating coil 2 and the resonance capacitor 7 shown in FIG. 6 are connected in series to form a series resonant circuit, the impedance becomes minimum at the resonance point, and therefore a large current flows through the heating coil 2. It was a flow problem. To solve this problem, it was necessary to lower the voltage applied to the heating coil 2, and a variable input circuit 5 such as a chopper type inverter or a thyristor was required.

【0013】また、図8aに示すように、金属容器1の
形状が小さくなると、無負荷の状態に近づいていき、非
磁性体の金属容器の共振周波数f2 はf2 ′となり
、磁性体の金属容器の共振周波数f1 に近づき、また
、磁性体の金属容器の共振周波数f1 はf1 ′とな
り無負荷の状態の共振周波数f0 に近づき、判別が困
難になっていた。逆に図8bのように、金属容器の形状
が大きくなると、共振周波数は高い方に、すなわちf1
 はf1 ″に、f2 はf2 ″に近づき移動するた
め磁性体の金属容器と非磁性体の金属容器との区別がで
きなくなっていた。
Furthermore, as shown in FIG. 8a, as the shape of the metal container 1 becomes smaller, it approaches the no-load state, and the resonant frequency f2 of the non-magnetic metal container becomes f2', and the resonance frequency f2 of the non-magnetic metal container becomes f2', The resonant frequency f1 of the magnetic metal container becomes f1', which approaches the resonant frequency f0 of the no-load state, making it difficult to distinguish. Conversely, as shown in Fig. 8b, when the shape of the metal container becomes larger, the resonant frequency becomes higher, that is, f1
The magnetic and non-magnetic metal containers could no longer be distinguished from each other because they moved closer to f1'' and f2 to f2''.

【0014】また、同様に金属容器1を置く位置が加熱
コイル2の中心にあるのか、または中心からずれた位置
にあるのかによっても、金属容器1の大小の場合と同様
に、前記の図8a、bのように共振周波数が変化し、判
別が困難になっていた。
Similarly, depending on whether the metal container 1 is placed at the center of the heating coil 2 or off-center, the difference in the size of the metal container 1 shown in FIG. , b, the resonance frequency changed, making it difficult to distinguish.

【0015】さらに図8cに示すように、ステンレスな
どの非磁性体と磁性体との中間のような材質の場合には
、その共振周波数f3 がどちらかに近い値をとり判別
がしにくく、磁性体と判断してしまうと入力が入らず、
非磁性体と判断すると入力が入りすぎるというような問
題があった。
Furthermore, as shown in FIG. 8c, in the case of a material that is intermediate between a non-magnetic material and a magnetic material, such as stainless steel, its resonance frequency f3 is close to either of the two, making it difficult to distinguish between magnetic and magnetic materials. If it is determined that it is a body, no input will be received,
There was a problem in that too much input was received if the material was determined to be non-magnetic.

【0016】[0016]

【課題を解決するための手段】本発明は前述の欠点を除
くためになされたもので、従来のように位相角を0にし
て共振周波数のみで金属容器の有無および材質判別を行
なうものではなく、さらに加熱コイルに流れる電流値を
検出する電流検出手段を設け、この電流値と、位相角と
駆動周波数との対比により判別を行なう。
[Means for Solving the Problems] The present invention has been made to eliminate the above-mentioned drawbacks, and does not determine the presence or absence of a metal container and the material of the container using only the resonant frequency by setting the phase angle to 0 as in the past. Furthermore, current detection means for detecting the value of the current flowing through the heating coil is provided, and the determination is made by comparing this current value, the phase angle, and the drive frequency.

【0017】[0017]

【作用】本発明は加熱コイルの電流値と、位相角と、駆
動周波数の3つのデータを比較することにより、金属容
器の有無、材質、位置等をより正確に判別できる。
[Operation] By comparing the three data of the current value of the heating coil, the phase angle, and the drive frequency, the present invention can more accurately determine the presence or absence of a metal container, its material, position, etc.

【0018】[0018]

【実施例】図1は本発明の一実施例を示すブロック図で
ある。図6の従来例と異なるところは、カレントトラン
ス8と主制御部11との間にコイル電流検出回路13を
設けたことと、入力可変回路5が省略されていることで
ある。また、主制御部11の機能が若干付加される。そ
の他の加熱に関する動作は図6と同一である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a block diagram showing an embodiment of the present invention. The difference from the conventional example shown in FIG. 6 is that a coil current detection circuit 13 is provided between the current transformer 8 and the main control section 11, and that the variable input circuit 5 is omitted. Further, some functions of the main control section 11 are added. Other heating-related operations are the same as in FIG. 6.

【0019】次に金属容器1の有無および材質判別方法
について説明する。まず、ある所定の位相角における駆
動周波数と電流値によって判別する場合について説明す
る。
Next, a method for determining the presence or absence of the metal container 1 and its material will be explained. First, a case will be described in which the determination is made based on the drive frequency and current value at a certain predetermined phase angle.

【0020】加熱コイル2に流れる電流をカレントトラ
ンス8などで検出し、これとともに高周波インバータ駆
動回路4より加熱コイル2に印加する電圧を検出し、そ
れらの位相角を位相検出回路9によって検出する。この
電流と電圧の位相角がある一定値になるように、高周波
インバータ回路3の駆動周波数を主制御部11によりス
イープさせる。そして目標の位相角になったときの駆動
周波数を周波数検出回路10により検出する。このとき
、加熱コイル2に流れる電流値もコイル電流検出回路1
3により検出する。
The current flowing through the heating coil 2 is detected by a current transformer 8 or the like, the voltage applied to the heating coil 2 is detected by the high frequency inverter drive circuit 4, and their phase angles are detected by a phase detection circuit 9. The driving frequency of the high frequency inverter circuit 3 is swept by the main controller 11 so that the phase angle between the current and the voltage becomes a certain constant value. Then, the frequency detection circuit 10 detects the driving frequency when the target phase angle is reached. At this time, the value of the current flowing through the heating coil 2 is also
Detected by 3.

【0021】位相角を一定にして駆動周波数を検出する
ことにより、共振点を外すことができ、加熱コイル2に
流れる電流値も下げることができる。
By detecting the driving frequency while keeping the phase angle constant, the resonance point can be removed and the value of the current flowing through the heating coil 2 can also be lowered.

【0022】図9bの等価回路より、電源側から見たイ
ンピーダンスZ3 は、
From the equivalent circuit of FIG. 9b, the impedance Z3 seen from the power supply side is:

【0023】[0023]

【数3】[Math 3]

【0024】となる。L3 は(1)式で与えられ、ま
たR3 は下式のように、
[0024] L3 is given by formula (1), and R3 is given by the formula below,

【0025】[0025]

【数4】[Math 4]

【0026】となり、Z3 も加熱コイルと金属容器の
結合係数Kや金属容器の時定数τの関数になっている。 これより加熱コイルに流れる電流IL は、
##EQU1## Z3 is also a function of the coupling coefficient K between the heating coil and the metal container and the time constant τ of the metal container. From this, the current IL flowing through the heating coil is:

【0027
0027
]

【数5】[Math 5]

【0028】となる。ここで、位相角θと駆動周波数f
の関係は、図9bの等価回路より下式のようになる。
[0028] Here, phase angle θ and driving frequency f
From the equivalent circuit of FIG. 9b, the relationship is as shown below.

【0029】[0029]

【数6】[Math 6]

【0030】ただしω=2πfである。前述したように
L3 ,R3 は、金属容器1の有無や材質などにより
変化するため、上式からある位相角θが決まれば一義的
に駆動周波数fも決定される。
However, ω=2πf. As mentioned above, L3 and R3 change depending on the presence or absence of the metal container 1, the material, etc., so if a certain phase angle θ is determined from the above equation, the driving frequency f is also uniquely determined.

【0031】この検出された駆動周波数と電流値の2値
をマトリクスで判別することで、判別が困難なステンレ
スなどの材質や、金属容器の形状の差、置く位置などに
より周波数が近寄っていても電流値の差異を判別してこ
れらを正確に判別することができる。
By distinguishing the two values of the detected driving frequency and current value using a matrix, even if the frequencies are close to each other due to difficult-to-distinguish materials such as stainless steel, differences in the shape of the metal container, placement position, etc. These can be accurately determined by determining the difference in current values.

【0032】この関係をグラフ化したものが図2である
。同図においてf0,f1 ,f2 ,f3 ,は、そ
れぞれ位相角0における無負荷,鉄,アルミ,ステンレ
スの場合の共振周波数を表わしており、F0 ,F1 
,F2 ,F3 は、ある位相角θa に固定したとき
のそれぞれの駆動周波数を表わしている。図に示すよう
に、アルミの共振周波数f2 とステンレスの共振周波
数f3 が似通っているが、位相角をうまく設定すれば
、そのときの駆動周波数はF2 、F3 と明確化でき
る。
FIG. 2 is a graph of this relationship. In the figure, f0, f1, f2, f3, respectively, represent the resonance frequencies in the case of no load, iron, aluminum, and stainless steel at a phase angle of 0, and F0, F1
, F2 and F3 represent respective drive frequencies when fixed at a certain phase angle θa. As shown in the figure, the resonant frequency f2 of aluminum and the resonant frequency f3 of stainless steel are similar, but if the phase angle is properly set, the driving frequencies at that time can be clarified as F2 and F3.

【0033】さらに位相角の設定だけでは完全に明確化
できないため、(5)式に示すように加熱コイル2に流
れる電流値も金属容器1の有無や材質により変化するこ
とを利用して、駆動周波数と電流値とを図3に示すよう
にマトリクスで判断させる。
Furthermore, since it cannot be completely clarified by setting the phase angle alone, the drive can be determined by taking advantage of the fact that the current value flowing through the heating coil 2 also changes depending on the presence or absence of the metal container 1 and its material, as shown in equation (5). The frequency and current value are determined using a matrix as shown in FIG.

【0034】特性を示す線aはアルミなどの非磁性体に
対するものであり、線bはステンレスなどの非磁性体と
磁性体の中間に属するものであり、線cは鉄などの磁性
体に対するものである。これによりステンレスなどの磁
性体と非磁性体の中間の材質も正確に判別できる。
Line a indicating the characteristics is for non-magnetic materials such as aluminum, line b is between non-magnetic materials such as stainless steel and magnetic materials, and line c is for magnetic materials such as iron. It is. This makes it possible to accurately identify materials that are intermediate between magnetic and non-magnetic materials, such as stainless steel.

【0035】前記の判別は主制御部11で行なわれ、適
宜の表示手段により表示することができる。
The above-described determination is performed by the main control section 11 and can be displayed by an appropriate display means.

【0036】また図に示される線a,b,cの両側の境
界線は、金属容器の形状を変えた場合や、金属容器を加
熱コイルの中心からずらしたときの変動の範囲を表わし
ている。たとえば、金属容器の形状が小さくなったとき
や、中心からずれた位置に載せられた場合は、駆動周波
数の高い方に移動する。
Furthermore, the boundaries on both sides of lines a, b, and c shown in the figure represent the range of variation when the shape of the metal container is changed or when the metal container is shifted from the center of the heating coil. . For example, when the shape of the metal container becomes smaller or when it is placed at a position shifted from the center, the drive frequency is moved to the higher side.

【0037】以上のように材質判別の困難であったもの
や、形状や位置による誤判別のおそれがなくなる。
[0037] As described above, it is no longer difficult to distinguish the material, and there is no possibility of misjudgment due to shape or position.

【0038】また、上記の説明では、位相角を一定にし
たときの駆動周波数と電流値の2値によるマトリクスで
判別したが、図4、図5に示すように、周波数をある一
定値Fa に固定して、そのときのそれぞれの材料に対
する位相角と電流値によるマトリクスで判別しても同様
に判別できる。図4は図2に対応し、図5は図3に対応
する。特性を示す線a′は非磁性体に対するものであり
、b′は非磁性体と磁性体の中間に対するものであり、
c′は磁性体に対するものである。
Furthermore, in the above explanation, discrimination was made using a binary matrix of drive frequency and current value when the phase angle was kept constant, but as shown in FIGS. 4 and 5, when the frequency is kept at a certain constant value Fa. It can be determined in the same way by fixing it and determining it using a matrix based on the phase angle and current value for each material at that time. 4 corresponds to FIG. 2, and FIG. 5 corresponds to FIG. 3. The characteristic line a' is for a non-magnetic material, and the line b' is for an intermediate point between a non-magnetic material and a magnetic material.
c' is for magnetic material.

【0039】図2,図3に述べられる方式と、図4,図
5に述べられる方式の双方を切換えて、あるいは併用し
て判別することにより、さらに精度を上げることができ
る。
The accuracy can be further improved by switching between the methods shown in FIGS. 2 and 3 and the methods shown in FIGS. 4 and 5, or by using both of them.

【0040】[0040]

【発明の効果】以上のように、本発明の判別方法によれ
ば、金属容器の形状が大きくなったり小さくなったりし
ても、判別が困難になるということは起こらず、また、
金属容器の位置が加熱コイルの中心からずれていても、
正確に無負荷状態あるいは金属容器の材質判別を行なう
ことができる。さらに、従来の判別方法では、判別が難
しかったステンレスなどのような磁性体と非磁性体の中
間の材質の判別も行なうことができる。
As described above, according to the discrimination method of the present invention, discrimination does not become difficult even if the shape of the metal container becomes larger or smaller;
Even if the position of the metal container is off the center of the heating coil,
It is possible to accurately determine the no-load state or the material of the metal container. Furthermore, it is also possible to discriminate materials between magnetic and non-magnetic materials, such as stainless steel, which was difficult to distinguish using conventional discrimination methods.

【0041】したがって、調理器を使用するものに金属
容器の材質や無負荷状態を正確に報知することができ、
さらに従来に比してより詳細に材質判別が行なえるため
、各々の材質の金属容器に対応した最適な加熱調理を行
なうことができる。
[0041] Therefore, it is possible to accurately inform those using the cooker of the material of the metal container and the unloaded state.
Furthermore, since the material can be determined in more detail than in the past, optimal heating and cooking can be performed for the metal container made of each material.

【0042】また、入力可変回路を省略することができ
る。
Furthermore, the variable input circuit can be omitted.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例を示すブロック図である。FIG. 1 is a block diagram showing one embodiment of the present invention.

【図2】位相角と駆動周波数との関係を示すグラフであ
る。
FIG. 2 is a graph showing the relationship between phase angle and drive frequency.

【図3】位相角を一定にしたときの駆動周波数と電流値
のマトリクス図である。
FIG. 3 is a matrix diagram of driving frequency and current value when the phase angle is kept constant.

【図4】位相角と駆動周波数との関係を示すグラフであ
る。
FIG. 4 is a graph showing the relationship between phase angle and drive frequency.

【図5】駆動周波数を一定にしたときの位相角と電流値
のマトリクス図である。
FIG. 5 is a matrix diagram of phase angles and current values when the driving frequency is kept constant.

【図6】従来例を示すブロック図である。FIG. 6 is a block diagram showing a conventional example.

【図7】材質による共振周波数の違いを示すグラフであ
る。
FIG. 7 is a graph showing the difference in resonance frequency depending on the material.

【図8】a,b,cはそれぞれ金属容器の形状や位置や
材質が変化したときの共振周波数の変化を示すグラフで
ある。
FIGS. 8A, 8B, and 8C are graphs showing changes in resonance frequency when the shape, position, and material of the metal container change, respectively.

【図9】a,bはそれぞれ加熱コイルと金属容器との等
価回路図である。
FIGS. 9a and 9b are equivalent circuit diagrams of a heating coil and a metal container, respectively.

【符号の説明】[Explanation of symbols]

1  金属容器 2  加熱コイル 3  高周波インバータ回路 4  インバータ駆動回路 7  コンデンサ 8  カレントトランス 9  位相検出回路 10  周波数検出回路 11  主制御部 13  コイル電流検出回路 1 Metal container 2 Heating coil 3 High frequency inverter circuit 4 Inverter drive circuit 7 Capacitor 8 Current transformer 9 Phase detection circuit 10 Frequency detection circuit 11 Main control section 13 Coil current detection circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  加熱コイルと、加熱コイルに高周波電
流を供給する高周波インバータと、前記のコイルに流れ
る電流値を検出する電流検出手段と、前記の高周波イン
バータの駆動周波数を検出する周波数検出手段と、加熱
コイルに流れる電流と電圧の位相角を検出する位相検出
手段と、前記の検出手段により検出されたデータの比較
により加熱コイルにより渦電流を発生させる金属容器の
有無、材質、位置等を判別する判別手段とを有する電磁
誘導加熱調理器。
1. A heating coil, a high-frequency inverter that supplies a high-frequency current to the heating coil, current detection means for detecting a current value flowing through the coil, and frequency detection means for detecting a driving frequency of the high-frequency inverter. A phase detection means detects the phase angle of the current and voltage flowing through the heating coil, and the data detected by the detection means is compared to determine the presence, material, position, etc. of a metal container that causes eddy currents to be generated by the heating coil. An electromagnetic induction heating cooker having a determining means.
JP3030547A 1991-02-26 1991-02-26 Induction heating cooker Expired - Fee Related JP2745247B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3030547A JP2745247B2 (en) 1991-02-26 1991-02-26 Induction heating cooker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3030547A JP2745247B2 (en) 1991-02-26 1991-02-26 Induction heating cooker

Publications (2)

Publication Number Publication Date
JPH04269488A true JPH04269488A (en) 1992-09-25
JP2745247B2 JP2745247B2 (en) 1998-04-28

Family

ID=12306824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3030547A Expired - Fee Related JP2745247B2 (en) 1991-02-26 1991-02-26 Induction heating cooker

Country Status (1)

Country Link
JP (1) JP2745247B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5622643A (en) * 1993-02-16 1997-04-22 Compagnie Europeenne Pour L'equipment Menager Cepem Process and device for controlling power for a circuit for induction cooking including a resonant invertor
KR19990009959A (en) * 1997-07-14 1999-02-05 구자홍 Automatic Vessel Recognition Device of Induction Heating Cooker and Method
JP2007109496A (en) * 2005-10-13 2007-04-26 Sanken Electric Co Ltd Induction heating apparatus
CN102158997A (en) * 2010-02-12 2011-08-17 台达电子工业股份有限公司 Heating device capable of detecting position of material container
JP2011222539A (en) * 2011-08-10 2011-11-04 Mitsubishi Electric Corp Induction heating cooker
JP2012075199A (en) * 2010-09-27 2012-04-12 Toshiba Corp Wireless power transmission device and wireless power reception device
JP2022542125A (en) * 2019-08-19 2022-09-29 ▲広▼▲東▼美的白色家▲電▼技▲術▼▲創▼新中心有限公司 DETECTION CIRCUIT, ELECTRICAL APPARATUS AND CONTROL METHOD

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010137498A1 (en) 2009-05-26 2010-12-02 三菱電機株式会社 Induction cooking device and induction heating method
KR101852609B1 (en) * 2016-10-12 2018-06-07 주식회사 하영테크놀로지 A induction heating cooker

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0495383A (en) * 1990-07-31 1992-03-27 Sharp Corp Induction heating cooker

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0495383A (en) * 1990-07-31 1992-03-27 Sharp Corp Induction heating cooker

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5622643A (en) * 1993-02-16 1997-04-22 Compagnie Europeenne Pour L'equipment Menager Cepem Process and device for controlling power for a circuit for induction cooking including a resonant invertor
KR19990009959A (en) * 1997-07-14 1999-02-05 구자홍 Automatic Vessel Recognition Device of Induction Heating Cooker and Method
JP2007109496A (en) * 2005-10-13 2007-04-26 Sanken Electric Co Ltd Induction heating apparatus
CN102158997A (en) * 2010-02-12 2011-08-17 台达电子工业股份有限公司 Heating device capable of detecting position of material container
JP2012075199A (en) * 2010-09-27 2012-04-12 Toshiba Corp Wireless power transmission device and wireless power reception device
JP2011222539A (en) * 2011-08-10 2011-11-04 Mitsubishi Electric Corp Induction heating cooker
JP2022542125A (en) * 2019-08-19 2022-09-29 ▲広▼▲東▼美的白色家▲電▼技▲術▼▲創▼新中心有限公司 DETECTION CIRCUIT, ELECTRICAL APPARATUS AND CONTROL METHOD

Also Published As

Publication number Publication date
JP2745247B2 (en) 1998-04-28

Similar Documents

Publication Publication Date Title
KR102172415B1 (en) Induction heating device and pot detecting method thereof
EP2533605A2 (en) Induction cooktop pan sensing
US20120285948A1 (en) System and method for detecting vessel presence and circuit resonance for an induction heating apparatus
JPH04269488A (en) Electromagnetic inductive heating cooker
KR101905662B1 (en) Induction Heating Cooker for Heating Magnetic and Non-magnetic Containers
EP1528839A1 (en) Induction heating cooker and method for operating the same
JP2688862B2 (en) Induction heating cooker
JP3014181B2 (en) Temperature detection device for induction heating cooker
JP2009163915A (en) Induction heating device
EP3836754A1 (en) Cooking apparatus
CN112714512B (en) Electromagnetic heating cooking utensil, temperature measuring method thereof and computer readable storage medium
EP3383131A1 (en) Inductive cooking device and method
KR100241449B1 (en) Apparatus and method for judging small load of induction heating cooker
JP2647079B2 (en) Induction heating cooker
JP2865674B2 (en) Electromagnetic cooker
JPS6122436B2 (en)
EP4096350A1 (en) Induction heating device
CN113654677B (en) Heating temperature measuring circuit, temperature detecting method thereof, cooking device and storage medium
KR102153499B1 (en) Heating device and power control method
WO2021228115A1 (en) Heating temperature measurement circuit and temperature measurement method therefor, and cooking apparatus and storage medium
CN112714516B (en) Electromagnetic heating equipment and temperature measuring system and temperature measuring method thereof
EP4294124A1 (en) Induction heating device and method for controlling induction heating device
JPH0231471B2 (en)
JP2895821B2 (en) Apparatus and method for determining type of object to be heated in induction heating cooker
JPH0475636B2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080213

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100213

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100213

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110213

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees