JPH0426914A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPH0426914A
JPH0426914A JP13101190A JP13101190A JPH0426914A JP H0426914 A JPH0426914 A JP H0426914A JP 13101190 A JP13101190 A JP 13101190A JP 13101190 A JP13101190 A JP 13101190A JP H0426914 A JPH0426914 A JP H0426914A
Authority
JP
Japan
Prior art keywords
ferromagnetic metal
thin film
metal thin
layer
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13101190A
Other languages
Japanese (ja)
Other versions
JP3167128B2 (en
Inventor
Mitsuru Takai
充 高井
Koji Kobayashi
康二 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP13101190A priority Critical patent/JP3167128B2/en
Publication of JPH0426914A publication Critical patent/JPH0426914A/en
Application granted granted Critical
Publication of JP3167128B2 publication Critical patent/JP3167128B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To satisfy both of high electromagnetic conversion characteristics and the durability at and under a high temp. and high humidity by lowering the Co content in the ferromagnetic metallic thin film of the lowermost layer than the Co content of the ferromagnetic metallic thin film of the uppermost layer. CONSTITUTION:This recording medium has a magnetic layer constituted of at least two layers of the ferromagnetic metallic thin films on a nonmagnetic substrate. The ferromagnetic metallic thin films consist essentially of Co and Ni or consist essentially of Co, Ni and Cr. The lowermost layer of these ferromagnetic metallic thin films, i.e. the ferromagnetic metallic thin film nearest the nonmagnetic base is constituted to have the Co convent lower than the Co content of the ferromagnetic metallic thin film of the uppermost layer. The electromagnetic conversion characteristics of high-frequency range signals are, therefore, assured by the ferromagnetic metallic thin film of the uppermost layer. Corrosion is prevented by the ferromagnetic metallic thin film of the lowermost layer. Since the coercive force of the lowermost layer is low, the electromagnetic conversion characteristics of low-frequency range signals are improved. The high corrosion resistance and the high electromagnetic conversion characteristics in a wide frequency range are obtd. in this way.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は磁気記録媒体に関し、さらに詳しくは、Coお
よびNiを主成分とするか、またはCo、NiおよびC
rを主成分とする強磁性金属薄膜を蒸着により非磁性基
体に支持させた水平記録型の磁気記録媒体に関する。
Detailed Description of the Invention <Industrial Application Field> The present invention relates to a magnetic recording medium, and more particularly, the present invention relates to a magnetic recording medium containing Co and Ni as main components, or containing Co, Ni and C as main components.
The present invention relates to a horizontal recording type magnetic recording medium in which a ferromagnetic metal thin film containing r as a main component is supported on a nonmagnetic substrate by vapor deposition.

〈従来の技術〉 近年磁気記録媒体はますます高密度化しており、中でも
Coを主体としNi等を添加した強磁性金属薄膜を用い
た磁気記録媒体は、飽和磁束密度が太き(しかも保磁力
が高いので、盛んに研究されている。
<Conventional technology> In recent years, magnetic recording media have become increasingly dense, and in particular, magnetic recording media that use ferromagnetic metal thin films mainly composed of Co and added with Ni, etc. have a large saturation magnetic flux density (and a low coercive force). Because of its high value, it is being actively researched.

この型の磁気記録媒体は種々の方法で製造されるが、特
に優れた方法としては、非磁性基体上に斜め蒸着法によ
り強磁性金属薄膜を2層以上積層して多層構造とするこ
とが提案されている。 斜め蒸着法においては、強磁性
金属薄膜各層は、蒸着等の気相法により強磁性金属の蒸
気を非磁性基体の表面に特定の角度で差し向け、これに
より強磁性金属の柱状結晶粒を他の強磁性金属薄膜の柱
状結晶粒の成長方向と交差した特定の方向に成長させる
(特公昭56−26891.56−42055.63−
21254および60−37528、特開昭54−60
3.54−147010.56〜94520゜57−3
233.57−30228.57−13519.57−
141027.57−41028.57−141029
.57−143730.57−143731.57−1
47129.58−14324.58−50628.6
0−76025.61−110333.6118712
2 、63−10315、63−10315 、63−
13117  、63−14317.63−14320
および63−39127号公報等)。 これにより保磁
力その他の電磁変換特性、あるいは機械特性が向上する
が、なお不十分であった。
This type of magnetic recording medium can be manufactured by various methods, but a particularly excellent method is proposed to be a multilayer structure in which two or more ferromagnetic metal thin films are laminated on a non-magnetic substrate using an oblique evaporation method. has been done. In the oblique evaporation method, each layer of ferromagnetic metal thin film is produced by directing ferromagnetic metal vapor onto the surface of a non-magnetic substrate at a specific angle using a vapor phase method such as evaporation, thereby separating columnar crystal grains of ferromagnetic metal from other layers. ferromagnetic metal thin film grown in a specific direction intersecting the growth direction of columnar crystal grains (Japanese Patent Publication No. 56-26891.56-42055.63-
21254 and 60-37528, JP-A-54-60
3.54-147010.56~94520°57-3
233.57-30228.57-13519.57-
141027.57-41028.57-141029
.. 57-143730.57-143731.57-1
47129.58-14324.58-50628.6
0-76025.61-110333.6118712
2, 63-10315, 63-10315, 63-
13117, 63-14317.63-14320
and 63-39127, etc.). Although this improves coercive force and other electromagnetic properties or mechanical properties, it is still insufficient.

本発明者らは、これらのうちの水平記録用の磁気記録媒
体を種々の点から検討したところ、各強磁性金属薄膜に
おける柱状粒子の成長方向およびそれらの相互関係、厚
さおよびそれらの相互関係の検討が充分でなく、電磁変
換特性および耐久性が不充分であったことを見出した。
The present inventors studied magnetic recording media for horizontal recording from various points of view, and found that the growth direction of columnar grains in each ferromagnetic metal thin film, their mutual relationships, the thickness, and their mutual relationships. It was found that the electromagnetic conversion characteristics and durability were insufficient due to insufficient investigation.

このような問題点を解決するために本出願人は柱状粒子
の成長方向が交差する2層のCo−Ni系強磁性金属薄
膜を有する磁気記録媒体において、上層を薄く下層を厚
くすることにより電磁変換特性および耐久性を改善し、
さらに走行性を改善した(特開昭63−9015号公報
)。
In order to solve these problems, the present applicant developed a magnetic recording medium having two layers of Co-Ni ferromagnetic metal thin films in which the growth directions of columnar grains intersect, by making the upper layer thinner and the lower layer thicker. Improved conversion characteristics and durability,
Furthermore, the running performance was improved (Japanese Unexamined Patent Publication No. 63-9015).

しかし、このものは走行性と耐久性は向上するものの、
電磁変換特性の向上が不十分である。
However, although this product improves running performance and durability,
Improving electromagnetic conversion characteristics is insufficient.

また、他の試みとして、同様な2層型磁気記録媒体にお
いて最小入射角(各強磁性金属薄膜の最終蒸着部分にお
ける金属粒子の入射方向と非磁性基体の法線とのなす角
度)を調整することにより、電磁変換特性と耐久性を向
上させることを提案した(特開昭63−10314号公
劃。
In addition, as another attempt, in a similar two-layer magnetic recording medium, the minimum incident angle (the angle between the incident direction of the metal particles in the final deposited part of each ferromagnetic metal thin film and the normal to the nonmagnetic substrate) was made. We proposed to improve the electromagnetic conversion characteristics and durability by doing so (Japanese Patent Application Laid-open No. 10314/1983).

しか側、上層の最小入射角が比較的大きいことおよび2
層であることにより耐久性とくに高温高湿下の耐久性に
劣り、また電磁変換特性が十分でなかった。
On the other hand, the minimum angle of incidence of the upper layer is relatively large, and 2.
Due to the layered structure, the durability, especially under high temperature and high humidity conditions, was poor, and the electromagnetic conversion properties were insufficient.

さらに、3層以上の強磁性金属薄膜を有する斜め蒸着型
の磁気記録媒体では、各強磁性金属薄膜の厚さの検討が
な(また金属粒子の入射角が大きすぎるために充分な電
磁変換特性を得ることができなかったり、あるいは耐湿
耐温度性に劣る問題があり(特開昭56−134317
号公報)、各層がほぼ同一の500〜700人の厚さを
有すると共に強磁性金属の入射角が各層とも22〜72
度と大きい角度を有するために耐食性に劣る問題があっ
たり(特開昭53−60205号公報)、最上層の強磁
性金属薄膜を酸化して酸化物にして耐久性を増すと、酸
化物による電磁変換特性の低下が生じる問題などがある
(特開昭63−39127号公報、特開昭63−103
15号公報)。
Furthermore, in obliquely deposited magnetic recording media that have three or more layers of ferromagnetic metal thin films, the thickness of each ferromagnetic metal thin film has not been studied (also, since the incident angle of the metal particles is too large, sufficient electromagnetic conversion characteristics cannot be achieved). There is a problem that it is not possible to obtain a
The thickness of each layer is approximately the same, 500 to 700 mm, and the incident angle of the ferromagnetic metal is 22 to 72 mm in each layer.
There is a problem of inferior corrosion resistance due to the large angle (Japanese Patent Application Laid-Open No. 53-60205). There are problems such as deterioration of electromagnetic conversion characteristics (JP-A-63-39127, JP-A-63-103).
Publication No. 15).

また、酸化することにより磁気テープにカッピング(テ
ープ幅方向の反り)が発生し、磁気ヘッドとのスペーシ
ング変化による出力変動が生じ易い。
In addition, oxidation causes cupping (warpage in the tape width direction) in the magnetic tape, which tends to cause output fluctuations due to changes in spacing with the magnetic head.

〈発明が解決しようとする課題〉 本発明はこのような事情からなされたものであり、多層
の強磁性金属薄膜を有する斜め蒸着型磁気記録媒体であ
って、高い電磁変換特性と高温高湿下での耐久性を共に
満足する磁気記録媒体を提供することを目的とする。
<Problems to be Solved by the Invention> The present invention has been made in view of the above circumstances, and is an obliquely deposited magnetic recording medium having a multilayered ferromagnetic metal thin film, which has high electromagnetic conversion characteristics and is suitable for use under high temperature and high humidity conditions. The purpose of the present invention is to provide a magnetic recording medium that satisfies both durability and durability.

く課題を解決するための手段〉 上記目的は、下記(1)〜(7)の本発明により達成さ
れる。
Means for Solving the Problems> The above objects are achieved by the following inventions (1) to (7).

(1)非磁性基体上に斜め蒸着法により形成された磁性
層を有し、この磁性層が少なくとも2層の強磁性金属薄
膜から構成され、この強磁性金属薄膜がCo13よびN
iを主成分とするか、またはCo、NiおよびCrを主
成分として含有する磁気記録媒体であって、 最下層の強磁性金属薄膜のCo含有率が最上層の強磁性
金属薄膜のCo含有率よりも低いことを特徴とする磁気
記録媒体。
(1) It has a magnetic layer formed by oblique vapor deposition on a nonmagnetic substrate, and this magnetic layer is composed of at least two ferromagnetic metal thin films, and this ferromagnetic metal thin film is composed of Co13 and N
A magnetic recording medium containing i as a main component or containing Co, Ni, and Cr as main components, in which the Co content of the ferromagnetic metal thin film in the bottom layer is the Co content in the ferromagnetic metal thin film in the top layer. A magnetic recording medium characterized by lower than .

(2)最下層の強磁性金属薄膜のCo含有率が70〜8
5at%である上記(1)に記載の磁気記録媒体。
(2) Co content of the ferromagnetic metal thin film in the bottom layer is 70 to 8
The magnetic recording medium according to (1) above, which has a content of 5 at%.

(3)最上層の強磁性金属薄膜のCo含有率が75〜9
0at%である上記(1)または(2)に記載の磁気記
録媒体。
(3) Co content of the top layer ferromagnetic metal thin film is 75 to 9
The magnetic recording medium according to (1) or (2) above, wherein the magnetic recording medium is 0 at%.

(4)蒸着時に強磁性金属が入射する方向と前記非磁性
基体表面の法線とがなす角度を入射角とし、入射角の最
大値をθmax 、入射角の最小値をθminとすると
、 最下層の強磁性金属薄膜が、最上層の強磁性金属薄膜蒸
着時のθmaxより小さいθmaxにて蒸着されたもの
である上記(1)ないしく3)のいずれかに記載の磁気
記録媒体。
(4) If the angle between the direction in which the ferromagnetic metal is incident during vapor deposition and the normal to the surface of the non-magnetic substrate is the incident angle, the maximum value of the incident angle is θmax, and the minimum value of the incident angle is θmin, then the bottom layer The magnetic recording medium according to any one of (1) to 3) above, wherein the ferromagnetic metal thin film is deposited at θmax smaller than θmax during deposition of the uppermost ferromagnetic metal thin film.

(5)蒸着時に強磁性金属が入射する方向と前記非磁性
基体表面の法線とがなす角度を入射角とし、入射角の最
大値をθll1aX、入射角の最小値をθminとする
と、 最上層の強磁性金属薄膜が、最下層の強磁性金属薄膜蒸
着時のθminより大きいθminにて蒸着されたもの
である上記(1)ないしく4)のいずれかに記載の磁気
記録媒体。
(5) If the angle between the direction in which the ferromagnetic metal is incident during vapor deposition and the normal to the surface of the non-magnetic substrate is the incident angle, the maximum value of the incident angle is θll1aX, and the minimum value of the incident angle is θmin, then the top layer The magnetic recording medium according to any one of (1) to 4) above, wherein the ferromagnetic metal thin film is deposited at θmin which is larger than θmin when the ferromagnetic metal thin film of the bottom layer is deposited.

(6)最上層の強磁性金属薄膜蒸着時のθmaxとθm
inとの合計が、最下層の強磁性金属薄膜蒸着時のθm
axとθminとの合計よりも大きい上記(4)または
(5)に記載の磁気配録媒体。
(6) θmax and θm when depositing the top layer of ferromagnetic metal thin film
The sum of in and θm at the time of depositing the ferromagnetic metal thin film of the bottom
The magnetic recording medium according to (4) or (5) above, which is larger than the sum of ax and θmin.

(7)強磁性金属が入射する方向が前記非磁性基体の法
線を挟んで交差するように蒸着された2層の強磁性金属
薄膜を有する上記(1)ないしく6)のいずれかに記載
の磁気記録媒体。
(7) According to any one of (1) to 6) above, comprising two ferromagnetic metal thin films deposited such that the direction in which the ferromagnetic metal is incident intersects with the normal line of the nonmagnetic substrate interposed therebetween. magnetic recording media.

く作用〉 本発明の磁気記録媒体は、少なくとも2層の強磁性金属
薄膜から構成されている磁性層を非磁性基体上に有する
。 この強磁性金属薄膜は、CoおよびNiを主成分と
するか、またはCo、NiおよびCrを主成分とするも
のである。
Effect> The magnetic recording medium of the present invention has a magnetic layer composed of at least two ferromagnetic metal thin films on a nonmagnetic substrate. This ferromagnetic metal thin film has Co and Ni as its main components, or Co, Ni, and Cr as its main components.

本発明では、これらの強磁性金属薄膜のうち、最下層、
すなわち非磁性基体に最も近い強磁性金属薄膜のCo含
有率を最上層の強磁性金属薄膜のCo含有率よりも低く
構成する。
In the present invention, among these ferromagnetic metal thin films, the lowest layer,
That is, the Co content of the ferromagnetic metal thin film closest to the nonmagnetic substrate is configured to be lower than the Co content of the uppermost ferromagnetic metal thin film.

この理由は下記のとおりである。The reason for this is as follows.

非磁性基体は通常、酸素や水分を含み、これらが基体表
面から強磁性金属薄膜中に侵入する。 このため、強磁
性金属薄膜は非磁性基体側から腐食が進行し易い。
Nonmagnetic substrates usually contain oxygen and moisture, which penetrate into the ferromagnetic metal thin film from the substrate surface. For this reason, corrosion of the ferromagnetic metal thin film tends to progress from the non-magnetic substrate side.

また、磁性層には、一般に低域信号はど深くまで記録さ
れ、高域信号は浅い領域に記録される。 例えば、Hi
−8規格のビデオ配録のように低域信号(0,75MH
zの色信号)と高域信号(7,0MHzの輝度信号)と
が重畳記録される場合、通常、最下層には主として低域
信号が記録される。
Furthermore, in general, low frequency signals are recorded deep in the magnetic layer, and high frequency signals are recorded in a shallow region. For example, Hi
-8 standard video distribution, low frequency signal (0.75MH)
When a high frequency signal (chrominance signal of 7.0 MHz) and a high frequency signal (luminance signal of 7.0 MHz) are recorded in a superimposed manner, normally, the low frequency signal is mainly recorded on the bottom layer.

そして、COを主成分とする強磁性金属薄膜は、Co含
有率が低いほどC酸化性は良好となるが、保磁力Heは
低下する。
In a ferromagnetic metal thin film containing CO as a main component, the lower the Co content, the better the C oxidation property, but the lower the coercive force He.

従って、本発明の磁気記録媒体では、Co含有率が高い
ためにHcの高い最上層の強磁性金属薄膜により高域信
号の電磁変換特性を確保し、Co含有率が低いために耐
食性の高い最下層の強磁性金属薄膜により腐食を防止し
、しかも、最下層の保磁力が低くなるので、低域信号の
電磁変換特性が良好となる。
Therefore, in the magnetic recording medium of the present invention, the electromagnetic conversion characteristics of high frequency signals are ensured by the top layer ferromagnetic metal thin film with high Hc due to the high Co content, and the top layer with high corrosion resistance is ensured due to the low Co content. Corrosion is prevented by the ferromagnetic metal thin film in the lower layer, and the coercive force of the lowermost layer is low, resulting in good electromagnetic conversion characteristics for low-frequency signals.

このため、本発明の磁気記録媒体は、耐食性が高(、し
かも広い帯域において高い電磁変換特性が得られる。
Therefore, the magnetic recording medium of the present invention has high corrosion resistance (and high electromagnetic conversion characteristics in a wide band).

ところで、本発明の磁気記録媒体のように斜め蒸着型の
磁気記録媒体の強磁性金属薄膜形成においては、回転す
る円筒状の冷却ドラム表面に非磁性基体を添わせて搬送
しながら、定置された強磁性金属源に電子ビーム等を照
射して蒸着を行なう。
By the way, in forming a ferromagnetic metal thin film on an obliquely deposited magnetic recording medium such as the magnetic recording medium of the present invention, a nonmagnetic substrate is placed on the surface of a rotating cylindrical cooling drum while being conveyed. Vapor deposition is performed by irradiating a ferromagnetic metal source with an electron beam or the like.

このとき、強磁性金属が入射する方向と非磁性基体表面
の法線とがなす角度を入射角と呼び、通常、蒸着開始か
ら終了まで入射角が漸減するように蒸着する。 従って
、非磁性基体上に形成された強磁性金属薄膜中の柱状結
晶粒子は、非磁性基体側ではほぼ非磁性基体表面と平行
であり、非磁性基体表面から離れるに従って弧状に成長
している。
At this time, the angle between the direction in which the ferromagnetic metal is incident and the normal to the surface of the non-magnetic substrate is called the angle of incidence, and the deposition is normally performed so that the angle of incidence gradually decreases from the start to the end of the deposition. Therefore, the columnar crystal grains in the ferromagnetic metal thin film formed on the non-magnetic substrate are approximately parallel to the non-magnetic substrate surface on the non-magnetic substrate side, and grow in an arc shape as they move away from the non-magnetic substrate surface.

蒸着時の入射角の最大値および最小値を、それぞれ最大
入射角θmaxおよび最小入射角θminと称する。 
なお、θmaXは90度以下であり、蒸着効率はθma
xからθminにかけて増大する。
The maximum value and minimum value of the incident angle during vapor deposition are referred to as maximum incident angle θmax and minimum incident angle θmin, respectively.
Note that θmax is 90 degrees or less, and the vapor deposition efficiency is θmax
It increases from x to θmin.

磁性層が面内方向に磁化される水平記録型の磁気記録媒
体では、θmaxは90度に設定される。 これは、θ
maxが大きいほうが非磁性基体表面に対する柱状結晶
粒子の平均傾きが小さくなり、強磁性金属薄膜面内方向
のHcが向上するためである。
In a horizontal recording type magnetic recording medium in which the magnetic layer is magnetized in the in-plane direction, θmax is set to 90 degrees. This is θ
This is because the larger max is, the smaller the average inclination of the columnar crystal grains with respect to the surface of the nonmagnetic substrate is, and the Hc in the in-plane direction of the ferromagnetic metal thin film is improved.

本発明において、最下層の強磁性金属薄膜を、最上層蒸
着時のθwaxよりも小さいθmaxにて蒸着すれば、
すなわち、最下層をθmax90度未満にて蒸着すれば
、耐食性はさらに向上する。
In the present invention, if the ferromagnetic metal thin film of the bottom layer is deposited at θmax smaller than θwax when depositing the top layer,
That is, if the bottom layer is deposited at θmax of less than 90 degrees, the corrosion resistance is further improved.

この理由は下記のとおりである。The reason for this is as follows.

本発明者らは実験を重ねた結果、θmax90度付近、
すなわち非磁性基体表面と平行に強磁性金属が入射した
部分では蒸着効率が低いため、柱状結晶粒子の径が小さ
くなって各粒子間に空隙が生じていることを見いだし、
この空隙から非磁性基体中の酸素や水分が侵入し、腐食
が進行することを知見した。
As a result of repeated experiments, the inventors found that θmax around 90 degrees,
In other words, they discovered that the deposition efficiency is low in areas where the ferromagnetic metal is incident parallel to the surface of the non-magnetic substrate, so the diameter of the columnar crystal grains becomes smaller and voids are created between each grain.
It was discovered that oxygen and moisture in the nonmagnetic substrate penetrated through these gaps, causing corrosion to progress.

そこで、最下層を上記のようなθmaxにて蒸着するこ
とにより前記空隙の発生を抑え、耐食性が極めて良好な
磁気記録媒体を得るものである。 また、空隙が減少す
るので薄膜中の強磁性金属の充填率が向上し、高い飽和
磁化が得られる。
Therefore, by depositing the bottom layer at θmax as described above, the generation of the voids can be suppressed and a magnetic recording medium with extremely good corrosion resistance can be obtained. Furthermore, since the voids are reduced, the filling rate of the ferromagnetic metal in the thin film is improved, and high saturation magnetization can be obtained.

しかも、最下層を小さいθmaxにて蒸着してHcが低
(なった場合でも、主として最下層に言己録される低域
信号に関する電磁変換特性はかえって向上する。
Moreover, even if the bottom layer is deposited at a small θmax and Hc becomes low, the electromagnetic conversion characteristics regarding the low-frequency signal mainly recorded in the bottom layer will be improved.

さらに、最上層蒸着時のθmaxは最下層蒸着時のθm
axより大きくなるので、最上層のHcが向上し、高域
信号の電磁変換特性が向上する。 従って、広い帯域に
おいて高い電磁変換特性が得られ、しかも高い耐食性が
実現するという本発明の効果は、いっそう向上する。
Furthermore, θmax when depositing the top layer is equal to θm when depositing the bottom layer.
Since it is larger than ax, Hc of the uppermost layer is improved, and electromagnetic conversion characteristics of high frequency signals are improved. Therefore, the effects of the present invention in that high electromagnetic conversion characteristics can be obtained in a wide band and high corrosion resistance can be realized are further improved.

また、最上層の強磁性金属薄膜を、最下層の強磁性金属
薄膜蒸着時のθminより大きいθminで蒸着した場
合でも、本発明の効果はいっそう向上する。
Further, even when the uppermost layer of the ferromagnetic metal thin film is deposited at θmin which is larger than the θmin when the lowermost layer of the ferromagnetic metal thin film is deposited, the effects of the present invention are further improved.

θminも柱状結晶粒子の傾きに関与し、θminが大
きいと柱状結晶粒子の平均傾きは小さくなるのでHeが
向上する。 一方、θ+ninが小さいと平均傾きは大
きくなり、また、柱状結晶粒子の大部分が高い効率で蒸
着されるので柱状結晶粒子の径が均一に近(なり、各柱
状結晶粒子間に空隙が生じにくくなって緻密な膜が得ら
れる。
θmin is also involved in the inclination of the columnar crystal grains, and when θmin is large, the average inclination of the columnar crystal grains becomes small, so that He is improved. On the other hand, when θ+nin is small, the average slope becomes large, and since most of the columnar crystal particles are vapor-deposited with high efficiency, the diameters of the columnar crystal particles become nearly uniform, making it difficult for voids to form between each columnar crystal particle. As a result, a dense film can be obtained.

このため、最上層蒸着時および最下層蒸着時のθmin
を上記関係とすれば、最上層のHcを高(でき、さらに
最下層のHcを相対的に低くできるため、広い帯域に亙
って電磁変換特性を向上させることができ、しかも最下
層の耐食性を向上させることができる。
For this reason, θmin during the top layer deposition and the bottom layer deposition
If the above relationship is established, the Hc of the top layer can be made high (and the Hc of the bottom layer can be made relatively low), so the electromagnetic conversion characteristics can be improved over a wide band, and the corrosion resistance of the bottom layer can be improved. can be improved.

さらに、この場合、最下層蒸着時のθwaxと最上層蒸
着時のθmaxとが上記した関係であれば、電磁変換特
性および耐食性はさらに高いものとなる。
Furthermore, in this case, if the relationship between θwax at the time of depositing the bottom layer and θmax at the time of depositing the top layer is as described above, the electromagnetic conversion characteristics and corrosion resistance will be even higher.

そして、上記各場合において、最上層の強磁性金属薄膜
蒸着時のθmaxとθminとの合計が、最下層蒸着時
のθmaxとθminとの合計よりも大きい場合、より
高い電磁変換特性および耐食性が実現する。
In each of the above cases, if the sum of θmax and θmin during the deposition of the ferromagnetic metal thin film of the top layer is greater than the sum of θmax and θmin during the deposition of the bottom layer, higher electromagnetic conversion characteristics and corrosion resistance are achieved. do.

〈具体的構成〉 以下、本発明の具体的構成を詳細に説明する。<Specific configuration> Hereinafter, the specific configuration of the present invention will be explained in detail.

[非磁性基体] 本発明で用いる非磁性基体の材質に特に制限はなく、強
磁性金属薄膜蒸着時の熱に耐える各種フィルム、例えば
ポリエチレンテレフタレート等を用いることができる。
[Nonmagnetic Substrate] There is no particular restriction on the material of the nonmagnetic substrate used in the present invention, and various films that can withstand the heat during deposition of a ferromagnetic metal thin film, such as polyethylene terephthalate, can be used.

また、特開昭63−10315号公報に記載の各種材料
が使用可能である。
Further, various materials described in Japanese Patent Application Laid-Open No. 10315/1988 can be used.

[磁性層] 非磁性基体上に形成される磁性層は、斜め蒸着法により
形成される2層以上の強磁性金属薄膜から構成される。
[Magnetic Layer] The magnetic layer formed on the nonmagnetic substrate is composed of two or more ferromagnetic metal thin films formed by an oblique evaporation method.

 そして、この強磁性金属薄膜は、COおよびNiを主
成分とするが、またはCo、NiおよびCrを主成分と
する。
This ferromagnetic metal thin film has CO and Ni as its main components, or Co, Ni, and Cr as its main components.

本発明では、最下層の強磁性金属薄膜のC。In the present invention, C of the ferromagnetic metal thin film of the bottom layer.

含有率を最上層の強磁性金属薄膜のCo含有率よりも低
く構成する。
The Co content is set to be lower than the Co content of the uppermost ferromagnetic metal thin film.

この場合、最下層の強磁性金属薄膜のCo含有率は、7
0〜85at%、特に74〜80at%であることが好
ましい。 Co含有率が前記範囲未満となると最下層に
必要とされる保磁力が得られに<<、前記範囲を超える
と最下層に必要とされる耐食性が得られにくい。
In this case, the Co content of the ferromagnetic metal thin film in the bottom layer is 7
It is preferably 0 to 85 at%, particularly 74 to 80 at%. When the Co content is less than the above range, it is difficult to obtain the coercive force required for the bottom layer, and when it exceeds the above range, it is difficult to obtain the corrosion resistance required for the bottom layer.

最上層の強磁性金属薄膜のCo含有率は、75〜90a
t%、特に79〜85at%であることが好ましい。 
Co含有率が前記範囲未満となると最上層に必要とされ
る保磁力が得られに<(、前記範囲を超えると最上層に
必要とされる耐食性が得られにくい。
The Co content of the top layer ferromagnetic metal thin film is 75 to 90a.
t%, particularly preferably 79 to 85 at%.
When the Co content is less than the above range, it is difficult to obtain the coercive force required for the top layer, and when it exceeds the above range, it is difficult to obtain the corrosion resistance required for the top layer.

強磁性金属薄膜のCO以外の主構成元素は、Niである
か、またはNiおよびCrであるが、特開昭63−10
315号公報等に記載されている各種金属やその他の金
属成分が必要に応じて含有されていてもよく、また、成
膜雰囲気中に含まれるAr等が含有されていてもよい。
The main constituent elements other than CO of the ferromagnetic metal thin film are Ni, or Ni and Cr.
Various metals and other metal components described in Publication No. 315 and the like may be contained as necessary, and Ar and the like contained in the film forming atmosphere may be contained.

 これらの元素の含有率は、強磁性金属薄膜の5at%
以下であることが好ましい。
The content of these elements is 5 at% of the ferromagnetic metal thin film.
It is preferable that it is below.

NiとCrとの含有比率に特に制限はなく、目的に応じ
て適宜設定すればよいが、強磁性金属薄膜中のCr含有
率は10at%以下とすることが好ましい。
The content ratio of Ni and Cr is not particularly limited and may be set appropriately depending on the purpose, but it is preferable that the Cr content in the ferromagnetic metal thin film is 10 at % or less.

さらに、必要に応じて少量の酸素を表面層に含有させ、
耐食性を向上させることもできる。
Furthermore, if necessary, a small amount of oxygen may be included in the surface layer,
Corrosion resistance can also be improved.

このような磁性層において、最下層の強磁性金属薄膜が
、最上層の強磁性金属薄膜蒸着時のθmaxより小さい
θWaXにて蒸着されていることが好ましい。 これに
より耐食性および電磁変換特性が共に向上する。
In such a magnetic layer, it is preferable that the lowermost ferromagnetic metal thin film is deposited at θWaX smaller than θmax when the uppermost ferromagnetic metal thin film is deposited. This improves both corrosion resistance and electromagnetic conversion characteristics.

この場合、最上層蒸着時のθmaxは80〜90度、特
に85〜90度であることが好ましく、最下層蒸着時の
θmaxは31〜89度、特に60〜84度であること
が好ましい。
In this case, θmax when depositing the top layer is preferably 80 to 90 degrees, particularly preferably 85 to 90 degrees, and θmax when depositing the bottom layer is preferably 31 to 89 degrees, particularly 60 to 84 degrees.

また、最上層の強磁性金属薄膜が、最下層の強磁性金属
薄膜蒸着時のθminより大きいθminにて蒸着され
ていることが好ましい。
Further, it is preferable that the ferromagnetic metal thin film of the uppermost layer is deposited at θmin which is larger than θmin when the ferromagnetic metal thin film of the lowermost layer is deposited.

このような構成によっても耐食性および電磁変換特性が
共に向上する。
Such a configuration also improves both corrosion resistance and electromagnetic conversion characteristics.

この場合、最上層蒸着時のθminは20〜60度、特
に31〜60度であることが好ましく、最下層蒸着時の
θll1inは10〜50度、特に10〜30度である
ことが好ましい。
In this case, θmin during deposition of the top layer is preferably 20 to 60 degrees, particularly preferably 31 to 60 degrees, and θll1in during deposition of the bottom layer is preferably 10 to 50 degrees, particularly 10 to 30 degrees.

さらに、上記各場合において、最上層の強磁性金属薄膜
蒸着時のθwaxとθwinとの合計が、最下層蒸着時
のθmaxとθl1linとの合計よりも大きいことが
好ましい。
Furthermore, in each of the above cases, it is preferable that the sum of θwax and θwin during the deposition of the ferromagnetic metal thin film of the uppermost layer is larger than the sum of θmax and θl1lin during the deposition of the lowermost layer.

この場合、最下層のθmaxとθminとの合計は10
0〜150度、特に116〜150度であることが好ま
しく、また、最下層のθmaxとθminとの合計は4
1〜139度、特に70〜114度であることが好まし
い。
In this case, the sum of θmax and θmin of the lowest layer is 10
It is preferably 0 to 150 degrees, particularly 116 to 150 degrees, and the sum of θmax and θmin of the lowest layer is 4
It is preferably 1 to 139 degrees, particularly 70 to 114 degrees.

また、強磁性金属が入射する方向が前記非磁性基体の法
線を挟んで交差するように蒸着された2層の強磁性金属
薄膜を有することが好ましい。 この場合、これら2層
では、強磁性金属の柱状結晶粒子の成長方向が、非磁性
基体表面の法線を挟んで交差することになる。
Further, it is preferable to have two ferromagnetic metal thin films deposited such that the direction in which the ferromagnetic metal is incident crosses the normal line of the nonmagnetic substrate. In this case, in these two layers, the growth directions of the columnar crystal grains of the ferromagnetic metal intersect with the normal line to the surface of the nonmagnetic substrate interposed therebetween.

このような構成とするには、非磁性基体の走行方向を逆
にして斜め蒸着すればよい。
Such a structure can be obtained by obliquely depositing the nonmagnetic substrate with its running direction reversed.

この場合の2層としては、最上層およびその隣接層であ
るか、あるいは最上層およびIN挟んで最上層と隣接す
る層であることが好ましい。
In this case, the two layers are preferably the top layer and a layer adjacent thereto, or the top layer and a layer adjacent to the top layer with IN sandwiched therebetween.

このような構成とすることにより、最上層および他の1
層を、それぞれ高域信号記録および低域信号記録に好適
なHcとすることができ、全域に亙って電磁変換特性が
向上する。
With such a configuration, the top layer and other
The layers can each be made of Hc suitable for high frequency signal recording and low frequency signal recording, and electromagnetic conversion characteristics are improved over the entire region.

強磁性金属薄膜の積層数に特に制限はなく、目的に応じ
て2層、3層あるいは4層以上の構成を選択すればよい
There is no particular limit to the number of laminated ferromagnetic metal thin films, and a configuration of two, three, or four or more layers may be selected depending on the purpose.

3層以上の多層構成とする場合、最上層と最下層との間
に存在する中間層は、記録信号の周波数帯域や各層の厚
さなどの各種条件を考慮して、最適なHeや耐食性が得
られるように蒸着時のθmax 、 θmin 、厚さ
、柱状結晶粒の成長方向等を適宜設計すればよい。
In the case of a multilayer structure with three or more layers, the intermediate layer between the top layer and the bottom layer should be designed to have optimal He and corrosion resistance, taking into account various conditions such as the frequency band of the recording signal and the thickness of each layer. The θmax, θmin, thickness, growth direction of columnar crystal grains, etc. during vapor deposition may be appropriately designed so as to obtain the desired results.

例えばHi−8規格のように低域信号と高域信号とが重
畳記録される場合、各層に主として記録される信号の周
波数帯域を考慮して上記各条件を決定すればよい。
For example, when a low frequency signal and a high frequency signal are recorded in a superimposed manner as in the Hi-8 standard, each of the above conditions may be determined in consideration of the frequency band of the signal mainly recorded in each layer.

各強磁性金属薄膜の厚さは、約400〜1000人であ
ることが好ましい。 最上層の厚さが400人より薄く
なると、例えば7.0MHz程度の高域信号の記録が十
分にできなくなり出力が低下する。 一方1000人よ
りも厚くなると雑音が増えて信号対雑音比が低下する。
Preferably, the thickness of each ferromagnetic metal thin film is about 400 to 1000 thick. If the thickness of the top layer becomes thinner than 400, high-frequency signals of, for example, about 7.0 MHz cannot be recorded sufficiently, resulting in a decrease in output. On the other hand, if it becomes thicker than 1000 people, noise increases and the signal-to-noise ratio decreases.

なお、磁性層全体の厚さは、2000Å以上であること
が好ましい。 これにより例えば0.75MHz程度の
低域における出力を十分に太き(することができる。
Note that the thickness of the entire magnetic layer is preferably 2000 Å or more. As a result, the output in the low frequency range of about 0.75 MHz can be made sufficiently thick.

また、低域および高域の双方で高出力を得るために、最
上層から下層に向けて厚さが増加していることが好まし
い。
Further, in order to obtain high output in both the low and high ranges, it is preferable that the thickness increases from the top layer to the bottom layer.

各強磁性金属薄膜は、それぞれ斜め蒸着法により形成さ
れる。 斜め蒸着装置および方法は、前掲した各種の文
献に記載されているのでそれらのうちから任意のものを
採用すればよい。
Each ferromagnetic metal thin film is formed by an oblique vapor deposition method. Since the oblique vapor deposition apparatus and method are described in the various documents mentioned above, any one may be adopted from among them.

斜め蒸着法は、例えば、供給ロールから繰り出された長
尺フィルム状の非磁性基体を回転する冷却ドラムの表面
に添わせて送りながら、個以上の定置金属源から斜め蒸
着をし、巻き取りロールに巻き取るものである。 この
場合、入射角は蒸着初期のθmaxから最終のθmin
まで連続的に変化し、非磁性基体表面にCoを主成分と
する強磁性金属の柱状結晶粒子を弧状に成長させ、整列
させるものである。
In the oblique deposition method, for example, a long film-like nonmagnetic substrate is unwound from a supply roll and fed along the surface of a rotating cooling drum, while diagonal deposition is performed from one or more stationary metal sources, and It is something that is rolled up. In this case, the incident angle is from θmax at the initial stage of deposition to θmin at the final stage.
Columnar crystal grains of a ferromagnetic metal whose main component is Co are grown in an arc shape on the surface of a nonmagnetic substrate and aligned.

磁性層を多層構成とする場合は、この工程を繰り返し行
なう。
If the magnetic layer has a multilayer structure, this step is repeated.

そして、強磁性金属が入射する方向が非磁性基体の法線
を挟んで交差するような2層の強磁性金属薄膜を形成す
る場合、非磁性基体の走行方向を逆にして斜め蒸着を行
なえばよい。
When forming a two-layer ferromagnetic metal thin film in which the direction of incidence of the ferromagnetic metal crosses the normal line of the nonmagnetic substrate, it is possible to perform oblique deposition with the running direction of the nonmagnetic substrate reversed. good.

本発明の磁気記録媒体の磁性層上には、磁性層の保護お
よび耐食性向上のために公知の種々のトップコート層が
設けられることが好ましい。 また、テープ化したとき
の走行性を確保するために、非磁性基体の磁性層と反対
側には公知の種々のバックコート層が設けられることが
好ましい。
Various known top coat layers are preferably provided on the magnetic layer of the magnetic recording medium of the present invention in order to protect the magnetic layer and improve corrosion resistance. Furthermore, in order to ensure runnability when formed into a tape, it is preferable that various known back coat layers be provided on the side of the nonmagnetic substrate opposite to the magnetic layer.

本発明の磁気記録媒体は、高密度記録が必要とされる各
種磁気記録に好適であるが、Hi−8規格のビデオ記録
のように高域信号と低域信号とが重畳記録される場合に
特に高い効果を発揮する。
The magnetic recording medium of the present invention is suitable for various types of magnetic recording that require high-density recording, but is suitable for recording in which high-frequency signals and low-frequency signals are superimposed, such as in Hi-8 standard video recording. Particularly effective.

〈実施例〉 以下、本発明の具体的実施例を挙げ、本発明をさらに詳
細に説明する。
<Example> Hereinafter, the present invention will be explained in further detail by giving specific examples of the present invention.

[実施例1] 10−’TorrのAr雰囲気中で、供給ロールから厚
さ7pのポリエチレンテレフタレート(PET)フィル
ムを繰り出して、回転する円筒状冷却ドラムの周面に添
わせて移動させ、強磁性金属を斜め蒸着して強磁性金属
薄膜を形成し、巻き取りロールに巻き取った。
[Example 1] In an Ar atmosphere of 10-'Torr, a polyethylene terephthalate (PET) film with a thickness of 7p was fed out from a supply roll and moved along the circumferential surface of a rotating cylindrical cooling drum. A ferromagnetic metal thin film was formed by diagonally depositing metal and wound onto a take-up roll.

次いで、この巻き取りロールを供給ロールとし、PET
フィルム表面の法線方向を挟んで上記斜め蒸着時の入射
方向と交差する入射方向にて強磁性金属を斜め蒸着して
、2層構成の磁性層を有する磁気記録媒体を得た。
Next, this winding roll is used as a supply roll, and PET
A magnetic recording medium having a two-layered magnetic layer was obtained by obliquely depositing a ferromagnetic metal in an incident direction intersecting the incident direction in the above-mentioned oblique deposition with the normal direction of the film surface interposed therebetween.

上層形成および下層形成に用いた強磁性金属の組成を変
え、下記表1に示されるサンプルを得た。 なお、上層
および下層は、Co−Ni合金とし、表1にはCO含有
率だけを示した。
Samples shown in Table 1 below were obtained by changing the composition of the ferromagnetic metal used to form the upper layer and the lower layer. Note that the upper layer and the lower layer were made of a Co-Ni alloy, and Table 1 shows only the CO content.

各サンプルの上層の厚さは900人、下層の厚さは11
00人とし、上層および下層の強磁性金属薄膜の蒸着時
のθminは30度、θmaxは90度とした。
The thickness of the upper layer of each sample is 900 people, and the thickness of the lower layer is 11 people.
00 people, θmin was 30 degrees, and θmax was 90 degrees during the deposition of the upper and lower ferromagnetic metal thin films.

これらのサンプルをスリッタにて裁断してテープ化し、
Hi−8規格のビデオカセットとした。
These samples were cut with a slitter and made into tape.
It was a Hi-8 standard video cassette.

各サンプルについて下記の評価を行なった。The following evaluations were performed for each sample.

結果を表1に示す。The results are shown in Table 1.

(1)発錆 60℃・90%RHの環境で1週間・保存後、テープの
磁性層側の変色度を目視で判定した。 評価基準は下記
のとおりとした。
(1) Rust generation After storage for one week in an environment of 60° C. and 90% RH, the degree of discoloration on the magnetic layer side of the tape was visually determined. The evaluation criteria were as follows.

0:変化なし ○:薄い黄色に変色 △;黄色に変色 ×:青色に変色 (2)カッピング 60℃・90%RHにて1週間保存した後、テープを平
面上に載置し、テープ幅方向端部のソリ高さhを測定し
た。 評価基準は下記の通りとした。
0: No change ○: Discoloration to pale yellow △; Discoloration to yellow ×: Discoloration to blue (2) Cupping After storing for one week at 60°C and 90% RH, place the tape on a flat surface and remove the tape in the tape width direction. The warp height h at the end was measured. The evaluation criteria were as follows.

Q:  h  =。Q: h  =.

Q:O<  h  50.2mm △:0.2<  h  <0.5mm ×: h 20.5mm なお、カッピングはテープ幅方向の変形の度合いを示す
指標であり、カッピングが大きいとテープと磁気ヘッド
とのスペーシングが一定に保てなくなり、出力変動を生
じる。
Q: O < h 50.2 mm △: 0.2 < h < 0.5 mm ×: h 20.5 mm Cupping is an indicator of the degree of deformation in the tape width direction, and if cupping is large, the tape and magnetic head will be damaged. The spacing cannot be kept constant, resulting in output fluctuations.

(3)電磁(0,75MHzおよび7 MHzでの電磁
変換特性) Hi−8規格V T R(7) 5ONY EV−S9
00を用い、0.75MHzの単一信号および7 MH
zの単一信号を記録したときのRF比出力基準テープの
RF比出力比較し、下記の評価基準により判定した。
(3) Electromagnetic (electromagnetic conversion characteristics at 0.75 MHz and 7 MHz) Hi-8 standard VTR (7) 5ONY EV-S9
00, a single signal of 0.75 MHz and 7 MH
The RF ratio output of the RF ratio output reference tape when a single signal of z was recorded was compared, and judgment was made based on the following evaluation criteria.

Q:  (RF比出力≧2.0dB ○:OdB≦(RF比出力<2.0dB△ニー1.0d
B≦(RF比出力<0dBX:(RF比出力<−1,0
dB なお、測定の際の磁気ヘッドの相対的移動方向は、上層
の柱状結晶粒子の成長方向をPETフィルム表面に投影
した方向とした。
Q: (RF specific output≧2.0dB ○:OdB≦(RF specific output<2.0dB△knee 1.0d
B≦(RF specific output<0dBX:(RF specific output<-1,0
dB Note that the relative moving direction of the magnetic head during the measurement was the direction in which the growth direction of the columnar crystal grains in the upper layer was projected onto the PET film surface.

なお、上記表1に示されるサンプルNo。Note that the sample No. shown in Table 1 above.

1−1.1−3は比較用のリファレンスサンプルであり
、上層と下層との組成を全く同一に設定している。
Samples 1-1.1-3 are reference samples for comparison, and the compositions of the upper and lower layers are set to be exactly the same.

上記表1において、最下層の強磁性金属薄膜のCo含有
率を最上層の強磁性金属薄膜のCo含有率よりも低(構
成した本発明サンプルでは、高い耐食性が実現し、しか
も、低域および高域のいずれにおいても高い電磁変換特
性が得られている。
In Table 1 above, the sample of the present invention in which the Co content of the ferromagnetic metal thin film in the bottom layer is lower than the Co content in the ferromagnetic metal thin film in the top layer achieves high corrosion resistance, and High electromagnetic conversion characteristics are obtained in all high frequencies.

これに対し、上層および下層のいずれもがCo含有率の
低い比較サンプルNo、1−1では、耐食性は良好であ
るが電磁変換特性が低く、特に7 MHzにおける特性
が極めて低い。
On the other hand, comparative sample No. 1-1, in which both the upper layer and the lower layer have a low Co content, has good corrosion resistance but poor electromagnetic conversion characteristics, particularly extremely poor characteristics at 7 MHz.

また、上層および下層のいずれもがCo含有率の高い比
較サンプルNo、1−3では、耐食性が低く、また、0
.75M)Izにおける電磁変換特性が低い。
In addition, in comparison sample No. 1-3, in which both the upper layer and the lower layer have a high Co content, the corrosion resistance is low, and the
.. 75M) Poor electromagnetic conversion characteristics at Iz.

[実施例2] 上層および下層の強磁性金属薄膜の蒸着時のθwinお
よびθwaxを変え、下記表2に示す各サンプルを得た
。 なお、サンプルNo、2−1は、表1に示されるサ
ンプルNo、1−2と同じであり、他のサンプルのθm
inおよびθwax以外の構成は、サンプルNo、2−
1と同じとした。
[Example 2] Each sample shown in Table 2 below was obtained by changing θwin and θwax during vapor deposition of the upper and lower ferromagnetic metal thin films. Note that sample No. 2-1 is the same as sample No. 1-2 shown in Table 1, and the θm of other samples is
Configurations other than in and θwax are sample No. 2-
It is the same as 1.

これらの各サンプルについて、実施例1と同様な評価お
よび下記評価を行なった。 結果を表2に示す。
For each of these samples, the same evaluation as in Example 1 and the following evaluation were performed. The results are shown in Table 2.

(4)ΔBm 60℃・90%RHにて1週間保存後の最大磁化Bmを
測定し、初期のBmに対する増加庫を求めた。
(4) ΔBm The maximum magnetization Bm after one week of storage at 60° C. and 90% RH was measured, and the increase relative to the initial Bm was determined.

(5)Do (ドロップアウト)経時変化50℃・80
%RHにて1週間保存後のドロップアウトを測定し、初
期のドロップアウトに対する増加率を求めた。
(5) Do (dropout) aging change 50℃・80
Dropout after one week of storage was measured at %RH, and the increase rate relative to the initial dropout was determined.

なお、出力減少16dB以上が15μsee D上紐い
たものをドロップアウトと判定した。
In addition, a dropout was determined when the output decreased by 16 dB or more and the output decreased by 15 μsee D.

(6)走行摩擦経時変化 50℃・80%RHにて1週間保存後の動摩擦係数μを
測定し、初期のμに対する増加率を求めた。
(6) Change in running friction over time The dynamic friction coefficient μ was measured after storage for one week at 50° C. and 80% RH, and the rate of increase with respect to the initial μ was determined.

上記表2において、サンプルNo、2−1.2−5およ
び2−8は比較用のリファレンスサンプルであり、上層
と下層との形成条件を全く同一に設定している。
In Table 2 above, samples No. 2-1, 2-5, and 2-8 are reference samples for comparison, and the formation conditions for the upper layer and the lower layer are set to be exactly the same.

下層のθmaxが上層のθmaxより小さいサンプルN
o、2−2では、下層のθmax以外の全ての入射角が
同じであるサンプルNo、2−1に比べ耐食性が著しく
向上し、また、上層のθmax以外の全ての入射角が同
じであるサンプルNo。
Sample N where θmax of the lower layer is smaller than θmax of the upper layer
In No. 2-2, the corrosion resistance is significantly improved compared to sample No. 2-1, in which all incident angles other than θmax in the lower layer are the same. No.

2−8に比べ電磁変換特性が著しく向上している。The electromagnetic conversion characteristics are significantly improved compared to 2-8.

また、上層のθminが下層のθminより大きいサン
プルNo、2−3では、上層のθmin以外の全ての入
射角が同じであるサンプルNo。
In addition, in sample No. 2-3, where θmin in the upper layer is larger than θmin in the lower layer, all incident angles other than θmin in the upper layer are the same.

2−1に比べ電磁変換特性が著しく向上し、また、下層
のθmin以外の全ての入射角が同じであるサンプルN
o、2−5に比べ耐食性が著しく向上している。
Sample N has significantly improved electromagnetic conversion characteristics compared to 2-1, and all incident angles other than θmin in the lower layer are the same.
Corrosion resistance is significantly improved compared to No. 2-5.

そして、これら同条件を満足するサンプルNo、2−4
では、耐食性および電磁変換特性のいずれもが極めて高
い。
Sample No. 2-4 that satisfies these same conditions
has extremely high corrosion resistance and electromagnetic conversion characteristics.

[実施例3] 実施例1に準じて、下記表3に示される3層の強磁性金
属薄膜から構成される磁性層を有する磁気記録媒体サン
プルを作製した。
[Example 3] According to Example 1, a magnetic recording medium sample having a magnetic layer composed of three ferromagnetic metal thin films shown in Table 3 below was prepared.

ただし、上層、中間層および下層の厚さは、それぞれ7
00人、700人および700人とし、各層蒸着時のθ
winおよびθmaxは、実施例1と同様とした。
However, the thickness of the upper layer, middle layer and lower layer is 7.
00 people, 700 people, and 700 people, and θ at the time of vapor deposition of each layer.
win and θmax were the same as in Example 1.

また、表3に示す各層の蒸着方向(柱状結晶粒子の成長
方向)は、その方向をテープ表面に投影したときの方向
がテープに対する磁気ヘッドの相対的移動方向と同方向
のとき十と表示し、逆方向のとき−と表示した。
In addition, the deposition direction of each layer (growth direction of columnar crystal grains) shown in Table 3 is indicated as 10 if the direction when projected onto the tape surface is the same direction as the relative movement direction of the magnetic head with respect to the tape. , when in the opposite direction, - is displayed.

これらの各サンプルについて、実施例1と同様な評価を
行なった。 結果を表3に示す。
Each of these samples was evaluated in the same manner as in Example 1. The results are shown in Table 3.

表3に示される結果から、本発明の効果は3層構成の磁
性層においても実現することが明らかである。
From the results shown in Table 3, it is clear that the effects of the present invention are achieved even in a three-layered magnetic layer.

[実施例4] 上層、中間層および下層の強磁性金属薄膜の蒸着時のθ
minおよびθmaxを変え、下記表4に示す各サンプ
ルを得た。 なお、サンプルNo、4−1は表3に示さ
れるサンプルNo。
[Example 4] θ during vapor deposition of upper layer, intermediate layer, and lower layer ferromagnetic metal thin films
Each sample shown in Table 4 below was obtained by changing min and θmax. Note that sample No. 4-1 is the sample No. shown in Table 3.

3−2と同じであり、他のサンプルのθminおよびθ
max以外の構成は、サンプルNo。
Same as 3-2, θmin and θ of other samples
Configurations other than max are sample No.

4−1と同じとした。Same as 4-1.

これらの各サンプルについて、実施例2と同様な評価を
行なった。 結果を表4に示す。
Each of these samples was evaluated in the same manner as in Example 2. The results are shown in Table 4.

表4に示される結果からも、本発明の効果が3層構成の
磁性層においても実現することが明らかである。
From the results shown in Table 4, it is clear that the effects of the present invention are also achieved in a three-layered magnetic layer.

なお、上記各実施例では磁性層にCo−Ni合金を用い
たが、Co−Ni−Cr合金からなる多層磁性層を有す
る磁気記録媒体においても、CO含有率やθmin 、
θmaxに応じて、上記各実施例と同等の効果が認めら
れた。
Although a Co-Ni alloy was used for the magnetic layer in each of the above embodiments, the CO content, θmin,
Effects equivalent to those of each of the above examples were observed depending on θmax.

〈発明の効果〉 本発明の磁気記録媒体は耐食性が極めて良好である。 
このため磁気特性の経時変化が極めて少なく、また、こ
のためカッピングの発生が抑えられるので媒体と磁気ヘ
ッドとのスペーシングの経時変化が極めて少ない。 さ
らに、ドロップアウトやテープ化したときの走行性の経
時変化も極めて少な(、耐久性、信頼性に優れる。
<Effects of the Invention> The magnetic recording medium of the present invention has extremely good corrosion resistance.
Therefore, there is very little change in the magnetic properties over time, and since the occurrence of cupping is suppressed, there is very little change in the spacing between the medium and the magnetic head over time. Furthermore, there is very little dropout or change in runnability over time when it is made into a tape (it has excellent durability and reliability).

しかも、本発明の磁気記録媒体は低域信号から高域信号
の広い帯域に亙って電磁変換特性が極めて良好である。
Moreover, the magnetic recording medium of the present invention has extremely good electromagnetic conversion characteristics over a wide band from low frequency signals to high frequency signals.

このため、 周波数範囲の 広い記録に特に好適である。For this reason, frequency range Particularly suitable for wide recording.

出 願 人 ティーデイ−ケイ株式会社 代 理 人Out wish Man TDC Co., Ltd. teenager Reason Man

Claims (7)

【特許請求の範囲】[Claims] (1)非磁性基体上に斜め蒸着法により形成された磁性
層を有し、この磁性層が少なくとも2層の強磁性金属薄
膜から構成され、この強磁性金属薄膜がCoおよびNi
を主成分とするか、またはCo、NiおよびCrを主成
分として含有する磁気記録媒体であって、 最下層の強磁性金属薄膜のCo含有率が最上層の強磁性
金属薄膜のCo含有率よりも低いことを特徴とする磁気
記録媒体。
(1) It has a magnetic layer formed by oblique vapor deposition on a nonmagnetic substrate, and this magnetic layer is composed of at least two ferromagnetic metal thin films, and this ferromagnetic metal thin film is made of Co and Ni.
or Co, Ni, and Cr as main components, wherein the Co content of the ferromagnetic metal thin film in the bottom layer is lower than the Co content in the ferromagnetic metal thin film in the top layer. A magnetic recording medium characterized by low magnetic flux.
(2)最下層の強磁性金属薄膜のCo含有率が70〜8
5at%である請求項1に記載の磁気記録媒体。
(2) Co content of the ferromagnetic metal thin film in the bottom layer is 70 to 8
The magnetic recording medium according to claim 1, wherein the content is 5 at%.
(3)最上層の強磁性金属薄膜のCo含有率が75〜9
0at%である請求項1または2に記載の磁気記録媒体
(3) Co content of the top layer ferromagnetic metal thin film is 75 to 9
The magnetic recording medium according to claim 1 or 2, wherein the magnetic recording medium has a content of 0 at%.
(4)蒸着時に強磁性金属が入射する方向と前記非磁性
基体表面の法線とがなす角度を入射角とし、入射角の最
大値をθmax、入射角の最小値をθminとすると、 最下層の強磁性金属薄膜が、最上層の強磁性金属薄膜蒸
着時のθmaxより小さいθmaxにて蒸着されたもの
である請求項1ないし3のいずれかに記載の磁気記録媒
体。
(4) If the angle between the direction in which the ferromagnetic metal is incident during vapor deposition and the normal to the surface of the non-magnetic substrate is the incident angle, the maximum value of the incident angle is θmax, and the minimum value of the incident angle is θmin, then the bottom layer 4. The magnetic recording medium according to claim 1, wherein the ferromagnetic metal thin film is deposited at θmax smaller than θmax when the uppermost ferromagnetic metal thin film is deposited.
(5)蒸着時に強磁性金属が入射する方向と前記非磁性
基体表面の法線とがなす角度を入射角とし、入射角の最
大値をθmax、入射角の最小値をθminとすると、 最上層の強磁性金属薄膜が、最下層の強磁性金属薄膜蒸
着時のθminより大きいθminにて蒸着されたもの
である請求項1ないし4のいずれかに記載の磁気記録媒
体。
(5) If the angle between the direction in which the ferromagnetic metal is incident during vapor deposition and the normal to the surface of the non-magnetic substrate is the angle of incidence, the maximum value of the incident angle is θmax, and the minimum value of the incident angle is θmin, then the top layer 5. The magnetic recording medium according to claim 1, wherein the ferromagnetic metal thin film is deposited at θmin greater than θmin at the time of depositing the ferromagnetic metal thin film of the bottom layer.
(6)最上層の強磁性金属薄膜蒸着時のθmaxとθm
inとの合計が、最下層の強磁性金属薄膜蒸着時のθm
axとθminとの合計よりも大きい請求項4または5
に記載の磁気記録媒体。
(6) θmax and θm when depositing the top layer of ferromagnetic metal thin film
The sum of in and θm at the time of depositing the ferromagnetic metal thin film of the bottom
Claim 4 or 5 larger than the sum of ax and θmin
The magnetic recording medium described in .
(7)強磁性金属が入射する方向が前記非磁性基体の法
線を挟んで交差するように蒸着された2層の強磁性金属
薄膜を有する請求項1ないし6のいずれかに記載の磁気
記録媒体。
(7) Magnetic recording according to any one of claims 1 to 6, comprising two ferromagnetic metal thin films deposited such that the direction of incidence of the ferromagnetic metal intersects with the normal line of the non-magnetic substrate. Medium.
JP13101190A 1990-05-21 1990-05-21 Magnetic recording media Expired - Fee Related JP3167128B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13101190A JP3167128B2 (en) 1990-05-21 1990-05-21 Magnetic recording media

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13101190A JP3167128B2 (en) 1990-05-21 1990-05-21 Magnetic recording media

Publications (2)

Publication Number Publication Date
JPH0426914A true JPH0426914A (en) 1992-01-30
JP3167128B2 JP3167128B2 (en) 2001-05-21

Family

ID=15047894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13101190A Expired - Fee Related JP3167128B2 (en) 1990-05-21 1990-05-21 Magnetic recording media

Country Status (1)

Country Link
JP (1) JP3167128B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0661694A2 (en) * 1993-12-28 1995-07-05 TDK Corporation Magnetic recording medium
US5558945A (en) * 1993-12-28 1996-09-24 Tdk Corporation Magnetic recording medium

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0661694A2 (en) * 1993-12-28 1995-07-05 TDK Corporation Magnetic recording medium
EP0661694A3 (en) * 1993-12-28 1996-09-18 Tdk Corp Magnetic recording medium.
US5558945A (en) * 1993-12-28 1996-09-24 Tdk Corporation Magnetic recording medium
US5674637A (en) * 1993-12-28 1997-10-07 Tdk Corporation Magnetic recording medium

Also Published As

Publication number Publication date
JP3167128B2 (en) 2001-05-21

Similar Documents

Publication Publication Date Title
US5453886A (en) Digital recording method using a specified magnetic recording medium
JP2897840B2 (en) Magnetic recording media
JPH04259909A (en) Magnetic recording medium
JPH0426914A (en) Magnetic recording medium
JP3167129B2 (en) Magnetic recording media
JPH0432015A (en) Magnetic recording medium
JP3093818B2 (en) Magnetic recording media
JPH0434715A (en) Magnetic tape
JP2848833B2 (en) Magnetic recording media
JP3009943B2 (en) Magnetic recording media for digital recording
JPH0440621A (en) Magnetic recording medium
JP2882524B2 (en) Magnetic recording media
JP2912028B2 (en) Magnetic tape
JP2977618B2 (en) Magnetic recording method
JP3041088B2 (en) Digital magnetic recording system
JP3491778B2 (en) Magnetic recording media
JPH01143312A (en) Amorphous soft magnetic laminated film
JP2977617B2 (en) Magnetic recording media
JPS61187122A (en) Magnetic recording medium
JPH11339245A (en) Magnetic recording medium
JPH06162474A (en) Magnetic recording medium
JPH07182644A (en) Magnetic recording medium
JPH07192245A (en) Magnetic recording medium
JPH08315348A (en) Magnetic recording medium
JPS59175030A (en) Production of magnetic recording medium

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090309

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees