JPH04268531A - Signal electrode for optical waveguide device and its formation - Google Patents

Signal electrode for optical waveguide device and its formation

Info

Publication number
JPH04268531A
JPH04268531A JP3029781A JP2978191A JPH04268531A JP H04268531 A JPH04268531 A JP H04268531A JP 3029781 A JP3029781 A JP 3029781A JP 2978191 A JP2978191 A JP 2978191A JP H04268531 A JPH04268531 A JP H04268531A
Authority
JP
Japan
Prior art keywords
electrode
signal electrode
optical waveguide
signal
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3029781A
Other languages
Japanese (ja)
Other versions
JP2565002B2 (en
Inventor
Minoru Kiyono
實 清野
Takashi Yamane
隆志 山根
Teruo Kurahashi
輝雄 倉橋
Kunio Sugata
菅田 邦男
Tadao Nakazawa
忠雄 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP3029781A priority Critical patent/JP2565002B2/en
Publication of JPH04268531A publication Critical patent/JPH04268531A/en
Application granted granted Critical
Publication of JP2565002B2 publication Critical patent/JP2565002B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/035Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure
    • G02F1/0356Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure controlled by a high-frequency electromagnetic wave component in an electric waveguide structure

Abstract

PURPOSE:To improve the adhesiveness to a substrate and the heat radiation, and to improve the performance and reliability of an optical waveguide device by providing a specific signal electrode for the optical waveguide device. CONSTITUTION:Signal electrodes 3, e.g. a progressive wave signal electrode and a ground electrode are formed on the optical waveguide 2, including branching optical waveguides 2a and 2b formed on the substrate 1 with electrooptic effect through a buffer layer 5. The signal electrode 3 and ground electrode 4 are constituted of thin metallic base electrodes 3a and 4a and thick metallic plating layer electrodes 3b and 4b. A projection metallic pattern 30 is formed on one side of the metallic base layer electrode 3a of the thin signal electrode 3, e.g. at the outside part. Thus, the projection metallic pattern 30 is formed and then this part is acted for prevention against underetching at the time of, for example, metallic base layer etching and serves as a heat radiation fin when a signal current flows to the narrow-width signal electrode 3 to reduce the heat strain, so that the signal electrode 3 is prevented from being peeled off.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は光導波路デバイス用信号
電極とその形成方法に関する。詳しくは、電気光学効果
を有する基板を用いて高周波数帯の光変調器や光スイッ
チなどの光導波路デバイスを構成する際に、それに用い
る信号電極,たとえば、進行波信号電極の基板との密着
性をよくし、かつ、放熱性をよくして光導波路デバイス
の性能および信頼性を向上させる電極構成とその形成方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a signal electrode for an optical waveguide device and a method for forming the same. Specifically, when configuring optical waveguide devices such as high frequency band optical modulators and optical switches using substrates with electro-optic effects, the adhesion of signal electrodes used therein, such as traveling wave signal electrodes, to the substrate is important. The present invention relates to an electrode structure and a method for forming the same, which improve the performance and reliability of an optical waveguide device by improving heat dissipation.

【0002】0002

【従来の技術】近年、光ファイバやレーザ光源の進歩・
発達に伴い、光通信をはじめ光技術を応用した各種のシ
ステム、デバイスが実用化され広く利用されるようにな
る一方で、その高度技術開発,とくに、最近の光通信シ
ステムの高速化の要求から、光導波路型デバイスを用い
て光信号を高速で制御する技術,たとえば、高速光変調
技術が必要になってきた。
[Background Art] In recent years, advances in optical fibers and laser light sources
As development progresses, various systems and devices that apply optical technology, including optical communication, have come into practical use and are widely used. There has become a need for technology to control optical signals at high speed using optical waveguide devices, such as high-speed optical modulation technology.

【0003】たとえば、1.6 Gbps程度までの伝
送速度の速光通信システムにおいては、レーザダイオー
ド(LD)を直接変調する方式を用いてきたが、変調周
波数がより高くなると、変調光波長の時間的微小変動,
 いわゆる、チャーピング現象や光ファイバの分散特性
などのために高速化と長距離通信への限界が生じる。
For example, in high-speed optical communication systems with transmission speeds up to about 1.6 Gbps, a method of directly modulating a laser diode (LD) has been used, but as the modulation frequency becomes higher, the time of the modulated light wavelength increases. small fluctuations,
The so-called chirping phenomenon and the dispersion characteristics of optical fibers impose limitations on high-speed and long-distance communications.

【0004】一方、高速光変調方式としては半導体レー
ザ光を外部で変調する外部変調方式がよく知られている
。とくに、電気光学効果を有する基板上に分岐光導波路
を設け、信号電極,たとえば、進行波信号電極を用いて
駆動するマッハツェンダ型外部変調器が有力視されてい
る。
On the other hand, as a high-speed optical modulation method, an external modulation method in which semiconductor laser light is externally modulated is well known. In particular, a Mach-Zehnder type external modulator is considered to be promising, in which a branched optical waveguide is provided on a substrate having an electro-optic effect and driven using a signal electrode, for example, a traveling wave signal electrode.

【0005】図4は光変調器の基本構成例を示す図で、
同図(イ)は平面図、同図(ロ)はY−Y断面図である
。 図中、1 は平面に加工した電気光学効果を有する基板
, たとえば、LiNbO3あるいはLiTaO3基板
である。2 は光導波路で中間に分岐光導波路2a,2
b が形成されている。この光導波路は通常基板の表面
にTiなどの金属を、光導波路部分だけに選択的に拡散
させ、その部分の屈折率を回りの部分よりも少し大きく
なるようにしてある。3は信号電極で, たとえば、進
行波信号電極、4は接地電極である。5は光導波路上の
金属電極層への光の吸収を小さくするためのバッファ層
で、通常、SiO2などの薄膜が用いられている。
FIG. 4 is a diagram showing an example of the basic configuration of an optical modulator.
The figure (a) is a plan view, and the figure (b) is a YY sectional view. In the figure, numeral 1 indicates a substrate having an electro-optic effect processed into a flat surface, for example, a LiNbO3 or LiTaO3 substrate. 2 is an optical waveguide with branched optical waveguides 2a and 2 in the middle.
b is formed. This optical waveguide is usually made by selectively diffusing a metal such as Ti on the surface of a substrate only to the optical waveguide portion, so that the refractive index of that portion is slightly larger than that of the surrounding portions. 3 is a signal electrode, for example, a traveling wave signal electrode, and 4 is a ground electrode. Reference numeral 5 denotes a buffer layer for reducing absorption of light into the metal electrode layer on the optical waveguide, and a thin film such as SiO2 is usually used.

【0006】信号電極3と接地電極4はバッファ層5を
介して光導波路上に、Auなどの金属を蒸着あるいはメ
ッキによって形成している。いま, たとえば、図示し
てない半導体レーザから発した直流光が左側の光導波路
2 から入り、分岐光導波路2a,2b で2つに分け
られ、その間に、信号電極3に高周波変調用の信号電源
6から信号電圧を印加すると、基板上に設けられた前記
分岐光導波路2a,2b における電気光学効果によっ
て分岐された両光に位相差が生じる。この両光を再び合
流させて、右側の一本の光導波路2 から変調された光
信号出力を取り出し、図示してない光検知器で電気信号
に変換するように構成されている。前記分岐光導波路2
a,2b における両光の位相差がπ,あるいは、0に
なるように信号電圧を印加すれば,たとえば、光信号出
力はONーOFF のパルス信号として得られる。なお
、RT は終端抵抗である。
The signal electrode 3 and the ground electrode 4 are formed on the optical waveguide via a buffer layer 5 by vapor deposition or plating of a metal such as Au. Now, for example, DC light emitted from a semiconductor laser (not shown) enters from the optical waveguide 2 on the left side and is split into two by the branching optical waveguides 2a and 2b. When a signal voltage is applied from 6, a phase difference occurs between the branched lights due to the electro-optic effect in the branched optical waveguides 2a and 2b provided on the substrate. The two lights are combined again, and a modulated optical signal output is taken out from the single optical waveguide 2 on the right side, and is converted into an electrical signal by a photodetector (not shown). The branch optical waveguide 2
If a signal voltage is applied so that the phase difference between the two lights at a and 2b becomes π or 0, the optical signal output can be obtained as an ON-OFF pulse signal, for example. Note that RT is a terminating resistor.

【0007】通常、このような光導波路デバイス用の電
極は高速のマイクロ波を通すために、電極材料には電気
抵抗の低い金(Au)を用い, しかも、その厚さをで
きるだけ厚く形成するようにしている。したがって、そ
の形成にはメッキ技術を応用しているのが一般的である
。以下にその一例を示す。
[0007] Normally, electrodes for such optical waveguide devices use gold (Au), which has low electrical resistance, as the electrode material in order to pass high-speed microwaves, and are made to be as thick as possible. I have to. Therefore, plating technology is generally applied to its formation. An example is shown below.

【0008】図5は従来の電極形成方法の例を示す図で
、主な工程を順を追って図示したものである。なお、同
図(イ)は上面図(基板上の電極,導波路配置),同図
(ロ)は同図(イ)のY−Y断面図である。
FIG. 5 is a diagram showing an example of a conventional electrode forming method, showing the main steps in order. The figure (A) is a top view (electrode and waveguide arrangement on the substrate), and the figure (B) is a YY cross-sectional view of the figure (A).

【0009】工程(1):たとえば、LiNbO3から
なる基板1に所定の寸法,形状の光導波路2(2a,2
b)を, たとえば、Ti拡散法で形成したあと、バッ
ファ層4として,たとえば、厚さ500nmのSiO2
膜をスパッタ形成する。その上に金属下地層34として
、たとえば, 厚さ150 nmの金(Au)を蒸着す
る。
Step (1): For example, optical waveguides 2 (2a, 2
b) is formed by, for example, a Ti diffusion method, and then a buffer layer 4 of, for example, SiO2 with a thickness of 500 nm is formed.
Sputter forming the film. Gold (Au) having a thickness of 150 nm, for example, is deposited thereon as a metal underlayer 34 .

【0010】工程(2):上記処理基板の信号電極3お
よび接地電極4を形成する領域以外の部分に厚さ10μ
m程度のレジストパターン7を図示したごとく形成する
。 工程(3):上記処理基板の前記レジストパターン7が
形成されていない金属下地層34の上に、たとえば, 
金メッキ層からなる金属メッキ層電極3b,4b を前
記レジストパターン7の上面に一致する程度の厚さに図
示したごとく形成する。このような金メッキは, たと
えば、液温65℃のシアン系金メッキ液を用い3mA/
 cm2 の電流密度で30分程度電気メッキして形成
される。
Step (2): A thickness of 10 μm is applied to the portion of the processed substrate other than the area where the signal electrode 3 and the ground electrode 4 are to be formed.
A resist pattern 7 of about m length is formed as shown in the figure. Step (3): For example, on the metal base layer 34 on which the resist pattern 7 of the treated substrate is not formed,
Metal plated layer electrodes 3b and 4b made of a gold plated layer are formed to a thickness matching the upper surface of the resist pattern 7 as shown in the figure. For example, such gold plating is carried out using a cyan gold plating solution at a temperature of 65°C at a rate of 3mA/3mA.
It is formed by electroplating for about 30 minutes at a current density of cm2.

【0011】工程(4):上記処理基板のレジストパタ
ーン7を適当な剥離液で除去する。 工程(5):上記処理基板を, たとえば、沃素と沃化
カリウムの混合水溶液の中で30秒程度エッチングして
、信号電極3および接地電極4の形成領域以外の部分の
金属下地層34のAuを溶解除去して、光導波路デバイ
ス, たとえば、マッハツエンダ型光変調器が形成され
ている。
Step (4): The resist pattern 7 on the treated substrate is removed using an appropriate stripping solution. Step (5): The above-mentioned treated substrate is etched for about 30 seconds in a mixed aqueous solution of iodine and potassium iodide to remove the Au of the metal base layer 34 in areas other than the formation areas of the signal electrode 3 and ground electrode 4. An optical waveguide device, for example, a Mach-Zehnder type optical modulator, is formed by dissolving and removing.

【0012】0012

【発明が解決しようとする課題】しかし、上記従来の電
極形成方法による光導波路デバイスの電極, とくに、
信号電極3は電極巾が通常10μm以下と狭いので、電
極形成の最終工程で金属下地層34のエッチングの際に
、図5における工程(5) の同図(ロ)に示したごと
くその金属下地層34の部分でアンダーエッチ34’ 
を生じ、基板1との間の密着性を低下させる。しかも、
信号電流による発熱の影響も加わって基板と電極間の熱
膨張の差による歪みのために、より一層信号電極3の剥
離が加速され光導波路デバイスの信頼性が損なわれると
いう重大な問題が生じておりその解決が求められている
[Problems to be Solved by the Invention] However, the electrodes of optical waveguide devices formed by the above-mentioned conventional electrode forming method, especially,
Since the signal electrode 3 has a narrow electrode width of usually 10 μm or less, when etching the metal base layer 34 in the final step of electrode formation, the metal base layer 34 is etched as shown in FIG. Underetch 34' in layer 34
This causes the adhesion with the substrate 1 to deteriorate. Moreover,
Due to distortion caused by the difference in thermal expansion between the substrate and the electrodes in addition to the effect of heat generation due to the signal current, a serious problem arises in that peeling of the signal electrode 3 is further accelerated and the reliability of the optical waveguide device is impaired. A solution is needed.

【0013】[0013]

【課題を解決するための手段】上記の課題は、電気光学
効果を有する基板1上に形成された光導波路2を伝播す
る光を制御するごとくに配設された光導波路デバイス用
信号電極において、前記信号電極3の少なくとも片側の
所々に突起状金属パターン30が形成された光導波路デ
バイス用信号電極により解決することができる。具体的
には、前記突起状金属パターン30となる部分を薄い金
属下地層電極3aに形成し、前記突起状金属パターン3
0となる部分を除く前記金属下地層電極3a上に厚い金
属メッキ層電極3bを形成する光導波路デバイス用信号
電極により効果的に解決できる。
[Means for Solving the Problems] The above problems are solved in a signal electrode for an optical waveguide device arranged so as to control light propagating in an optical waveguide 2 formed on a substrate 1 having an electro-optic effect. This problem can be solved by using a signal electrode for an optical waveguide device in which protruding metal patterns 30 are formed in places on at least one side of the signal electrode 3. Specifically, a portion that will become the protruding metal pattern 30 is formed on a thin metal base layer electrode 3a, and the protruding metal pattern 3
This problem can be effectively solved by using a signal electrode for an optical waveguide device in which a thick metal plating layer electrode 3b is formed on the metal base layer electrode 3a except for the portion where the value becomes 0.

【0014】[0014]

【作用】本発明によれば、巾の狭い信号電極3を金属下
地層34の段階でパターン化しておき、後工程で行う不
要部分のエッチングの際にエッチング液に触れないよう
にすることでアンダーエッチを防止すると共に、巾の狭
い信号電極3の少なくとも片側の所々に突起状金属パタ
ーン30を形成しているので、金属下地層34の面積が
増して密着強度が大きくなり、また,信号電流が流れる
ことによる信号電極3の発熱に対する放熱フィンの働き
をするので熱歪みも小さくし、信号電極3が基板1から
剥離するのが防止されるのである。
[Operation] According to the present invention, the narrow signal electrode 3 is patterned at the stage of the metal base layer 34 so that it does not come into contact with the etching solution when unnecessary parts are etched in a later process. In addition to preventing etching, since the protruding metal pattern 30 is formed in places on at least one side of the narrow signal electrode 3, the area of the metal base layer 34 is increased, the adhesion strength is increased, and the signal current is Since it functions as a heat dissipation fin against the heat generated by the signal electrode 3 due to the flow, thermal distortion is also reduced and separation of the signal electrode 3 from the substrate 1 is prevented.

【0015】[0015]

【実施例】図1は本発明の実施例を示す図で、同図(イ
)は平面図,同図(ロ)はX−X 断面図,同図(ハ)
はY1−Y1 断面図,同図(ニ)はY2−Y2 断面
図である。図中、30は突起状金属パターンである。
[Embodiment] Fig. 1 shows an embodiment of the present invention, in which (A) is a plan view, (B) is a sectional view taken along line X-X, and (C) is a cross-sectional view taken along line X-X.
is a Y1-Y1 cross-sectional view, and (D) is a Y2-Y2 cross-sectional view. In the figure, 30 is a protruding metal pattern.

【0016】なお、前記の諸図面で説明したものと同等
の部分については同一符号を付し、かつ、同等部分につ
いての説明は省略する。たとえば、LiNbO3のZ板
の表面を鏡面研磨した基板1の上に形成された、分岐光
導波路2a,2b を含む光導波路2 にバッファ層5
 を介して、図示したごとく信号電極3,たとえば、進
行波信号電極と接地電極4 が形成されている。信号電
極3 および接地電極4 はともに薄い金属下地層電極
3a,4aと厚い金属メッキ層電極3b,4bとから構
成される。
[0016] The same parts as those explained in the above drawings are given the same reference numerals, and the explanation of the same parts will be omitted. For example, a buffer layer 5 is formed on an optical waveguide 2 including branched optical waveguides 2a and 2b formed on a substrate 1 in which the surface of a LiNbO3 Z plate is mirror-polished.
As shown, a signal electrode 3, for example, a traveling wave signal electrode and a ground electrode 4 are formed via the electrode. Both the signal electrode 3 and the ground electrode 4 are composed of thin metal base layer electrodes 3a, 4a and thick metal plating layer electrodes 3b, 4b.

【0017】この例では薄い信号電極3 の金属下地層
電極3aの片側, たとえば、図示したごとく外側部分
に突起状金属パターン30が形成してある。突起状金属
パターン30の大きさや配置は, たとえば、厚さ10
0 〜200 nm, 巾10〜20μm, 出っ張り
長さ20〜30μm, 間隔100 μm程度に形成し
てあればよい。
In this example, a protruding metal pattern 30 is formed on one side of the metal base layer electrode 3a of the thin signal electrode 3, for example, on the outer side as shown. The size and arrangement of the protruding metal pattern 30 are, for example, 10 mm thick.
They may be formed to have a thickness of 0 to 200 nm, a width of 10 to 20 μm, a protrusion length of 20 to 30 μm, and an interval of about 100 μm.

【0018】このような突起状金属パターン30が形成
されていることにより、その部分が製造工程中の処理,
 たとえば、金属下地層エッチングの際にアンダーエッ
チを防止する作用をなすと共に、巾の狭い信号電極3に
信号電流が流れて発熱する時の放熱フィンの働きをし熱
歪みも小さくなり、信号電極3が基板1から剥離するの
が防止され、従来の素子構成のものに比較して大巾に信
頼性が向上する。突起状金属パターン30が上記の例の
ような大きさであれば、光導波路デバイス,たとえば、
光変調器の特性に何ら影響を与えることはない。
Since such a protruding metal pattern 30 is formed, that portion is not subjected to processing during the manufacturing process.
For example, it works to prevent under-etching when etching a metal base layer, and also acts as a heat dissipation fin when a signal current flows through the narrow signal electrode 3 and generates heat, reducing thermal distortion. is prevented from peeling off from the substrate 1, and reliability is greatly improved compared to conventional device configurations. If the protruding metal pattern 30 has a size like the above example, an optical waveguide device, for example,
This does not affect the characteristics of the optical modulator in any way.

【0019】なお、上記実施例では突起状金属パターン
30を信号電極3の金属下地層電極3aの片側,すなわ
ち、外側だけに形成したが、その両側,すなわち、内外
側に形成すれば一層効果が増すことは言うまでもない。 また、金属下地層電極3aだけでなくその上の厚い金属
メッキ層電極3bまで連続して形成してあっても構わな
い。さらに、必要により接地電極4 の内側端面にも形
成してよいことは勿論である。
In the above embodiment, the protruding metal pattern 30 was formed only on one side of the metal base layer electrode 3a of the signal electrode 3, that is, on the outside, but it would be more effective if it was formed on both sides, that is, on the inside and outside. Needless to say, it will increase. Furthermore, not only the metal base layer electrode 3a but also the thick metal plating layer electrode 3b thereon may be formed continuously. Furthermore, it goes without saying that it may also be formed on the inner end surface of the ground electrode 4 if necessary.

【0020】図2および図3は本発明の電極形成方法の
実施例を示す図(その1)および(その2)で、主な工
程を順を追って図示したものである。なお、同図(イ)
は上面図(基板上の電極,導波路配置),同図(ロ)は
同図(イ)に図示した位置におけるY−Y断面図である
FIGS. 2 and 3 are diagrams (Part 1) and (Part 2) showing an embodiment of the electrode forming method of the present invention, in which the main steps are illustrated in order. In addition, the same figure (a)
is a top view (electrode and waveguide arrangement on the substrate), and figure (b) is a YY cross-sectional view at the position shown in figure (a).

【0021】工程(1):基板1には,たとえば、大き
さ40mm×2mm,厚さ1mmのLiNbO3のZ板
の表面を鏡面研磨して使用する。この基板の上にTiを
約100 nmの厚さに真空蒸着し分岐光導波路2aお
よび2bを含む光導波路2に相当する部分にTiが残る
ように通常のホトエッチング法で処理したのち、約10
500C, 10時間加熱しTiをLiNbO3中に熱
拡散させて光導波路2を形成する。  分岐光導波路部
分の長さは25mm,光導波路の幅は7 μmになるよ
うに調整し、分岐光導波路2aおよび2bの間隔は約1
5μmとし、分岐部の角度は2°程度に形成する。次い
で、バッファ層としてSiO2膜を500 nmの厚さ
に真空蒸着法で形成する。さらに、その上に金属下地層
34として、たとえば, 厚さ150 nmの金(Au
)膜を蒸着する。
Step (1): For the substrate 1, for example, a Z plate of LiNbO3 having a size of 40 mm x 2 mm and a thickness of 1 mm is mirror-polished. Ti was vacuum-deposited on this substrate to a thickness of about 100 nm, and treated by a normal photoetching method so that Ti remained in the portion corresponding to the optical waveguide 2 including the branched optical waveguides 2a and 2b.
The optical waveguide 2 is formed by heating at 500 C for 10 hours to thermally diffuse Ti into LiNbO3. The length of the branched optical waveguide portion was adjusted to 25 mm, the width of the optical waveguide was adjusted to 7 μm, and the interval between the branched optical waveguides 2a and 2b was approximately 1
The thickness is 5 μm, and the angle of the branch portion is approximately 2°. Next, a SiO2 film is formed as a buffer layer to a thickness of 500 nm by vacuum evaporation. Further, a metal base layer 34, for example, of gold (Au) with a thickness of 150 nm is formed thereon.
) deposit the film.

【0022】工程(2):上記処理基板の金属下地層3
4に、信号電極3と接地電極4となる領域,基板外周部
およびそれらを連結し、かつ,突起状金属パターン30
となる部分であるブリッジ部30’ を残して、図示し
たごとくホトエッチングによりエッチ孔31を形成する
Step (2): Metal base layer 3 of the above-mentioned treated substrate
4, a region that will become the signal electrode 3 and the ground electrode 4, the outer periphery of the substrate, and a protruding metal pattern 30 that connects them;
As shown in the figure, an etch hole 31 is formed by photo-etching, leaving the bridge portion 30', which is the portion where it becomes.

【0023】このようなブリッジ部30’ が存在しな
い場合には信号電極3が細いため、パターン化すること
によって無視できない電気抵抗となりメッキ膜の厚さの
不均一性をもたらす。しかし、ブリッジ部30’ を設
けることで巾の狭い信号電極3に外部からメッキに必要
な電流を供給するのに役立ち均一な厚さの金属メッキ層
電極3bが得られる。
If such a bridge portion 30' does not exist, the signal electrode 3 is thin, so that patterning causes non-negligible electrical resistance, resulting in non-uniformity in the thickness of the plating film. However, the provision of the bridge portion 30' helps to supply the current necessary for plating to the narrow signal electrode 3 from the outside, and provides a metal plating layer electrode 3b with a uniform thickness.

【0024】工程(3):上記処理基板の上に厚さ10
μm程度のレジストを, たとえば、スピンコートした
あと、信号電極3と接地電極4となる領域以外の部分に
厚さ10μm程度のレジストパターン7を図示したごと
く形成する。
Step (3): Apply a thickness of 10 mm on the above-mentioned treated substrate.
After spin-coating a resist with a thickness of about .mu.m, for example, a resist pattern 7 with a thickness of about 10 .mu.m is formed in areas other than the regions that will become the signal electrodes 3 and ground electrodes 4, as shown in the figure.

【0025】工程(4):上記処理基板の前記レジスト
パターン7が形成されていない金属下地層34の上に、
たとえば, 金メッキ層からなる金属メッキ層電極3b
,4b を前記レジストパターン7の上面に一致する程
度の厚さに図示したごとく形成する。このような金メッ
キは, たとえば、液温65℃のシアン系金メッキ液を
用い3mA/ cm2 の電流密度で30分程度電気メ
ッキして形成される。
Step (4): On the metal base layer 34 on which the resist pattern 7 of the treated substrate is not formed,
For example, a metal plating layer electrode 3b consisting of a gold plating layer
, 4b are formed to a thickness matching the upper surface of the resist pattern 7 as shown in the figure. Such gold plating is formed, for example, by electroplating at a current density of 3 mA/cm2 for about 30 minutes using a cyan gold plating solution with a liquid temperature of 65°C.

【0026】工程(5):上記処理基板のレジストパタ
ーン7を適当な剥離液で除去すれば、図示したごとく信
号電極3の外側と内側にブリッジ部31’ とエッチ孔
31が形成された金属下地層34, すなわち、金(A
u)の蒸着膜が露出する。
Step (5): By removing the resist pattern 7 of the above-mentioned treated substrate with a suitable stripping solution, a metal bottom with bridge portions 31' and etched holes 31 formed on the outside and inside of the signal electrode 3 is formed as shown in the figure. Stratum 34, i.e. gold (A
The deposited film u) is exposed.

【0027】工程(6):上記処理基板上の金メッキ層
からなる金属メッキ層電極3b,4b の上に、たとえ
ば,金属メッキ層電極3b,4b の電極パターン巾よ
りもやゝ広く,すなわち、側端部がレジストで覆われる
程度の広さに、たとえば,厚さ1μm程度のレジストパ
ターン8を図示したごとく形成する。
Step (6): On the metal plated layer electrodes 3b, 4b made of the gold plated layer on the above-mentioned processed substrate, for example, a layer slightly wider than the electrode pattern width of the metal plated layer electrodes 3b, 4b, that is, a side plate is formed. As shown in the figure, a resist pattern 8 having a thickness of, for example, about 1 μm is formed in such a width that the end portions are covered with the resist.

【0028】工程(7):上記処理基板の金メッキ層か
らなる金属下地層34の露出部を, たとえば、沃素と
沃化カリウムの混合水溶液の中で30秒程度エッチング
して、金属下地層34のAuを溶解除去したあと、レジ
ストパターン8を適当な剥離液で除去すれば、本発明の
信号電極3の,少なくとも、片側に突起状金属パターン
30が形成された光導波路デバイス, たとえば、マッ
ハツエンダ型光変調器が作製される。
Step (7): The exposed portion of the metal base layer 34 consisting of the gold plating layer of the above-mentioned treated substrate is etched for about 30 seconds in a mixed aqueous solution of iodine and potassium iodide, for example. After dissolving and removing the Au, if the resist pattern 8 is removed with an appropriate stripping solution, an optical waveguide device in which a protruding metal pattern 30 is formed on at least one side of the signal electrode 3 of the present invention, such as a Mach-Zehnder type optical device, can be obtained. A modulator is created.

【0029】このようにして作製された光導波路型デバ
イスは信号電極3の剥離が生じることがなく、しかも,
 放熱性がよいので、動作特性が安定し信頼性が向上す
る。以上の実施例ではマッハツエンダ型光変調器の場合
を例にして示したが、本発明はその他各種の光導波路デ
バイスに適用できることは言うまでもない。
The optical waveguide type device manufactured in this way does not cause peeling of the signal electrode 3, and furthermore,
Good heat dissipation results in stable operating characteristics and improved reliability. In the above embodiments, the case of a Mach-Zehnder type optical modulator was shown as an example, but it goes without saying that the present invention can be applied to various other optical waveguide devices.

【0030】また、上記実施例は例を示したもので本発
明の趣旨に反しない限り、使用する素材や細部のプロセ
スなど適宜他のものを選択使用してよいことは勿論であ
る。
Furthermore, the above-mentioned embodiments are merely examples, and it goes without saying that other materials and detailed processes may be selected and used as appropriate, as long as they do not go against the spirit of the present invention.

【0031】[0031]

【発明の効果】以上説明したように、本発明によれば巾
の狭い信号電極3の少なくとも片側の所々に突起状金属
パターン30を形成してあるので、その部分が金属下地
層34のエッチングの際にアンダーエッチの抑制作用を
なすと共に、均一な厚さのメッキ膜を得ることができ、
信号電流による信号電極3の発熱に対する放熱フィンの
働きをするので熱歪みも小さくし、信号電極3が基板1
から剥離するのが防止され、光導波路デバイスの性能・
品質ならびに信頼性の向上に寄与するところが極めて大
きい。
As explained above, according to the present invention, since the protruding metal pattern 30 is formed in some places on at least one side of the narrow signal electrode 3, the metal base layer 34 is etched in that part. In addition to suppressing underetching, it is possible to obtain a plating film with a uniform thickness.
Since the signal electrode 3 functions as a heat dissipation fin for the heat generation of the signal electrode 3 caused by the signal current, thermal distortion is also reduced.
The performance of the optical waveguide device is improved.
This greatly contributes to improving quality and reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の実施例を示す図である。FIG. 1 is a diagram showing an embodiment of the present invention.

【図2】本発明の電極形成方法の実施例を示す図(その
1)である。
FIG. 2 is a diagram (part 1) showing an example of the electrode forming method of the present invention.

【図3】本発明の電極形成方法の実施例を示す図(その
2)である。
FIG. 3 is a diagram (part 2) showing an example of the electrode forming method of the present invention.

【図4】光変調器の基本構成例を示す図である。FIG. 4 is a diagram showing an example of the basic configuration of an optical modulator.

【図5】従来の電極形成方法の例を示す図である。FIG. 5 is a diagram showing an example of a conventional electrode forming method.

【符号の説明】[Explanation of symbols]

1は基板、 2は光導波路、 2a,2bは分岐光導波路、 3は信号電極、 4は接地電極、 3a,4aは金属下地層電極、 3b,4bは金属メッキ層電極、 5はバッファ層、 7,8はレジストパターン、 30は突起状金属パターン、 30’はブリッジ部 31はエッチ孔、 34は金属下地層、 1 is the board, 2 is an optical waveguide, 2a and 2b are branched optical waveguides, 3 is a signal electrode, 4 is a ground electrode, 3a and 4a are metal base layer electrodes; 3b and 4b are metal plated layer electrodes, 5 is a buffer layer, 7 and 8 are resist patterns, 30 is a protruding metal pattern; 30' is the bridge part 31 is an etch hole, 34 is a metal base layer;

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  電気光学効果を有する基板(1)上に
形成された光導波路(2)を伝播する光を制御するごと
くに配設された光導波路デバイス用信号電極において、
前記信号電極(3)の少なくとも片側の所々に突起状金
属パターン(30)が形成されていることを特徴した光
導波路デバイス用信号電極。
1. A signal electrode for an optical waveguide device arranged so as to control light propagating in an optical waveguide (2) formed on a substrate (1) having an electro-optic effect, comprising:
A signal electrode for an optical waveguide device, characterized in that a protruding metal pattern (30) is formed in places on at least one side of the signal electrode (3).
【請求項2】  前記突起状金属パターン(30)とな
る部分を薄い金属下地層電極(3a)に形成し、前記突
起状金属パターン(30)となる部分を除く前記金属下
地層電極(3a)上に厚い金属メッキ層電極(3b)を
形成することを特徴とした請求項1記載の光導波路デバ
イス用信号電極の形成方法。
2. A thin metal base layer electrode (3a) is formed in a portion that will become the protruding metal pattern (30), and the metal base layer electrode (3a) excluding the portion that will become the protrusion metal pattern (30). 2. The method of forming a signal electrode for an optical waveguide device according to claim 1, further comprising forming a thick metal plating layer electrode (3b) thereon.
JP3029781A 1991-02-25 1991-02-25 Signal electrode for optical waveguide device and method of forming the same Expired - Fee Related JP2565002B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3029781A JP2565002B2 (en) 1991-02-25 1991-02-25 Signal electrode for optical waveguide device and method of forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3029781A JP2565002B2 (en) 1991-02-25 1991-02-25 Signal electrode for optical waveguide device and method of forming the same

Publications (2)

Publication Number Publication Date
JPH04268531A true JPH04268531A (en) 1992-09-24
JP2565002B2 JP2565002B2 (en) 1996-12-18

Family

ID=12285560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3029781A Expired - Fee Related JP2565002B2 (en) 1991-02-25 1991-02-25 Signal electrode for optical waveguide device and method of forming the same

Country Status (1)

Country Link
JP (1) JP2565002B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0710868A1 (en) * 1994-10-27 1996-05-08 Nec Corporation Optical waveguide device
EP1132764A1 (en) * 2000-03-08 2001-09-12 JDS Uniphase Corporation Electro-optic modulator with enhanced temperature stability
US6411747B2 (en) 1998-04-06 2002-06-25 Nec Corporation Waveguide type optical device
EP0813092B1 (en) * 1996-06-14 2007-03-07 Sumitomo Osaka Cement Co., Ltd. Optical waveguide modulator with travelling-wave type electrodes

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0710868A1 (en) * 1994-10-27 1996-05-08 Nec Corporation Optical waveguide device
US5563965A (en) * 1994-10-27 1996-10-08 Nec Corporation Optical waveguide device with additional electrode structure
EP0813092B1 (en) * 1996-06-14 2007-03-07 Sumitomo Osaka Cement Co., Ltd. Optical waveguide modulator with travelling-wave type electrodes
US6411747B2 (en) 1998-04-06 2002-06-25 Nec Corporation Waveguide type optical device
EP1132764A1 (en) * 2000-03-08 2001-09-12 JDS Uniphase Corporation Electro-optic modulator with enhanced temperature stability
US6449080B1 (en) 2000-03-08 2002-09-10 Jds Uniphase Corporation Electro-optic modulator with enhanced bias stability

Also Published As

Publication number Publication date
JP2565002B2 (en) 1996-12-18

Similar Documents

Publication Publication Date Title
CA2368726C (en) Velocity-matched, traveling-wave electro-optical devices using non-conductive and conductive polymer buffer layers
JP2001209018A (en) Optical modulator with monitor
JP2009145816A (en) Optical modulator
US6522792B1 (en) Light modulator of waveguide type
EP0819969A2 (en) Velocity-matched traveling-wave electro-optical modulator using a benzocyclobutene buffer layer
JP2928129B2 (en) Optical modulator and method of manufacturing the same
JP2780400B2 (en) Light modulator
JP2565002B2 (en) Signal electrode for optical waveguide device and method of forming the same
JPH06235891A (en) Optical waveguide device
JPH04217226A (en) Manufacture of light guide path type device
JP2550730B2 (en) Optical waveguide device and manufacturing method thereof
JP4376795B2 (en) Waveguide type optical modulator
JP2793562B2 (en) Waveguide type optical modulator
JP2005181537A (en) Optical modulator
JPH10274758A (en) Waveguide type optical modulator
JPH0561008A (en) Formation of optical waveguide element and signal electrode
JP2564999B2 (en) Light modulator
JP3898851B2 (en) Waveguide type optical device
JPH03204614A (en) Optical modulator
JP2734708B2 (en) Light modulator
JP2801900B2 (en) Waveguide type optical modulator
JPH09297288A (en) Optical waveguide device
JPH07306324A (en) Optical waveguide device
JP2817295B2 (en) Light modulator
JPH03188416A (en) Optical modulation device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960806

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071003

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091003

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees